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Abstract

In this paper we address the problem of planning by compos-
ing programs, rather than or in addition to primitive actions.
The programs that form the building blocks of such plans can,
themselves, contain both sensing and world-altering actions.
Our work is primarily motivated by the problem of automated
Web service composition, since Web services are programs
that can sense and act. Our further motivation is to under-
stand how to exploit macro-actions in existing operator-based
planners that plan with sensing. We study this problem in
the language of the situation calculus, appealing to Golog to
represent our programs. To this end, we propose an offline
execution semantics for Golog programs with sensing. We
then propose a compilation method that transforms our action
theory with programs into a new theory where programs are
replaced by primitive actions. This enables us to use state-
of-the-art, operator-based planning techniques to plan with
programs that sense for a restricted but compelling class of
programs. Finally, we discuss the applicability of these re-
sults to existing operator-based planners that support sensing
and illustrate the computational advantage of planning with
programs that sense via an experiment. The work presented
here is cast in the situation calculus to facilitate formal anal-
ysis. Nevertheless, both the results and the algorithm can be
trivially modified to take PDDL as input and output. This
work has broad applicability to planning with programs or
macro-actions with or without sensing.

1 Introduction
Classical planning takes an initial state, a goal state and an
action theory as input and generates a sequence of actions
that, when performed starting in the initial state, will termi-
nate in a goal state. Typically, actions are primitive and are
described in terms of their precondition, and (conditional)
effects. Classical planning has been extended to planning
with sensing actions, where the agent uses such actions to
gather information from its environment. In this setting,
plans are usually conditional, and in practice they are much
harder to generate than in the classical setting.

Our interest here is in using programs, rather than or
in addition to primitive actions, as the building blocks for
plans. The programs that we consider may both sense and
act in the world. Our approach is to develop a technique for

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

compiling programs into new primitive actions that can be
exploited by standard operator-based planning techniques.
To achieve this, we automatically extract (knowledge) pre-
conditions and (knowledge) effects from programs. We
study this problem in the language of the situation calculus,
appealing to Golog to represent our programs.

Our primary motivation for investigating this topic is to
address the problem of automated Web service composition
(WSC) (e.g., (McIlraith & Son 2002)). Web services are
self-contained, Web-accessible computer programs, such
as the airline ticket service at www.aircanada.com, or the
weather service at www.weather.com. These services are
indeed programs that sense—e.g. by determining the bal-
ance of an account or flight costs by querying a database—
and act in the world—e.g. by arranging for the delivery of
goods, by debiting accounts, etc. As such, the task of WSC
can be conceived as the task of planning with programs, or
as a specialized version of a program synthesis task.

A secondary motivation for this work is to improve the
efficiency of planning with sensing by representing useful
(conditional) plan segments as programs. Planning with
some form of macro-actions (e.g., (Fikes, Hart, & Nilsson
1972; Sacerdoti 1974; Korf 1987; McIlraith & Fadel 2002;
Erol, Hendler, & Nau 1994)) can dramatically improve
the efficiency of plan generation. The advantage of using
macro-actions in general, are two fold. By encapsulating
programs into operators plan length is reduced, which in turn
significantly reduces the search space. Also, operators pro-
vide a means of achieving a subtask without search. This
leads to increased performance of planners.

Levesque (1996) argued that when planning with sensing,
the outcome of the planning process should be a plan which
the executing agent knows at the outset will lead to a final
situation in which the goal is satisfied. Even in cases where
no uncertainty in the outcome of actions, and no exogenous
actions are assumed this remains challenging because of in-
complete information about the initial state. To plan effec-
tively with programs, we must consider whether we have
the knowledge to actually execute the program prior to us-
ing it in a plan. To that end, in Section 3 we propose an
offline execution semantics for Golog programs with sens-
ing that enables us to determine that we know how to exe-
cute a program. We prove the equivalence of our semantics
to the original Golog semantics, under certain conditions.



Then, in Section 4.1, we propose a compilation method that
transforms our action theory with programs into a new the-
ory where programs are replaced by primitive actions. This
enables us to use traditional operator-based planning tech-
niques to plan with programs that sense in a restricted but
compelling set of cases. In Section 5 we discuss the applica-
bility of these results to existing operator-based planners that
allow sensing. Finally, in Section 6 we discuss the practical
relevance of this work by illustrating the potential computa-
tional advantages of planning with programs that sense. We
also discuss the relevance of this work to Web service com-
position.

