
Improving Relaxed-Plan-Based Heuristics

Jorge A. Baier
Department of Computer Science

University of Toronto
Toronto, ON M5S 3G4, Canada

Abstract

Relaxed-plan-based (RPB) heuristics were first proposed by
Hoffmann and Nebel for their FF system and are still used
by current top-performing planners. Their main characteris-
tic is that they are computed by computing a so-called relaxed
plan, which is a plan for a relaxed version of the problem that
ignores negative effects of actions. However, still in some
domains that humans consider simple, they provide bad guid-
ance. Arguably, the reason is that disregarding deletes over-
simplifies those domains. Consequently, relaxed plans ignore
key parts of the domain’s structure. This paper describes pre-
liminary work that attempts to identify how it is possible to
compute better relaxed plans that will better respect the struc-
ture of the original (un-relaxed) problem. To that end, we pro-
pose two techniques for extracting improved relaxed plans.
The first (domain-independent) technique identifies missing
actions that would have to be performed if the relaxed plan
was to be executed in the real (un-relaxed) world. The sec-
ond (domain-dependent) technique uses domain knowledge,
in the form of simple state constraints, to attempt to extract a
relaxed plan that respects key information of the domain. We
prove that the first technique can significantly improve the
performance and quality of solutions obtained with a vanilla
RPB heuristic and enforced hill climbing on a family of sim-
ple blocks-world problems. We experimentally show that
both techniques improve search efficiency in example do-
mains.

Introduction
Relaxed-Plan-Based (RPB) heuristics are among the most
successful in classical planning, being key to systems such
as FF (Hoffmann & Nebel 2001), and SGPlan (Chen, Wah,
& Hsu 2006). To compute an RPB heuristic one constructs
a plan that solves a relaxed version of the original problem.
Here we focus on RPB heuristics that are computed from
relaxed versions of the problem where negative effects of
actions (a.k.a.deletes) are ignored, like the one used by FF.

RPB heuristics have been successful in planning mainly
for two reasons. First, in many domains they give a very
accurate advice of what needs to be done to achieve the
goal in a particular state. Second, they can be computed
efficiently. Finally, in many domains (e.g.,briefcase, lo-
gistics) RPB heuristics are provably effective (Hoffmann
2005), since they have no local minima.

Despite their success, in some domains that are simple for

humans, RPB heuristics are not effective (e.g.,blocksworld).
Ignoring deletes does not seem to be a good idea in those
cases. More precisely, by relaxing deletes to compute the
heuristic, we lose a key part of the underlying “structure” of
those domains.

This paper describes work in progress that attempts to
determine how it is possible to find improved relaxed
plans/heuristics. These improved plans are obtained by
changing the relaxed plan extraction phase in such a way
that the resulting plan will take into account some elements
that would have otherwise been ignored by a vanilla RPB
heuristic. The improved relaxed plans are still efficiently
computable.

We propose two techniques to compute improved relaxed
plans. Both are based on the fact that relaxed plans could
be considered asadviceregarding what has to be done at
each state of the search. The first is a domain-independent
technique. It will modify a standard relaxed planP when
it realizes that preconditions of some actions inP will be
invalidated (occluded) by some actions inP no matter how
we executeP in the un-relaxed domain. When precondi-
tions are occluded, we assume they have to be fixed bysome
action, and the heuristic is modified accordingly. The mod-
ified RPB heuristic is then proven more effective than the
vanilla version in an example domain.

Arguably domain-specific knowledge—logical assertions
that are entailed by the domain description—represents
part of the structure of a domain. Our second (domain-
dependent) technique proposes to use domain knowledge,
in the form of state constraints, to inform the relaxed plan
extraction phase of key parts of the structure that we would
like to be preserved by the relaxed plan. We propose the use
of very simple constraints that can be extracted by existing
systems. We show in an example domain that our technique
can improve search effectiveness.

