
On Procedure Recognition in the Situation Calculus

Jorge A. Baier
Departamento de Ciencia de la Computación,

Pontificia Universidad Católica de Chile
Casilla 306, Santiago 22, Chile

jabaier@ing.puc.cl

Abstract

The aim of our ongoing research is to give a method to
construct intelligent tutoring systems for agents who are ex-
ecutingtypical proceduresin dynamic environments based
on a logical framework. Typical procedures are similar to
plans in the sense that they describe the actions an agent
should execute to achieve a certain goal. In this paper we
address what we consider is the first step toward the con-
struction of this kind of systems: procedure recognition.

We formalize what does it mean that an agent is perform-
ing a procedure in the Situation Calculus [12], a logical
first-order language extended with induction. Based upon
this formalization, we give two different implementations.
The first, which is directly based in our formalization, is
proved to be quite inefficient. The second, significantly more
efficient, arises from a logical reformulation of the original
formalization. Procedures are represented throughCON-
GOLOG [6] programs, a logical interpreted language based
on the Situation Calculus.

1 Introduction and Motivation

Plan recognition [8] is a well-known research area in au-
tomated reasoning. Applications of this area range from
intelligent tutoring systems for natural language processing
[11] to military simulation [7].

The aim of our ongoing research is to give a method to
construct intelligent tutoring systems for agents who are ex-
ecutingtypical proceduresin dynamic environments based
on a logical framework. A typical procedure is a course of
action that an agent may execute to accomplish a goal. We
distinguish thecourse of actionand thegoalas two compo-
nents of a procedure. A procedure can be carried out con-
currently with other tasks. We assume that procedures are
stored inprocedure libraries, which can be regarded as the
users’ manual of the system being operated by the agent.

To exemplify these notions consider, for example, an
aircraft pilot which commands an aircraft following the
standard know-how of piloting. It can be argued that this
know-how represents a mental compilation of procedures
to achieve several goals, such as landing or taking off. The
pilot performs a typical procedure in accordance with his
intentions, i.e. it executes the takeoff procedure when he in-
tends to takeoff. Nevertheless, while executing a procedure,
the pilot may execute, concurrently, other actions which do
not necessarily appear in the procedure description. For ex-
ample, while landing, the pilot may establish several con-
versations with the control tower or with the members of
the crew without altering the degree of success of the goal.

If one wants to construct an intelligent system to aid and
monitor the actions of an autonomous intelligent agent we
must first address the problem of recognizing the agent’s in-
tentions. We claim that this necessarily implies the recogni-
tion of the procedures the agent is executing at a particular
moment. Once the intentions of the agent are recognized,
the tutoring system can, on request, aid the agent by sug-
gesting what actions she may perform for accomplishing
her goals. On the other hand, the system may deliberately
suggest corrections to the agent’s behavior if it determines
that the agent’s attitudes contradict her intentions.

In this paper we address the first part of the problem,
i.e. procedure recognition. We propose a formalization of
procedure recognition in CONGOLOG [6], an interpreted
logical language developed for programming intelligent
agents. The CONGOLOG language is based on its predeces-
sor GOLOG [10]. The main difference between them is that
the former can adequately represent concurrent processes
and, therefore, represent procedures in a more general way.
CONGOLOG’s semantics is based on the Situation Calculus
[12], a family of logical languages developed to logically
represent the dynamics of the world. The modeling of pro-
cedures in these languages has the following advantages:

1. It is possible to represent a wide variety of programs
using CONGOLOG; in particular, traditional programs

1

such as those written in theC language. However,
CONGOLOG was devised as a language for program-
ming intelligent agents and is therefore appropriate for
representing actions being carried out by such kind of
agents. Furthermore, since a CONGOLOG program is
not restricted to be executed by a single agent, it can
also represent programs executing in concurrent envi-
ronments.

2. A CONGOLOG program has a complete account of the
environment in which it is executed through a Situa-
tion Calculus model of the world. A program can rea-
son about the hypothetical evolution of the world after
executing a sub-program without actually executing it.
Furthermore, a monitoring system can predict the re-
sults of a program being executed by an agent before
the agent finishes to execute the program.

3. CONGOLOG semantics and Situation Calculus’s theo-
ries of action can be straightforwardly implemented in
PROLOG. Indeed, we have implemented our formal-
izations.

There has been a previous attempt to formalize proce-
dures in the GOLOG language [4]. However, since this ap-
proach is built upon GOLOG’s semantics it cannot represent
concurrent procedures. We think that concurrent procedures
are commonly carried out by intelligent agents. Consider,
for example, the procedure of makingspaghetti bolognesa.
One could argue that this procedure is composed by a series
of steps, some of which need not be executed in a particu-
lar order. For example, to make that dish one can start by
making the sauce and afterwords boil the spaghetti, or vice
versa. The subprocess of making sauce can also be decom-
posed in other concurrent subprocesses. Furthermore, the
approach of [4] is rather different with respect to the notion
of procedure. We discuss about this in a later section.