2 Preliminaries
The situation calculus and Golog provide the theoretical
foundations for our work. In the two subsections that follow
we briefly review the situation calculus (McCarthy & Hayes
1969; Reiter 2001), including a treatment of sensing actions
and knowledge. We also review the transition semantics
for Golog, a high-level agent programming language that
we employ to represent the programs we are composing.
For those familiar with the situation calculus and Golog, we
draw your attention to the decomposition of successor state
axioms for the K fluent leading to Proposition 1, the perhaps
less familiar distinction of deterministic tree programs, and
the definition of the Trans− and Do−predicates.

2.1 The situation calculus
The situation calculus, as described by Reiter (2001), is a
second-order language for specifying and reasoning about
dynamical systems. In the situation calculus, the world
changes as the result of actions. A situation is a term
denoting the history of actions performed from an initial
distinguished situation, S0. The function do(a,s) denotes
the situation that results from performing action a in sit-
uation s1. Relational fluents (resp. functional fluents) are
situation-dependent predicates (resp. functions) that capture
the changing state of the world. The distinguished predicate
Poss(a,s) is used to express that it is possible to execute ac-
tion a in situation s. The dynamics of a particular domain is
described by action theories.

Reiter’s basic action theory has the form D = Σ∪Dss ∪
Dap∪Duna∪DS0 ∪Kinit , (Reiter 2001, pg. 305) where,
• Σ is a set of foundational axioms.
• Dss is a set of successor state axioms (SSAs), of the form:

F(~x,do(a,s))≡ΦF(a,~x,s). (1)

The set of SSAs can be compiled from a set of effect ax-
ioms, Deff (Reiter 2001). An effect axiom describes the
effect of an action on the truth value of certain fluents,
e.g., a = startCar ⊃ engineStarted(do(a,s)). Dss may also
contain SSAs for functional fluents.

• Dap contains action precondition axioms.
• Duna contains unique names axioms for actions.
• DS0 describes the initial state of the world.
• Kinit defines the properties of the K fluent in the initial

situations and preserved in all situations.
1do([a1, . . . ,an],s) abbreviates do(an,do(. . . ,do(a1,s) . . .)).

Following Scherl & Levesque (2003), we use the distin-
guished fluent K to capture the knowledge of an agent in the
situation calculus. The K fluent reflects a first-order adap-
tation of Moore’s possible-world semantics for knowledge
and action (Moore 1985). K(s′,s) holds iff when the agent
is in situation s, she considers it possible to be in s′. Thus,
we say that a first-order formula φ is known in a situation s
if φ holds in every situation that is K-accessible from s. For
notational convenience, we adopt the abbreviations2

Knows(φ ,s) def= (∀s′).K(s′,s)⊃ φ [s′],

KWhether(φ ,s) def= Knows(φ ,s)∨Knows(¬φ ,s).

To define properties of the knowledge of agents we can de-
fine restrictions over the K fluent. One common restriction
is reflexivity (i.e., (∀s)K(s,s)) which implies that everything
that is known by the agent in s is also true in s.

Scherl & Levesque (2003) define a standard SSA for the
K fluent. Given sensing actions a1, . . . ,an such that ai (1 ≤
i≤ n) senses whether or not formula ψi is true,Dss contains:

K(s′,do(a,s))≡ (∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧
n∧

i=1

{a = ai ⊃ (ψi(s)≡ ψi(s′′))}. (2)

Intuitively, when performing a non-sensing action a in s,
if s′′ was K-accessible from s then so is do(a,s′′) from
do(a,s). However, if sensing action ai is performed in s and
s′′ was K-accessible from s then do(ai,s′′) is K-accessible
from do(ai,s) only if s and s′′ agree upon the truth value of
ψi.

In contrast to Scherl & Levesque (2003), we assume that
the SSA for K is compiled from a set of sufficient condition
axioms, Ks, rather than simply given. We do this to be able
to cleanly modify the SSA for K without appealing to syn-
tactic manipulations. If a1, . . . ,an are sensing actions and
each action ai senses formula ψi, the axiomatizer must pro-
vide the following sufficient condition axioms for each ai,

K(s′′,s)∧a = ai∧
(ψi(s)≡ ψi(s′′))⊃ K(do(a,s′′),do(a,s)), (3)

which intuitively express the same dynamics of the K-
reachability for situations as (2) but with one axiom for each
action. Furthermore, in order to model the dynamics of the
K-reachability for the remaining non-sensing actions, the
following axiom must be added:

K(s′′,s)∧
n∧

i=1

a 6= ai ⊃ K(do(a,s′′),do(a,s)). (4)

Axioms (3) and (4) can be shown to be equivalent to the SSA
of K when one assumes that all sufficient conditions are also
necessary.
Proposition 1 Predicate completion on axioms of the form
(3) and (4) is equivalent to the SSA for K defined in (2).