Background
Relaxed-Plan-Based Heuristics To compute the RPB
heuristic for a states, we expand a so-calledrelaxed plan-
ning graph(Hoffmann & Nebel 2001) froms, which is no
different from the graph that would be expanded by Graph-
plan (Blum & Furst 1997) on the relaxed instance of the
problem. We view this graph as composed ofrelaxed states.
A relaxed state at depthn + 1 is generated byaddingall the



effects of actions that can be performed in the relaxed state
of depthn, and then by copying all facts that appear in layer
n. The graph is expanded until the goal or a fixed point is
reached.

After the graph is computed, the relaxed plan is extracted
by regressing from the goal to the initial state. Arelaxed
plan can be represented as a sequence of sets of actions
A1 · · ·An. In general, many relaxed plans can be extracted
from a single graph; indeed, although finding the optimal
relaxed plan is NP-complete (Hoffmann & Nebel 2001),
heuristics can be used to extract a good (small) one in poly-
nomial time. The number of actions in the relaxed plan is
used as the heuristic value of the nodes.

If A1 · · ·An is a relaxed plan, then the actions inA1 are
often referred to ashelpful actions. These actions are used
by planners like FF as advice regarding the successors that
most likely will lead to satisfying the goal. Ifh is an RPB
heuristic, we denote byH(h, s) the set of helpful actions of
the relaxed plan constructed by the algorithm forh on state
s. Moreover, we useh∗(s) to denote the cost of anoptimal
plan that achieves the goal starting from states.

Planning with RPB Heuristics As with any other
domain-independent heuristic for planning, a standard best-
first search can be used for planning with RPB heuristics.
However, the most effective planners improve over best-first
search by exploiting helpful actions in one way or another.
One of the reasons for this is that computing the heuristic for
a state is computationally expensive. FF, for example, uses
an enforced hill climbing (EHC) search algorithm that will
use only helpful actions in a breadth-first search that looks
for an improved successor of the node being expanded.

Concentrating on helpful actions improves the efficiency
of planners but focusing on them too much can lead, on its
own, to sacrificing completeness, independent of the search
strategy being used.

Algorithm 1 is a planning function that exploits RPB
heuristics. It is a variation of the one used by Fast Down-
ward (Helmert 2006). The algorithm uses two indepen-
dent open lists to keep the nodes in the search frontier: the
PriOpenList and theSecOpenList . ThePriOpenList con-
tains nodes that were generated by performing a helpful ac-
tion, andSecOpenList contains those that were not. An im-
portant observation is that the computation of the heuristic
is deferredfor successors that are not generated by a help-
ful action; these successors therefore inherit the heuristic
value of their immediate ancestor (line 19). This enables
this algorithm to save time by not computing the heuristic
for states that don’t look promising. At the end of the while
loop (line 21), theCurOpenList points to the other open
list (i.e., if it was originally pointing toPriOpenList , it will
point toSecOpenList , and vice versa). The switch is only
made if afterwardsCurOpenList points to a non-empty list.

Although Algorithm 1 concentrates on helpful actions, it
is easy to see that it is complete for the case of classical
planning, because the search space is finite. It is easy alstoto
see that removing line 21 makes it incomplete, but probably
faster on the instances that can be solved by only considering

Algorithm 1 A complete RPB-based planning algorithm.
1: function RPB-PLAN (stateinit, goalgoal)
2: Compute heuristic & helpful actions forinit
3: Insertinit into PriOpenList
4: SecOpenList ← []
5: CurOpenList ← PriOpenList
6: while PriOpenList andSecOpenList are not emptydo
7: father ← best state inCurOpenList
8: Insertfather into ClosedList
9: if father satisfiesgoal then

10: return father

11: if CurOpenList =SecOpenList then
12: Compute heuristic & helpful actions forfather
13: succ← successors offather
14: for all s ∈ succ r ClosedList do
15: if action that produceds is in father .helpful then
16: Compute heuristic & helpful actions fors
17: Inserts into PriOpenList
18: else
19: s.heuristic← father .heuristic
20: Inserts into SecOpenList

21: SwitchCurOpenList ⊲ change to the other list
22: return failure

helpful actions.