This paper is organized as follows. In section 2 we
present a brief introduction to the Situation Calculus and
how theories of action are built using this language. In sec-
tion 3 we present a brief introduction to the CONGOLOG

language. In section 4 formalize the notion of procedure
execution within the Situation Calculus. In section 5 we
discuss implementation issues, giving the first step toward
efficient implementations. In section 6 we refer to related
work. Finally, in section 7, we conclude giving guidelines
for future work.

2 The Situation Calculus

In this section we briefly introduce the Situation Calcu-
lus, the logical language upon which CONGOLOG seman-
tics is based. We introduce the basic concepts of the lan-
guage and show how a domain can be modeled by way of

an example that will be used throughout the paper. For fur-
ther details on the Situation Calculus, refer to [17, 14].

2.1 The Situation Calculus

The Situation Calculus is a many-sorted, first-order log-
ical language extended with induction. We use the sortsS ,
A , F andD for situations, actions, fluents, and domain ob-
jects, respectively. Situations represent asnapshotof the
world plus a history of the evolution of the world. Actions
are regarded as the only reason by which the world evolves
from one situation to another. Fluents are first-order func-
tional terms which denote properties of the world that are
static in a situation. For example, the binary fluentover
can be such thatover(x,y) means thatx is overy. On the
other hand, fluent formulas are like first-order formulas in
which every atomic sub-formula is a fluent. For example
(∀x)over(x,Table) may be used to represent the fact that
all objectsx are overTable.

The following are distinguished elements of the lan-
guage:

S0 Is a constant which denotes the initial situation. This
situation represents the world before anything has oc-
curred.

do : A×S → S If a denotes an action andsdenotes a situ-
ation, thendo(a,s) denotes the situation which results
from executing actiona in situations. For notational
convenience we frequently writedo([a1,a2, . . . ,an],s)
instead ofdo(an,do(. . . ,do(a2,do(a1,s)) . . .)).

holds: F ×S If f is a fluent ands is a situation, then
holds(f ,s) is true if and only if f holds in situation
s 1. This predicate can be straightforwardly extended
to fluent formulas.

Poss⊆ A×S states when an input action is possible in a
situation, i.e.Poss(a,s) is true if and only if it is possi-
ble to execute actiona in situations.

≺⊆ S ×S Is a binary predicate which represents a partial
order between situations. Normally used infix,s≺ s′

is true if and only if it is possible to reach situations′

by executing a positive number of actions ins. We use
the abbreviations� s′ to denotes≺ s′∨s= s′.

To precisely define the structure of situations it is neces-
sary to give a small set of foundational axioms, which we
omit here for the sake of briefness.

1This approach differs from that of [14] since fluents are reified, i.e. are
not predicates but objects of the language.

2

2.2 Theories of Action

To model a particular domain, it is necessary to write
several axioms. We will show how to do this by modeling
the following aeronautic domain.

Example 1: An agent piloting an aircraft can execute the
following actions.

Extend/Retract flaps : have the effect of extend-
ing/retracting the flaps one position (the aircraft has 3
flaps positions, where 3 indicates fully retracted and 0
indicates fully extended).

Reduce/Increase thrust : have the effect of reduc-
ing/increasing the thrust in the engines. Thrust level
can be reduced or increased discretely by an amount
of 100. The maximum and minimum amounts of thrust
are respectively 0 and 500.

Extend/Retract Landing Gear : Have the effect of ex-
tending/retracting the landing gear.

Establish ATC communication : Establish a communica-
tion with air traffic controllers.

To model this domain we use the actions termsretFlaps,
extFlaps, incThrust, decThrust, retGear, extGear, with ob-
vious meanings. The following are the fluents used:

flpLevel(n) True whenn is a number describing the state of
the flaps.

thrLevel(n) True whenn is a number that represents the
thrust produced in the engines.

gearIsRetTrue iff landing gear is retracted.

The set of axioms needed to construct a theory of action are
the following.

Action Precondition Axioms A set Σprec which estab-
lishes all the necessary and sufficient conditions for an ac-
tion to be executed. Their general form is2

(∀x)(Poss(a(x),s)≡Π(x,s)),

whereΠ(x,s) is a first-order formula simple ons 3.

2We use the notationx to denote a tuple of variables of sort domain-
object.

3A formula simple ons if the only situation term it contains iss, and it
does not quantify overs.

Example (cont.): The precondition axioms for the aeronau-
tics domain are4:

Poss(retFlaps,s)≡ (∃n)holds(flpLevel(n),s)∧n< 3 (1)

Poss(extFlaps,s)≡ (∃n)holds(flpLevel(n),s)∧n> 0 (2)

Poss(incThrust,s)≡ (∃n)holds(thrLevel(n),s)∧n< 500
(3)

Poss(decThrust,s)≡ (∃n)holds(thrLevel(n),s)∧n> 0
(4)

Poss(retGear,s)≡ ¬holds(gearIsRet,s) (5)

Poss(extGear,s)≡ holds(gearIsRet,s) (6)

Poss(estblATC,s)≡ True (7)

Effect Axioms A setΣeff of effect axioms, which describe
the direct effect of actions. There are two kinds of effect
axioms: positive effect axioms (with the syntactical form of
(8)) and negative effect axioms (like (9)). We write one of
each for every fluent. For a fluentf , they have the following
general form:

Poss(a,s)∧ γ+
f (x,s)⊃ holds(f (x),do(a,s)) (8)

Poss(a,s)∧ γ−f (x,s)⊃ holds(f (x),do(a,s)) (9)

Although these axioms completely specify when the truth
value of fluents change from one situation to another, they
do not specify when these properties do not change. The
problem of specifying succinctly what does not change is
known as theframe problem. For example, for the aeronau-
tics domain, one can have a positive effect axiom to state
whengearIsRetbecomes true and a negative effect axiom
to state when is becomes false; in fact, this happens ex-
actly when, respectively,retGearandextGearare executed.
Such effect axioms, however, do not specify that when an
ATC communication is established the state of the landing
gear persists. In [16], Reiter presents a solution to the frame
problem. He proposes thatsuccessor state axioms, one for
each fluent, can be mechanically derived from direct effect
axioms. These axioms have the following syntactical form:

Poss(a,s)⊃ [holds(f (x),do(a,s))≡
(γ+

f (x,a,s)∨holds(f (x),s)∧¬γ−f (x,a,s))],

and we gather them in a setΣssa. These axioms estab-
lish necessary and sufficient conditions for the change of
fluent values between successive situations, provided that
γ+

f (x,a,s) andγ−f (x,a,s) are never simultaneously true.

4All free variables in formulas are supposed implicitly universally
prenex quantified.

3

Example (cont.): The frame axioms for the aeronautics ex-
ample are:

Poss(a,s)⊃ [holds(flpLevel(n),do(a,s))≡
(holds(flpLevel(m),s)∧
((a = retFlaps∧n = m+1)∨
(a = extFlaps∧n = m−1)))∨

(holds(flpLevel(n),s)∧
¬a = extFlaps∧¬a = retFlaps)],

(10)

Poss(a,s)⊃ [holds(thrLevel(n),do(a,s))≡
(holds(thrLevel(m),s)∧
((a = incThrust∧n = m+100)∨
(a = decThrust∧n = m−100)))∨

(holds(thrLevel(n),s)∧
¬a = incThrust∧¬a = decThrust)],

(11)

Poss(a,s)⊃ [holds(gearIsRet,do(a,s))≡
(holds(thrLevel(m),s)∧a = retGear)∨
(holds(gearIsRet,s)∧¬a = extGear],

(12)

Unique Name Axioms for Actions and Domain Objects
A set Σuna containing unique name axioms for terms de-
noting actions, fluents, and constants which denote domain
objects.

Example(cont.): For our example, the unique name axioms
are the following:

¬incThrust= decThrust,¬incThrust= retFlaps,

¬incThrust= extFlaps, . . .

thrLevel(x) = flpLevel(y), . . .

Initial Description Axioms A setΣS0 which describes the
initial situation. Example (cont.): For our example, initial

description axioms could be

holds(x,S0)≡ [x = gearIsU p∨
x = flpLevel(n)∧n = 500∨
x = thrLevel(n)∧n = 3].

Definition 1 (Theory of Action) A theory of action in the
Situation Calculus is a set of first-order sentences con-
taining the foundational axioms together with precondition,
successor state, unique name, and initial description ax-
ioms.

3 Introduction to C ONGOLOG

The CONGOLOG [6] language is an interpreted, logical
language designed for programming intelligent agents at a
high abstraction level. CONGOLOG’s semantics is based
on the Situation Calculus. The semantics of the CON-
GOLOG language is written as logical axioms; therefore,
the execution of programs can be fully analyzed at a logical
level. CONGOLOG dialect is based on the original GOLOG

language proposition [10]. The main difference between
GOLOG and CONGOLOG is that the latter can adequately
represent concurrent processes as interleaving5. Moreover,
their semantics is defined differently: GOLOG programs are
macros which expand to formulas in the Situation Calculus;
CONGOLOG programs are logical objects whose semantics
is defined using logical predicates.

CONGOLOG programs contain constructs present in tra-
ditional structured programming languages. Formally, a
CONGOLOG program can have the following elements:

Primitive Actions and Test Conditions

• Primitive actions, denoted byα (possibly with sub-
scripts). They are atomic actions. In a single step of
execution of the program, the interpreter can execute
at most one of these actions.

• φ?: test conditions. Hereφ is a fluent formula. These
formulas play the same role in GOLOG as boolean ex-
pressions in traditional imperative languages such as C
or Pascal.

Complex Actions Are denoted by the lettersσ andδ and
can be defined as:

• {}, is a complex action which denotes theemptypro-
gram.

• α, a primitive action, is a complex action.

• If σ1 and σ2 are complex actions then the following
are also complex actions:

– (σ1;σ2), is asequence of actions. The execution
of the sequence corresponds to the execution of
σ1 followed byσ2.

– (σ1|σ2), is a non-deterministic choice between
actions. The interpreter non-deterministically
chooses to execute eitherσ1 or σ2. If, for exam-
ple, one transition ofσ2 were not possible, the
only choice of the interpreter is to execute one
transition ofσ1.