2We assume φ is a situation-suppressed formula (i.e. a situa-
tion calculus formula whose situation terms are suppressed). φ [s]
denotes the formula that restores situation arguments in φ by s.



Finally, our compilation procedure will make extensive
use of Reiter’s regression operator (Reiter 2001). The re-
gression of α = ϕ(do([a1, . . . ,an],S0)), denoted by R[α], is
a formula equivalent to α but such that the only situation
terms occurring in it are S0. To regress a formula, one it-
eratively replaces each occurrence of F(x,do(a,s)) by the
right-hand side of equation (1) until all atomic subformulae
mention only situation S0. In our compilation, we use the re-
gression operator Rs, which does the same as R but “stops”
when all situation terms mentioned in the formula are s.

2.2 Golog’s syntax and semantics
Golog is a high-level agent programming language whose
semantics is based on the situation calculus (Reiter 2001).
A Golog program is a complex action3 potentially composed
from:

nil – the empty program
a – primitive action
φ? – test action
πx.δ – nondeterministic choice of argument
δ1;δ2 – sequences (δ1 is followed by δ2)
δ1|δ2 – nondeterministic choice between δ1 and δ2
if φ then δ1 else δ2 endif – conditional
while φ do δ endW – loop

Below we will propose a compilation algorithm for Golog
programs that are deterministic tree programs.
Definition 1 (Tree program) A Golog tree program is a
Golog program that does not contain any loop constructs.

Definition 2 (Deterministic program) A deterministic
Golog program is one that does not contain any nondeter-
ministic choice construct.

The restriction to tree programs may seem strong. Never-
theless, in practical applications most loops in terminating
programs can be replaced by a bounded loop (i.e. a loop that
is guaranteed to end after a certain number of iterations).
Therefore, following McIlraith & Fadel (2002), we extend
the Golog language with a bounded loop construct. Thus, we
define whilek φ do δ endW as equal to nil if k = 0 and equal
to if φ then {δ ;whilek−1 φ do δ endW} else nil endif, for
k > 0. We include this as an admissible construct for a tree
program.

Golog has both an evaluation semantics (Reiter 2001)
and a transition semantics (de Giacomo, Lespérance, &
Levesque 2000). The transition semantics is defined in terms
of single steps of computation, using two predicates Trans
and Final. Trans(δ ,s,δ ′,s′) is true iff when a single step of
program δ is executed in s, it ends in the situation s′, with
program δ ′ remaining to be executed, and Final(δ ,s) is true
if program δ terminates in s. Some axioms for Trans and
Final are shown below.

Final(δ ,s)≡ δ = nil,

Trans(a,s,δ ′,s′)≡ Poss(a,s)∧δ
′ = nil∧ s′ = do(a,s), (5)

Trans(if φ then δ1 else δ2 endif,δ ,s,δ ′,s′)≡
φ [s]∧Trans(δ1,s,δ

′,s′)∨¬φ [s]∧Trans(δ2,s,δ
′,s′).

3We use the symbol δ to denote complex actions. φ is a
situation-suppressed formula.

Using the transitive closure of Trans, Trans∗, the predicate
Do(δ ,s,s′) can be defined to be true iff program δ , executed
in situation s, terminates in situation s′.

In the rest of the paper, we also consider a less restrictive
definition of Trans, Trans−. Trans−(δ ,s,δ ′,s′) is true iff
program δ can make a transition to s′ by possibly violating
an action precondition. The definition of Trans− is exactly
the same as that of Trans save replacing the right-hand side
of (5) by δ ′ = nil ∧ s′ = do(a,s). Likewise, we define the
Do− predicate in terms of Trans−. We introduce this defini-
tion merely for efficiency; in our translation process we will
regress Do− to obtain simpler formulae. The following is a
simple relationship between Do and Do−.

Proposition 2 Let δ be a Golog program and let T be the
axioms defining Golog’s transition semantics. Then,

T |= Do(δ ,s,s′)⊃ Do−(δ ,s,s′)

Proof: By induction in the structure of δ .

3 Semantics for executable Golog programs
Again, as Levesque (1996) argued, when planning with
sensing, the outcome of the planning process should be a
plan which the executing agent knows at the outset will
lead to a final situation in which the goal is satisfied.
When planning with programs, as we are proposing here,
we need to be able to determine when it is possible to
execute a program with sensing actions and what situations
could be the result of the program. Unfortunately, Golog’s
original semantics does not consider sensing actions and
furthermore does not consider whether the agent has the
ability to execute a given program.