Good Relaxed Plan Heuristics
What makes an RPB heuristic a good heuristic? A uncon-
tentious informal answer to this question may be as follows.
A good RPB heuristic is one that leads the search to a rea-
sonably good solution, reasonably fast. Unfortunately this
refers to two fuzzy concepts, whose definitions are them-
selves open to debate, i.e., what is “reasonably good”, and
what is “reasonably fast”.

Rather than proposing a definition for these fuzzy con-
cepts, in the remainder of this section we focus on two prop-
erties of RPB heuristics:helpfulnessandaccuracy. We jus-
tify, in intuitive terms, why these properties are important
for obtaining good-quality solutions fast. (A more thorough
theoretical analysis is left as future work.)

As was previously highlighted, Algorithm 1 prioritizes
those successors of a states that result from performing a
helpful action ins, by computing their heuristic value im-
mediately after being expanded. Intuitively, we would like
to prioritize successorss that lie on an optimal plan froms.

Definition 1 (Helpful heuristic function1). Let Opt(s) de-
note the set of optimal plans that lead froms to a goal state.
An RPB heuristich is helpful in states if H(h, s) contains
an actiona that is a prefix of a plan inOpt(s).

Figure 1 depicts a situation which shows why helpful
heuristics can be better than un-helpful ones. In the pic-
ture,s ands′ are respectively in the primary and secondary

1Hoffmann (2005) has considered a similar concept that refers
to the so-called actionsrespected by the relaxation. If all actions
in the problem are respected by the relaxation, the RPB heuristic is
helpful, but not vice versa.



s′

s

s1

s2

s3

a1

a2

a3

h(s1) = h∗(s1) = 9

h(s2) = h∗(s2) = 10

h(s3) = h∗(s3) = 11
h(s′) = 10 = h∗(s′) = 15

h(s) = 10, h∗(s′) = 10

Figure 1: Statess1, s2, ands3 are generated by respectively
performinga1, a2, anda3 ons.

open lists, ands is being expanded. The expansion ofs pro-
duces three successors:s1, s2, ands3. Consider the case
wherea1 is a helpful action. Then,s1 (the closest state to
the goal) will be the next state in the primary open list to be
expanded afters. Consider the case wherea3 is helpful but
a1 is not helpful (i.e., the heuristic is not helpful ins). In
this scenario,s1 is put in the secondary open list, and will
be associated with the heuristic value of its father (10). The
next state to be expanded will bes (because it is a shorter
plan in the secondary open list). On the next iteration,s4

will be expanded. Finally, in the next iterations1 may be
expanded, since it will have the same heuristic value asall
other successors ofs′ that are not helpful. Thoughs1 might
eventually be expanded, it will certainly not be as quickly as
we would ideally want.

Helpfulness, on its own, guarantees that an otherwise in-
complete version of Algorithm 1 is complete:

Proposition 1. If a helpful heuristic is used, Algorithm 1 is
complete even if line 21 is removed.

As also remarked by Helmert (2006), the previous result
is good news in terms of efficiency, since we can avoid com-
puting the heuristic for many states in the search space.

Helpfulness is still not enough to guarantee that the plan-
ner will be heading in the right direction. The reason is that
the heuristicvalueof a state is the actual criterion for pick-
ing up nodes from the open lists. If we want the heuristic to
“pick the right node,” the heuristic value of a nodes should
be related to the actual optimal costh∗(s) of a plan froms.
In particular, if from two successors of a node, says1 and
s2, it is the case thath∗(s1) < h∗(s2), then we would never
want h(s1) > h(s2) to hold true. We say that a heuristic
function isaccurate for siblings, or simply accurate, when it
completely respects the ordering of successor nodes in terms
of their actual optimal cost to reach the goal. More formally,

Definition 2 (Accurate heuristic function). A heuristic func-
tion h is accurate for states if for any two successors ofs,
s1 ands2, h∗(s1) < h∗(s2) iff h(s1) < h(s2). A heuristic is
accurate for planning problemP , if it is accurate for every
s in the search space.

Note that accuracydoes notimply admissibility, as it
refers to the relative heuristic values of sibling nodes, not
to arbitrary nodes from the search space.