5However, the language has also been extended to represent true con-
currency, i.e. a combination of interleaving and parallelism [3].

4

– (σ1||σ2), is aconcurrent execution. Here, com-
plex actionsσ1 andσ2 may execute concurrently,
i.e. there is no particular order imposed to the ex-
ecution actions belonging toσ1 or σ2.

– πx.σ, is anon-deterministic choice of arguments.
The variablex is nondeterministically instanti-
ated with an object of the domain.σ is executed
considering this non-deterministic instantiation.

– σ∗, is anon-deterministic iteration. The complex
actionσ may be executed an arbitrary number of
times.

– if φ thenσ1elseσ2endIf, is a conditional sen-
tence. σ1 is executed ifφ holds, otherwise,σ2

is executed.

– whileφdoσendWhile: while loops. σ is exe-
cuted whileφ holds.

To simplify this introduction to CONGOLOG we have omit-
ted some constructs that we will not need. In particular, we
have omitted the definition of CONGOLOG procedure calls.
These procedures, though, do not have the same character as
the procedures we formalize in this paper; they correspond
to the notion of procedure of traditional programming lan-
guages.

Definition 2 (CONGOLOG program) A CONGOLOG

program is complex action.

Definition 3 (CONGOLOG linear program) A CON-
GOLOG linear program is aCONGOLOG program that
does not contain conditional sentences, while loops,
nondeterministic or concurrency constructs. I.e., a linear
program is a sequence of primitive actions, e.g.α1; . . . ;αn.

We denote linear programs with the letterσ−, possibly with
subscripts.

Example : Let put(x,Box) denote the action of putting
blockx insideBox. The program

while¬(∀x)[block(x)⊃ in(x,Box)] do

(πx) put(x,Box)
endWhile,

repeatedly executes actionput(x,Box), for an arbitrary
block x while there are blocks outsideBox. This program
illustrates the expressive power afforded by the language.
The condition is a quantified, first-order statement.

The GOLOG language also allows for constructs that re-
fer to themental stateof the agent that executes the pro-
gram. For this, constructs have been introduced in order
to deal withknowledge producing actions[18]; i.e., actions
whose sole effect is to change the state of mind of the agent,
rather than affect the world. For instance, the action of read-
ing a phone number.

3.1 CONGOLOG’s Semantics

What does it mean that CONGOLOG’s semantics is de-
fined in the Situation Calculus? Roughly, it means that it is
possible to define, for any given programσ and any situa-
tion swhich situations will be visited by an agent who starts
the execution ofσ in s.

CONGOLOG’s semantics is given by transitional axioms
which establish the evolution of a program decomposing it
in single steps ortransitions. To this extent, CONGOLOG

semantics exhaustively defines the following predicates for
all types of complex actions:

• Final(σ,s), which is true if and only if programσ may
finish in situations. For example, the definition states
that an empty program may finish in any situation.

• Trans(σ,s,σ′,s′), which is true if and only ifσ is ex-
ecuted ins, in a single step of execution, it may reach
situations′, with programσ′ remaining to be executed.

Example 2: Suppose programσ = α1; if φ thenα2elseα3 is
executed in situations. From CONGOLOG’s axiomatization
it follows that

• Trans(σ,s,σ′,do(α1,s)) is true when σ′ =
if φ thenα2elseα3, provided that α1 is possible
in situations.

• Trans(σ′,do(α1,s),α2,do(α1,s)) is true iff fluent for-
mulaφ holds indo(α1,s).

• Trans(σ′,do(α1,s),α3,do(α1,s)) is true iff fluent for-
mulaφ does not hold indo(α1,s).

• Trans(α2,do(α1,s),{},do(α2,(do(α1,s))) is true iff
α2 is possible indo(α1,s).

It is possible the transitive closure ofTrans, Trans∗ in
terms ofTransandFinal. Thus,Trans∗(σ,s,σ′,s′) holds
iff when programσ is started in situations it can get to situ-
ations′, in 0 or more transitions, with programσ′ remaining
to be executed. Furthermore, the predicate macroDo is de-
fined by

Do(σ,s,s′) def= (∃σ′)Trans∗(σ,s,σ′,s′)∧Final(σ′,s′).

Do(σ,s,s′) is true if and only if programσ, when started in
situations may halt in situations′.

4 Defining and Executing Procedures

For us, a procedure is very similar to a plan in the sense
that the agent executes a course of action to achieve a goal.
In [9] it was argued that an appropriate representation of a

5

plan in the presence of sensing is a GOLOG program. We
consider that a suitable representation for procedures are
CONGOLOG programs since they provide even more gen-
erality.

The following definition states what is, for us, a proce-
dure.

Definition 4 (Procedure) A procedureτ is a pair 〈σ,ϕ〉,
whereϕ is a fluent formula which represents the goal be-
ing pursued by the procedure, andσ is a GOLOG pro-
gram which represents the steps the agent should execute
to achieve the goal.

To simplify the exposition we have defined the operators

proc(〈σ,ϕ〉) def= σ andgoal(〈σ,ϕ〉) def= ϕ as syntactic sugar.