Helpfulness and accuracy are desirable properties of
heuristics, however it is hard to obtain them in practice. We
think it might be impossible to prove that any given RPB
heuristic has any of these properties, independently of the
domain. However, thinking about these properties is useful

to improve the quality of existing RPB heuristics. We shall
see this in the following sections.

Occlusion Penalties
As we remarked earlier, an accurate heuristic function en-
ables a planner such as the one in Alg. 1 to pick the right
successor of a node during planning. In this section we show
a very simple planning domain in which RPB heuristics are
not accurate. We then define the notion of occlusion, which
is a way of considering negative effects of actions in RPB
heuristics. Using this notion, we can transform a given RPB
heuristic that is not accurate into an accurate one.

An Example in the Blocks World
Let us consider the old and well-known blocks world,
with the standard operatorsstack, unstack, pickup, and
putdown. More specifically, let’s consider the family of
very simple problems that was suggested in the call for pa-
pers for this workshop, i.e., building a sorted tower with
blocksB1, B2 . . . , Bn, with B1 on top. Initially, all blocks
are lying on the table, except forBn, which is onB1. Amaz-
ingly, the FF planner needs more than 1GB of memory when
n ≥ 28. Moreover, on the instances that it can solve, it gives
very poor solutions. For example, the plan for instance with
n = 27 contains 103 actions, almost double the number in
the optimal, 54-action plan. SGPlan, on the other hand, re-
turns a 91-action plan.

Although both FF and SGPlan rely on RPB heuristics, the
low quality of their solutions can be explained mostly by the
particular search strategy employed rather than the heuris-
tic. Nevertheless, vanilla RPB heuristics are still not good
for this family of problems. Actually, even algorithms like
Algorithm 1 will not find good solutions.

To understand why this happens, consider the domain
with n = 3 and an intermediate state where all blocks lie
on the table. The successors to this state are those that come
from performingpickup(Bi), for i ∈ {1, 2, 3}. Naturally,
the optimal decision here is to performpickup(B2), to then
stack it overB3. However, a vanilla RPB heuristic will not
suggest that. Indeed, the optimal relaxed plan for the suc-
cessor wherepickup(B1) is performed is as follows:

{stack(B1, B2)}{pickup(B2)}{stack(B2, B3)}, (1)

and the optimal relaxed plan forpickup(B2) successor has
the same number of actions:

{stack(B2, B3)}{pickup(B1)}{stack(B1, B2)}. (2)

By ignoring negative effects, the RPB heuristic makes the
planner behave as if these two successors were identical.
Rephrasing this in the terminology of the previous section,
the standard RPB heuristic is not accurate.

Making an RPB Heuristic Accurate
The reason why the RPB heuristic is inaccurate for this fam-
ily of blocks-world examples is because negative effects are
ignored. If we took both relaxed plans seriously, and wanted
to execute them in the un-relaxed domain, we would only
be able to perform plan (2). The problem of (1) is that



actionstack(B1, B2) deletes oroccludesa precondition of
pickup(B2). Below we define formally the concept of oc-
clusion but first we need another definition.

Definition 3. LetP be a relaxed plan constructed for a state
s, and leta andb be actions inP . Moreover, letP−a denote
the plan that corresponds to deleting actiona from P . We
say thata is necessary tob—denoted bya ≺ b—if the exe-
cution ofb is not possible while attempting to performP−a

in the relaxed domain.

Intuitively, a ≺ b expresses thata is essential to achieving
the preconditions ofb. That is,a ≺ b implies that neces-
sarily, in any valid linearization of the plan,a has to occur
beforeb.

Definition 4 (Occluded facts). A fact f in a relaxed plan
is occludedif f is a precondition of an actionb in P such
that (1) there exists an actiona in P such thata ≺ b, and
a deletes factf , and (2) every actionc in P that addsf is
such thatc ≺ a or b ≺ c.

A preconditionf of an actiona is only occluded when an
actiona′ that is needed bya has deleted it. However, other
actions in the relaxed plan (referred to asb in the definition)
could have addedf , and therefore un-occludef . The defini-
tion states that almost all actions that addf can un-occlude
f exceptthose that necessarily have to occur beforea′ or
aftera.

Note that under the definitions above, the precondition
clear(B2) of pickup(B2) is occluded in plan (1) by ac-
tion stack(B1, B2). Note that the only action that adds
clear(B2) in (1) isstack(B2, B3) but this action cannot un-
occlude the fact becausepickup(B2) ≺ stack(B2, B3).

The definition of occlusion can also be extended to goal
facts. A goal fact is occluded if it is deleted by an action that
occurs after the one that added it.

Now we focus on how we can use the notion of occlu-
sion to repair an estimate given by a RPB heuristic. In a
nutshell, if an action’s precondition is occluded, there isno
valid linearization of the plan that will reach the goal in the
un-relaxed domain. Under the premise that the relaxed plan
is still a good approximation to a solution, we could attempt
to repair it, or attempt to estimate how many more actions it
would need to become a “real” plan. From the two alterna-
tives, we have experimented with the latter.

Algorithm 2 computesocclusion penalties. The occlu-
sion penalty is a number that estimates the number of actions
that are missing in the relaxed plan. It does so by assuming
that each occluded fact will be un-occluded by some action
that adds this fact. Whenever an occluded factf is found, a
pseudo-actionAddf is added to the relaxed plan right after
the occluding action. The only effect ofAddf is to addf .
Note that the addition ofAddf cannot introduce additional
occlusions.

Now instead of using the length of the relaxed plan as
a heuristic value for a node, we can use the length of the
original plan plus the occlusion penalty. In our example this
would mean that a successor resulting frompickup(B1) (the
wrong action) gets a penalty of 1, and therefore its heuristic
value is 4, rather than 3. This modified heuristic is accurate
for this family of blocks-world.

Algorithm 2 An algorithm for occlusion penalties
1: function OCCLUSIONPENALTY (relaxed planP = A1 · · ·An)
2: penalty ← 0
3: while Exists factf occluded by actiona do
4: Let i be such thata ∈ Ai

5: Ai+1 ← Ai+1 ∪ {Addf}
6: penalty ← penalty + 1

7: return penalty

Moreover, extending an RPB heurisitc with occlusion can
lead to polynomial performance on this family of blocks
world problems. Leth+ be the RPB introduced by Hoff-
mann (2005) that computes the optimal relaxed plan for any
given state. Leth+

o beh+ extended with occlusion penalties.
Then, we obtain the following result.

Proposition 2. Let s0 · · · s2n be the state path traversed
by the optimal plan that solves the blocks-world problem
for n blocks defined earlier in this section. Moreover, let
HSucc(s) denote the set of successors ofs that are pro-
duced by some action inH(h+

o , s). Then for anyi ∈
{0, . . . , 2n − 1}, si+1 ∈ HSucc(si), and for anys′ ∈
HSucc(si) r {si+1}, h+

o (si+1) < h+
o (s′).

This property—which is not true ofh+—intuitively says
thath+

o will lead any search algorithm focusing on helpful
actions toalwayschoose the optimal node to be expanded
next. In particular, this implies that EHC solves this family
of problems optimally in polynomial time inn.

Incorporating Domain Knowledge
As we saw earlier, helpful heuristics are desirable because
they can speed up search. However RPB heuristics some-
times lack this property because relaxed plans ignore some
of the structure of the problem. To address this issue, in this
section we propose the use ofdomain knowledgeto extract
better (helpful) relaxed plans.

In contrast to some previous work in planning, which
has used non-trivial domain knowledge to improve search
(e.g., LTL formulae to control search by Bacchus & Ka-
banza (1998) using TLPLAN ), we use much simpler knowl-
edge to improve relaxed plan generation. Indeed, we will
just use state constraints, i.e., properties that hold truein ev-
ery state of the plan. In the rest of the section we show a
very simple domain in which RPB heuristics are not help-
ful. Then we show how domain knowledge can be useful
for extracting better relaxed plans, and end giving an algo-
rithm for extracting relaxed plans thattries to satisfy given
constraints.