Example 3: We can define a simplified landing procedure
for the aeronautics domain asτland = 〈δland,φready〉, were

δland
def=extFlaps;extFlaps;extFlaps;

while thrLevel(n)∧n≥ 100 do

decThrust

endWhile;

extGear.

andφready
def= thrLevel(100)∧flpLevel(0)∧¬gearIsRet

In order to be able to recognize the execution of proce-
dures on-line, it is necessary to precisely define what does
it mean that a procedure is being performed. Although
we consider that procedures can be represented as a pro-
gram, the problem of determining if a procedure is being
performed and the problem of determining if a program is
being executed are quite different.

When performing a procedure, agents may concurrently
execute other actions. We say that the procedure is be-
ing performed as long as these actions do not occlude the
achievement of the goal; otherwise, we say that the proce-
dure is not being performed. For instance, suppose a sys-
tem that can observe the actions carried out by an agent in a
kitchen. Furthermore, suppose that the system has observed
the following actions: (1) agent chops meat (2) agent fries
a chopped onion (3) agent answers the phone. If both fry-
ing the onion and chopping the meat are part of a procedure
which describes how to cook a spaghetti bolognesa, then we
could infer from the observations that the agent is making
spaghetti bolognesa. Observe that we can infer this even
when answering the phone has nothing to do with the pro-
cess of making spaghetti. Nevertheless, if observation (3)
is “agent dumps the meat and the onion” we can no longer
infer that the agent is cooking that dish.

From a more abstract point of view, we say a procedure
τ = 〈σ,φ〉 is being performed in situations if

1. concurrently withσ, any actions can occur, provided
that:

2. there exists a situation in the past ofs, where the exe-
cution of programσ started;

3. if σ′ is a portion ofσ that remains to be executed, then
there exists a situation in the future ofswhere the goal
can be achieved by executingσ′ in s, and

4. programσ has not finished in the past ofs.

To formalize these conditions, we define the abbreviation
Perf such thatPerf(τ,δ′,s) is true if and only if procedure
τ is being performed in situations and δ′ (a segment of
proc(τ)) remains to be executed ins. The predicate can
be defined by the following axiom:

Perf(τ,δ′,s) def= (∃sp,sf ,σ−c ,δ).
δ = proc(τ)∧sp≺ s∧
Trans∗(δ||σ−c ,sp,δ′,s)∧
(∃a,s′p,δ′′)(sp� s′p� do(a,s′p)� s∧

Trans∗(δ,sp,δ′′,do(a,s′p)))∧
¬(∃σ−)Trans∗(σ−c ,sp,σ−,s)∧
(∀δ1,σ−2)(δ′ = δ1||σ−2 ⊃ ¬(∃σ−1)σc = σ−1 ;σ−2)∧
(∃sf)(s≺ sf ∧Do(δ′,s,sf)∧holds(goal(τ),sf)).

(13)

Intuitively, the first two lines of the definition (without con-
sidering the initial existential quantification) are necessary
and sufficient to establish condition 1. Notice that, without
loss of generality, we restrict the concurrent sequence of ac-
tionsσ−c to be a linear program. The third and fourth lines
say, roughly, that an actiona, executed in the past ofs, has
been originated fromδ, and therefore it establishes condi-
tion 2. The fifth line of the definition may seem redundant
but it is useful for implementation purposes, since it facili-
tates the computation of the exact segment of the program
that has been executed in the past ofs. Finally, conditions 3
and 4 are set by the last remaining lines of the definition.

Now we can define the macro6 Performed(τ,s) intended
to hold exactly when procedureτ is being performed in sit-
uations.

Performed(τ,s) def= (∃δ)Perf(τ,δ,s) (14)

Remark 1 Let τland be defined as in example 3. Further-
more, let

S1 = do([extFlaps,estblATC,extFlaps],S0),
S2 = do([extFlaps, retFlaps,estblATC],S0),
S3 = do([extFlaps,estblATC, retFlaps,extFlaps],S0).

6From now on we may refer toPerf or Performedas predicates. The
reader, though, must be aware that these are actually macro definitions.

6

From the theory of action of example 1,CONGOLOG se-
mantics axioms and(14), it follows that

Performed(τland,S1)∧¬Performed(τland,S2)∧
Performed(τland,S3).

PROOF: Follows directly from (14) and the axioms of the
semantics of CONGOLOG. �

The following propositions can be straightforwardly
proved, and give an account of the change and persistence
of the truth value of the predicatePerformeddue to new
observations:

Proposition 1 Let τ be an arbitrary procedure and s be a
situation. Furthermore, letΣ be a theory containing the Sit-
uation Calculus’s foundational axioms andCONGOLOG’s
semantics axioms. From definition(13) it follows that

Σ |= (∀δ)(Perf(τ,δ,s)∧¬(∃δ′)Trans∗(δ,s,δ′,do(a,s))∧
GoalSat(τ,δ,s)⊃ Perf(τ,δ,do(a,s))),

where GoalSat(τ,δ′,s) def
= (∃sf)(s ≺ sf ∧ Do(δ′,s,sf) ∧

holds(goal(τ),sf))

In simple words, ifτ is being performed ins and a new
observationa is made, then ifa does not comeτ and does
not affect the achievement of the goal, thenτ is still being
performed in situationdo(a,s).