An Example in the Storage Domain
The storage domain was introduced in the 2006 International
Planning Competition (IPC-5) (Gereviniet al. 2006). In the
STRIPS version of this domain, there arecratesthat can be
transported usinghoists from onearea to another. Crates
can belifted anddroppedby hoists. Hoists can carry at most
one crate at a time, and can move between connected areas.
A hoist can only move toclear areas, and can pick up or



��
��
��

��
��
��

c2

c−a2

c−a1
container1depot1 

a1

a4

a2

a3

loadarea

c1

Figure 2: An intermediate state in a 2-crate storage domain.
Dashed lines divide connected areas; e.g.a4 is connected
to loadarea but a2 is not. The goal is to have all crates in
depot1. The hoist is currently holdingc1.

drop a crate in an area that is connected to the one they are
currently in. A crate can only be dropped in a clear area.
Areas can be part of a depot, part of a container, or just be
used to move between depots and containers.

Usually problems in this domain consist of moving crates
located initially in containers to the depots. These problems
are quite simple for humans, however, they turned out to be
surprisingly hard for most of the IPC-5 competitors. For ex-
ample, no planner, except SGPlan, is able to solve instances
19-30. If one looks at instance 19 and over, there is no sig-
nificant additional number of objects—which would be an
obvious reason to justify bad performance.

Vanilla RPB heuristics have some serious drawbacks on
this domain. Consider the situation depicted in Figure 2. A
relaxed plan for this state would be as follows.

{drop(c1, a4)}{pick(c2, c-a2)}{drop(c2, a4)} (3)

The drawback of this relaxed plan is that it isnot being help-
ful because is does not have the actiongo-in(a4) in the first
layer. This relaxed plan is suggesting that a good thing to do
is to dropc1 immediately, a clearly dumb decision.

The source of the problem is, again, in the overly relaxed
domain that is being solved. Relaxing deletes completely is
a bad idea because it allows the relaxed plan to consider—
among other things—dropping crates at the same location,
ultimately causing it not to consider thego-in action.

A potential fix to the problem would be to define a less
relaxed problem, in which certain fluents arenot relaxed.
This would mean that deletes wouldhaveto be considered
during planning extraction. In our example, the fact that
we are relaxing theclear fluent looks particularly harmful,
and we might want to un-relax it. This approach however
is not good in theory, since extraction gets worst-case ex-
ponential in the depth of the graph. Moreover, in prac-
tice it doesn’t seem to be promising either. Actually, Sat-
Plan (Kautz, Selman, & Hoffmann 2006), takes more than
20 sec. on a 2-GHz Pentium to solve problem number 21 of
the storage IPC-5 problem set when only theclear predicate
is un-relaxed.

Using Domain Knowledge to Achieve Helpfulness
Domain knowledge has been previously used to improve
search efficiency in planning. Most previous work has con-
centrated on using this knowledge to control or prune the

search space, as in TLPLAN (Bacchus & Kabanza 1998).
Here we propose to use domain knowledge for relaxed plan
extraction.

The type of domain knowledge we propose to use is
among the simplest one can think of: domain state con-
straints. These constraints are logical formulae that holdin
every state of the search space. For example, in the stor-
age domain“two objects cannot be at the same store area”,
and “the hoist can lift only one crate at a time”are prop-
erties that hold in every problem. Existing systems are able
to extract these constraints. Indeed,DISCOPLAN (Gerevini
& Schubert 2000) is able to extract both of the constraints
mentioned above.

Relaxed plan extraction that respects an arbitrary state
constraint is worst-case exponential in the depth of the plan.
The intuitive reason is that state constraints may imply that
deletes must not be ignored.

Nevertheless, we do not need tofully satisfy domain con-
straints to obtain reasonable relaxed plans. Sometimes a re-
laxed plan that “almost” satisfies a state constraint is much
better than one that doesn’t.

Algorithm 3 extracts relaxed plans while trying to achieve
a domain constraint as much as possible. The main differ-
ence between ours and a standard relaxed plan extraction
algorithm is in lines 5-10. Instead of looking for any action
that achieves an unsatisfied sub-goal, the algorithm looks for
an action such that the union of its effects plus the effects of
all other actions already in the relaxed plan satisfy the con-
straint. If such an action exists, it is added to the relaxed plan
in the standard way. Otherwise the algorithmdoes notadd
any action to the relaxed plan but still length is incremented
by one (line 10) to reflect the fact that at least one action
was needed to satisfy the unsatisfied sub-goal. The returned
length is used by the search algorithm as the heuristic value
of the node being evaluated.

Algorithm 3 Property-preserving relaxed plan extraction
1: function EXTRACTPRSRV(plan graphP0A0P1 · · ·An−1Pn,

goalG, propertyϕ)
2: P rel

n ← G ⊲ initialize goals
3: for i = n . . . 1 do
4: for all p ∈ P rel

i do ⊲ find supporting actions
5: Finda ∈ Aj such thatj < i, p ∈ eff+(a), and
6: such thatϕ is satisfied in∪n

i=0P
rel
i ∪ eff+(a)

7: if a is foundthen
8: Arel

j ← Arel
j ∪ a

9: P rel
j ← P rel

j ∪ prec(a)

10: length ← length + 1 ⊲ Count action
11: return 〈length, Arel

0 · · ·A
rel
n 〉

Algorithm 3 is polynomial in the size of the relaxed plan.
In fact, compared to the standard relaxed plan extraction,
the only extra cost is finding an action that preservesϕ. Ef-
ficiency however comes at a cost: the algorithm is not com-
plete; it will not find a relaxed plan that respectsϕ for an
arbitrary ϕ, if one exists. The main reason for this is that
the algorithm cannot backtrack: once an actiona has been
included in the relaxed plan, it can never be removed.



1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30 35 40 45 50

se
c
o
n
d
s

instance

without occlusions

with occlusions

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

instance

vanilla RPB heuristic

property-preserving RPB heuristic

no occlusions w/occlusions
vanilla 18 18
preserve 21 22

(a) Times, blocks world (b) Times, storage domain (c) Instances solved in storage domain.

Figure 3: Summary of experimental results

An important observation is that the algorithm in a way
“gives up” when an action violates a property by not adding
any action to the relaxed plan. This is useful for properties
that, once violated, will never be true again. By not com-
mitting to any action, there is still a chance of finding other
actions later that will still satisfy the property.

As a final remark, the quality of the relaxed plans found
by Alg. 3 depends strongly on the planning graph that is
given to it as input. Generally, a plan that satisfies a state
constraint islonger (in terms of makespan) than one that
does not satisfy it. Therefore, we must feed our algorithm
with planning graphs that are extended beyond the layer
where the goals appear for the first time.

Let us go back to our example domain. Our initial in-
tuition is that the reason why the vanilla RPB heuristic is
bad is that it allows locating an arbitrary number of crates in
the same position. Suppose we consider the following state
constraint:

(forall c1 c2 - crate
(forall a - area

(implies (and (on c1 a) (on c2 a))
(= c1 c2))))

then Algorithm 3 can find the following relaxed plan:

{drop(c1, a4), go-in(a4)}{pick(c2, c-a2)}{drop(c2, a3)}.

As before, actiondrop(c1, a4) achieves the first sub-
goal in(c1, depot1). To achieve the second subgoal
in(c2, depot1), the algorithm choosesdrop(c2, a3), since
choosingdrop(c2, a4) would violate the constraint. The
remaining actions are added to satisfy the preconditions of
drop(c2, a3). The resulting heuristic is helpful for the state
of Figure 2.

Implementation & Preliminary Experiments
We have implemented (deterministic) versions of the algo-
rithms given above for computing occlusion penalties and
property-preserving relaxed plans. Our planner is a mod-
ified version of TLPlan which uses a domain-independent
heuristic search algorithm similar to Alg. 1.