Proposition 2 Let τ be an arbitrary procedure and s be a
situation. Furthermore, letΣ be defined as in proposition 1,
then

Σ |= (∀δ,δ′)(Perf(τ,δ,s)∧Trans∗(δ,s,δ′,do(a,s))⊃
Perf(τ,δ′,do(a,s)))

In short, if τ is being performed ins and a new observa-
tion a is made, then ifa comes fromτ thenτ is still being
performed in situationdo(a,s).

5 Implementation

A Situation Calculus theory of action, such as that pre-
sented in section 2.2 can be straightforwardly implemented
in PROLOG. As an example, the PROLOG rules correspond-
ing to axioms (1) and (12) can be implemented as follows:

poss([retFlaps],S) :-
holdsf(flaps_level(N),S),
N<3.

holdsf(gearIsRet,do(A,S)) :-
A=[extGear];
(holdsf(gearIsRet,S),
\+A=[retGear]).

We have also implemented thePerformedpredicate fol-
lowing strictly the definition in (14). It is important to no-
tice that our implementation must find a sequence of ac-
tion σ−c which executes concurrently withproc(τ). The
problem of finding such sequence can be viewed as a
search problem. Our implementation does this search
trying all possible sequences, starting by shorter ones.
For example if the program has to determine whether
Performed(τ,do([a1, . . . ,an],S0)), n generic candidate se-
quences are tried forσ−c , starting by a 0-length sequence
and finishing with ann-length sequence.

5.1 Complexity of Direct Implementation

The efficiency of recognition is a central issue in the con-
struction of tutoring systems and therefore a careful consid-
eration must be put in its implementation. Although the
Perf predicate captures the automation of procedure recog-
nition both at a logical and at an implementation level, its
direct translation to a PROLOG program yields an ineffi-
cient implementation. In fact, the problem of determining
whether a procedureτ is being performed is exponential.
The following proposition supports our claim:

Proposition 3 Let procedureτ = 〈δ,φ〉 be such thatδ =

α1;α2; . . . ;αk andφ is an arbitrary fluent formula. Let S
def
=

do([a1, . . . ,an],S0). The complexity of directly determining
whether Performed(τ,S), using a direct implementation of
(14), is exponential in n or k.
PROOF: We distinguish two casesk > n and k ≤ n and
we analyze the worst case, i.e. thatPerformed(τ,S) does
not hold. Then the algorithm must check whethern subse-
quences ofδ concurrently executed with someσ−c can gen-
erateS. This implies that∑n

i=1

(n
i

)
= 2n−1 possible combi-

nations must be considered.
In the second case∑k

i=1

(n
i

)
combinations must be con-

sidered, which isΩ(nk). �

Unfortunately, the worst case is not uncommon. The agent
could be performing a few procedures from a set ofM pro-
cedures from a procedure library. Since the system does
not know what procedure is actually being executed by the
agent, every procedure must be checked with every new ob-
servation that is made.

5.2 Toward an Efficient Implementation

The main drawback present in the direct translation of
the Perf definition to a PROLOG rule is that to determine
whether a procedure is performed it is necessary to com-
pletely check the history of observations. In this sense,
the problem of determining the truth value ofPerf(τ,δ,s)
is non-markovian; furthermore, it is necessary to determine

7

whetherδ will eventually make the goal succeed in the fu-
ture ofs.

To give an efficient implementation, we construct a
markovian definition forPerf. Thus, we do not need to
completely check the history of observations. This is possi-
ble since the definition ofPerf can be rewritten in the fol-
lowing way:

Perf(τ,δ′,s) def=
(∃δ′).hasStarted(τ,δ′,s)∧GoalSat(τ,δ′,do(a,s)),

(15)

whereGoalSatis defined as in proposition 1 andhasStarted
is defined in such a way to complete definition given by
(13). hasStarted(τ,δ′,s) essentially says that procedureτ
has started in the past ofs, and thatδ′ is the piece of the
procedure left for execution andGoalSat(τ,δ′,s) says that
δ′ achieves the procedures goal in a situation in the future
of s.

If we can establish all the necessary and sufficient con-
ditions by which the truth value ofhasStartedmay change
from an arbitrary situations to a situationdo(a,s) we can
transform the nature of the problem to markovian. The
following propositions show how a new observation may
change the truth value ofhasStarted.

Proposition 4 Let τ be an arbitrary procedure and s be a
situation. Furthermore, letΣ be a theory containing the Sit-
uation Calculus’s foundational axioms andCONGOLOG’s
semantics axioms. From hasStarted’s definition it follows
that,

Σ |= hasStarted(τ,δ′,s)⊃ hasStarted(τ,δ′,do(a,s))

In simple words, ifτ has started in the past of situation
s, then no observation can alter the fact thatτ has already
started.