We have performed a preliminary evaluation of our tech-
niques in the blocks family of problems introduced above,
and on the IPC-5 storage problems. In blocks world we

found that occlusion penalties were key to finding good-
quality solutions relatively fast. As shown in Fig. 3(a) the
version with occlusions is faster and solves more problems
than the version without occlusions. Moreover, occlusions
enable the planner to solveall problems optimally. The
vanilla RPB, on the other hand, yields plans with 4 more
actions for almost all instances.

We have also experimented with our property-preserving
algorithm in the storage domain. Fig. 3(c) shows a summary
of the number of instances solved given a 1 hour timeout.
The property used is the one that restricts having two crates
in the same location. Not surprisingly, property-preserving
heuristics are sometimes slower; however, in general, times
are comparable (see Fig. 3(b)).

Discussion & Related Work
We have presented two techniques for improving relaxed
plans by attempting to incorporate structure of planning do-
mains that is lost by the standard relaxation of negative ef-
fects. Our first technique is domain independent, and could
be understood as a way of considering some mutexes during
relaxed plan extraction. We have proven that this techinque
can significantly improve the performance of EHC in a fam-
ily of simple blocks-world problems.

The second, domain-dependent technique, could be un-
derstood as a way of customizing relaxation, but also as
a way of considering mutexes during relaxed plan extrac-
tion. The relationship between our two techniques still has
to be established. We think that the incorporation of do-
main knowledge in relaxed plan extraction has a great deal
of potential, especially if we could mechanize the selection
of useful state constraints to be considered. For example,
in the storage domain, it does not seem to be reasonable to
consider the constraint where only one crate is allowed to be
carried by a hoist.

There are pieces of work in the literature that are related to
this work. First, work that incorporates mutexes for heuris-
tics not based on relaxed plans, such as that by Nguyen &
Kambhampati (2000), and work that extracts better relaxed
plans for cost-based planning (e.g. (Do & Kambhampati
2003)). More related is work that exploits generic types
to improve relaxed plans by Coles & Smith (2006). Their



work uses mechanically extractedtype-knowledgeto recog-
nize when actions need to be added to the relaxed plan. Spe-
cialized techniques, that depend on the particular type of ob-
jects, are used to improve the plans.

Acknowledgments
I am very grateful to Sheila McIlraith for useful discussions
and comments on drafts of this paper. I thank the anonymous
reviewers for their suggestions and insightful comments.

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals.Annals of Mathematics and Artificial
Intelligence22(1-2):5–27.
Blum, A., and Furst, M. L. 1997. Fast planning through
planning graph analysis. Artificial Intelligence 90(1-
2):281–300.
Chen, Y.; Wah, B.; and Hsu, C.-W. 2006. Temporal plan-
ning using subgoal partitioning and resolution in SGPlan.
Journal of Artificial Intelligence Research26:323–269.
Coles, A., and Smith, A. 2006. Generic types and their use
in improving the quality of search heuristics. InProceed-
ings of the 25th Workshop of the UK Planning and Schedul-
ing Special Interest Group (PlanSIG 2006).
Do, M. B., and Kambhampati, S. 2003. Sapa: A scalable
multi-objective metric temporal planner.Journal of Artifi-
cial Intelligence Research20:155–194.
Gerevini, A., and Schubert, L. K. 2000. Discovering state
constraints in DISCOPLAN: Some new results. InProc.
of the 15th National Conference on Artificial Intelligence
(AAAI-00), 761–767.
Gerevini, A.; Dimopoulos, Y.; Haslum, P.; and Saetti, A.
2006. 5th International Planning Competition.http://
zeus.ing.unibs.it/ipc-5/.
Helmert, M. 2006. The Fast Downward planning system.
Journal of Artificial Intelligence Research26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Hoffmann, J. 2005. Where ’ignoring delete lists’ works:
Local search topology in planning benchmarks.Journal of
Artificial Intelligence Research24:685–758.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In5th International Planning
Competition Booklet (IPC-2006).
Nguyen, X., and Kambhampati, S. 2000. Extracting effec-
tive and admissible state space heuristics from the planning
graph. InProc. of the 15th National Conference on Artifi-
cial Intelligence (AAAI-00), 798–805.