Proposition 5 Let τ be an arbitrary procedure and s be a
situation. Furthermore, letΣ be as in proposition 4. Then

Σ |= hasStarted(τ,δ′,s)∧
Trans∗(δ′,s,δ′′,do(a,s))⊃

hasStarted(τ,δ′′,do(a,s))

This proposition says that ifτ has started in the past ofs
andδ′ remains to be executed, then if a new observationa
comes from a transition of programδ′ which leavesδ′′ to
be executed, then in situationdo(a,s), τ has started andδ′′
remains to be executed.

Proposition 6 Let τ be an arbitrary procedure and s be a
situation. Furthermore, letΣ be as in proposition 4. Then

Σ |= ¬hasStarted(τ,δ′,s)∧
Trans∗(proc(τ),s,δ′′,do(a,s))⊃

hasStarted(τ,δ′′,do(a,s))

This proposition establishes when a procedureτ begins to
be executed; i.e., when a transition ofτ correspond to the
observation.

Notice that the syntactic structure of propositions 4–6 is
very similar to that of effect axioms. The main difference
between them is thathasStartedis not a fluent but a defini-
tion that stands for a more complex formula. Nevertheless,
these results suggest thathasStartedcould be considered as
a fluent, i.e. a property which truth value can be associated
to a situation.

Moreover, it is not difficult to see that propositions 4–
6 stateall the conditions under which the truth value of
hasStartedchanges from one situation to another, then we
define a fluenthasStartedF such thathasStartedF(τ,δ′) is
true in situations if procedureτ could have started in the
past of situations leaving δ′ to be executed. Under this
assumption, and following [16], we generate the following
pseudo successor state axiom7 for hasStartedF :

holds(hasStartedF(τ,δ),do(a,s))≡
[holds(hasStartedF(τ,δ′),s)∧
(δ = δ′∨Trans∗(δ,s,δ,do(a,s)))∨
Trans∗(proc(τ),s,δ,do(a,s))].

(16)

Furthermore, we use the following axiom to establish that
in the initial situation, no procedure has started.

(∀τ,δ)¬holds(hasStartedF(τ,δ,S0)) (17)

Through the following theorem, we show an exact corre-
spondence betweenhasStartedF andhasStarted.

Theorem 1 LetΣ be a theory containing the Situation Cal-
culus’s foundational axioms,CONGOLOG’s semantics ax-
ioms and axioms(16)and (17). Then,

Σ |= (∀τ,δ,s).holds(hasStartedF(τ,δ),s)≡
hasStarted(τ,δ,s)

PROOF: Is done by structural induction ons. The⇒ part
is straightforward by using propositions 4 and 5. For the⇐
part we use the definition ofhasStarted. �

7This axiom is not a real successor state axiom because it mentions the
termdo(a,s) in the right side of the equivalence, which is not allowed in
their syntactic form.

8

The result expressed in this theorem is of extreme im-
portance since we have shown that it is possible to give an
implementation that, to determine whether a procedure is
performed in a situationdo(a,s) has to check for the truth
values of properties that hold only in situations. In partic-
ular such a system can keep in memory, for every situation
s, the tuples(τ,δ) such thathasStartedF(τ,δ) holds in s.
The amount of tuples needed to be stored is combinatorial
in the number and length of plans. However, this number
is small compared to time complexity of direct implemen-
tation, which is exponential on the number of observations.

6 Related Work

There are several works on plan recognition in the liter-
ature. We have knowledge about three works that use logic
as its theoretical framework. The pioneering work by Henry
Kautz [8], more that a decade ago, treats the problem as the
inverse of the planning problem. He uses a logical formal-
ism built upon a temporal logic based on Allen’s tempo-
ral logic [1]. The main difference between this approach
and ours is that it assumes that the set of observations is in-
complete and therefore circumscription —a predicate min-
imization technique— is used. Furthermore, the language
for describing plans is quite limited; indeed, no iterations or
concurrency is allowed. The latter limitation is also present
in work by Rao [15], where the plan recognition problem is
treated in a bottom-up manner. Given a set of plans, an algo-
rithm generates anobservational plancomposed by a series
of sensing actions whose final goal is to recognize the exe-
cution of a plan from a plan library. Plans are described in a
modal logic which does not support concurrency. The main
drawback is that it is unable to recognize two procedures
executing concurrently.

The most close approach to ours is the one by De-
molombe and Hamon [4], where procedures are regarded as
GOLOG programs with restrictions. One of the advantages
of our approach with respect to Demolombe and Hamon’s
is that procedures that involve concurrent programs can also
been recognized on-line. For example, consider the proce-
dureτ′land = (δdec||δ f lap);extGearwhere

δ f lap = extFlaps;extFlaps;extFlaps

δdec= while thrLevel(n)∧n≥ 100 do decThrustendWhile

Using the definitions of the remark 1, it can also be shown
thatPerf(τ′land,S1) and¬Perf(τ′land,S2). Another important
difference between our approach an that of [4] is that they
regard procedures as programs which specify what can be
done and what cannot be done; goals are not part of the
procedure definition. In our approach, as shown in remark
1, actions that cannot be done amid the execution of a pro-
cedure can be deduced fromPerf’s definition. This can be

done because our notion of procedure considers the goal as
part of its definition, therefore actions that cannot be exe-
cuted are precisely those that will eventually make the pro-
cedure fail with respect to the goal.

7 Conclusions and Future Work

We have presented a logical foundation of the problem of
mechanically determining what procedure is an agent exe-
cuting given a complete set of observations. We see this
problem as the first step toward the construction of intelli-
gent tutoring systems for autonomous intelligent agents.

Procedures are regarded as composed both by a program
and a goal. The program is described in the CONGOLOG

programming language, a very expressive language which
considers constructs for representing iterations and concur-
rency. Therefore, we use a language powerful enough to
represent almost any describable procedure.

We have given an implementation for plan recognition
based upon our logical formalization. Inspired in the idea
of history encoding [2] we have given an equivalent formal-
ization which yields a significantly more efficient solution
with respect to time complexity.

As part of our future work we would like to incorporate,
as in [5], temporal constraints into the definition of proce-
dures. We think that in this case, the semantics of CON-
GOLOG should be extended. We think this is not difficult to
do since the Situation Calculus can be augmented to repre-
sent time [13].

We also think it is interesting to incorporate, as in [4] the
idea that a procedure could include a set of actions which
shouldnot be executed while being performed. We think
this kind of restrictions may lead to more efficient imple-
mentations.

Acknowledgments

I am very grateful to Robert Demolombe for his valuable
comments in earlier drafts of this paper.

References

[1] J. F. Allen. Towards a General Theory of Action and Time.
Artificial Intelligence, 23:123–154, 1984.

[2] M. Arenas and L. Bertossi. Hypothetical temporal queries in
databases. InProceedings of the 5th International Workshop
on Knowledge Representation meets Databases (KRDB’98),
1998.

[3] J. Baier and J. Pinto. Integrating True Concurrency into the
Robot Programming Language Golog. InProceedings of the
19th Chilean Computer Science Conference, Talca, Chile,
1999. SCCC.

9

[4] R. Demolombe and E. Hamon. What does it mean that an
agent is performing a typical procedure? a formal definition
in situation calculus. InJoint Conference on Autonomous
Agents and Multiagent Systems, Bologna, Italy, 2002. To
appear.

[5] M. Ghallab. On chronicles: Representation, on-line recogni-
tion and learning. In Aiello, J. Doyle, and Shapiro, editors,
Proceeding of Principles of Knowledge Representation and
Reasoning, pages 597–606. Morgan-Kauffman, 1996.

[6] G. D. Giacomo, Y. Lesṕerance, and H. Levesque. Con-
Golog, a concurrent programming language based on the sit-
uation calculus: foundations.Artificial Intelligence, 121(1-
2):109–169, 2000.

[7] C. Heinze, S. Goss, I. Lloyd, and A. Pearce. Plan recognition
in military simulation: Incorporating machine learning with
intelligent agents. InProceedings of IJCAI-99 Workshop on
Team Behaviour and Plan Recognition, pages 53–64, 1999.

[8] H. A. Kautz. A formal theory of plan recognition and its im-
plementation. In J. F. Allen, H. A. Kautz, R. N. Pelavin, and
J. D. Tenenberg, editors,Reasoning about Plans, chapter 2,
pages 69–126. Morgan Kaufmann Publishers, San Mateo,
California, 1991.

[9] H. Levesque. What is planning in the presence of sensing.
In Proceedings of the National Conference on Artificial In-
telligence (AAAI-96), pages 1139–1146, 1996.

[10] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B.
Scherl. GOLOG: A Logic Programming Language for Dy-
namic Domains.The Journal of Logic Programming, 31:59–
84, 1997.

[11] D. Litman. Plan Recognition and Discourse Analysis: An
Integrated Approach for Understanding Dialogues. PhD
thesis, University of Rochester, Mar. 1986.

[12] J. McCarthy and P. J. Hayes. Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. In
B. Meltzer and D. Michie, editors,Machine Intelligence
4, pages 463–502. Edinburgh University Press, Edinburgh,
Scotland, 1969.

[13] J. Pinto. Temporal Reasoning in the Situation Calculus.
PhD thesis, Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada, Feb. 1994. URL = ftp:-
//ftp.cs.toronto.edu/˜cogrobo/jpThesis.ps.Z.

[14] F. Pirri and R. Reiter. Some Contributions to the Metatheory
of the Situation Calculus.Journal of the ACM, 46(2):261–
325, 1999.

[15] A. S. Rao. Means-end plan recognition : Towards a theory of
reactive recognition. In P. Torasso, J. Doyle, and E. Sande-
wall, editors,Proceedings of the 4th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning, pages 497–508, Bonn, FRG, 1994. Morgan Kauf-
mann.

[16] R. Reiter.The Frame Problem in the Situation Calculus: A
Simple Solution (sometimes) and a completeness result for
goal regression, pages 359–380. Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of
John McCarthy. Academic Press, San Diego, CA, 1991.

[17] R. Reiter. Knowledge in Action: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT
Press, 2001.

[18] R. Scherl and H. Levesque. The Frame Problem and Knowl-
edge Producing Actions. InProceedings AAAI-93, pages
689–695, Washington, D.C., July 1993. AAAI.

10