Example 1 Consider a theory D and Golog transition se-
mantics axioms T such that D∪T |= φ [S0] and D∪T 6|=
¬φ [S0], and let ∆

def= if φ then a else b endif. Assume fur-
thermore that a and b are always possible. Then, it holds
that D∪T |= (∃s)Do(∆,S0,s), i.e. δ is executable in S0 (in
fact, D∪T |= Do(∆,S0,s)≡ s = do(a,S0)∨ s = do(b,S0)).
This fact is counter-intuitive since in S0 the agent does not
have enough information to determine whether φ holds, so
∆ is not really executable.

As a first objective towards planning with programs that
sense, we define what property a Golog program must sat-
isfy to ensure it will be executable. Our second objective
is to define a semantics that will enable us to determine the
family of situations resulting from executing a program with
sensing actions. This semantics provides the foundation for
results in subsequent sections.

To achieve our first objective, we need to ensure that at
each step of program execution, an agent has all the knowl-
edge necessary to execute that step. In particular, we need
to ensure that the program is epistemically feasible. Once
we define the conditions underwhich a program is epistem-
ically feasible, we can either use them as constraints on the
planner, or we can ensure that our planner only builds plans
using programs that are known to be epistemically feasible
at the outset.



Several papers have addressed the problem of knowing
how to execute a plan (Davis 1994) or more specifically, a
Golog program. Lespérance et al. (2000) define a predi-
cate CanExec to establish when a program can be executed
by an agent. Sardina et al. (2004) define epistemically fea-
sible programs using the online semantics of de Giacomo
& Levesque (1999). Finally, a simple definition is given by
McIlraith & Son (2002), which defines a self-sufficient prop-
erty, ssf , such that ssf (δ ,s) is true iff an agent knows how
to execute program δ in situation s. We appeal to this prop-
erty to characterize when a Golog program is executable. Its
definition is given below.

ssf (nil) def= True,

ssf (a,s) def= KWhether(Poss(a),s),

ssf (πx.δ ,s) def= (∃x)ssf (δ ,s),

ssf (δ1|δ2,s)
def= ssf (δ1,s)∧ ssf (δ2,s),

ssf (φ?,s) def= KWhether(φ ,s),

ssf (δ1;δ2,s)
def= ssf (δ1,s)∧ (∀s′).Trans∗(δ1,s,nil,s′)⊃ ssf (δ2,s

′),

ssf (if φ then δ1 else δ2 endif,s) def=
KWhether(φ ,s)∧ (φ [s]⊃ ssf (δ1,s))∧ (¬φ [s]⊃ ssf (δ2,s)),

ssf (while φ do δ endW,s) def= KWhether(φ ,s)∧ (φ [s]⊃
ssf (δ ,s)∧ (Trans∗(δ ,s,nil,s′)⊃ ssf (while φ do δ endW,s′))).

We now focus on our second objective, i.e. to define a
semantics for Golog programs with sensing actions. To our
knowledge, no such semantics exists. Nevertheless, there
is related work. de Giacomo & Levesque (1999) define the
semantics of programs with sensing in an online manner,
i.e. it is determined during the execution of the program. An
execution is formally defined as a mathematical object, and
the semantics of the program depends on such an object. The
semantics is thus defined in the metalanguage, and therefore
it is not possible to refer to the situations that would result
from the execution of a program within the language.

To define a semantics for executable programs with sens-
ing, we modify the existing Golog transition semantics so
that it refers to the knowledge of the agent, defining two
new predicates TransK and FinalK as follows.
FinalK(δ ,s)≡ Final(δ ,s),

TransK(nil,s,δ ′,s′)≡ False,

TransK(φ?,s,δ ′,s′)≡Knows(φ ,s)∧δ
′ = nil∧ s′ = s,

TransK(a,s,δ ′,s′)≡Knows(Poss(a),s)∧δ
′ = nil∧ s′ = do(a,s),

TransK(δ1|δ2,s,δ
′,s′)≡ TransK(δ1,s,δ

′,s′)∨TransK(δ2,s,δ
′,s′),

TransK(δ1;δ2,s,δ
′,s′)≡ (∃σ)(δ ′ = σ ;δ2∧TransK(δ1,s,σ ,s′)) ∨

FinalK(δ1,s)∧TransK(δ2,s,δ
′,s′),

TransK(πv.δ ,s,δ ′,s′)≡ (∃x)TransK(δx,s,δ ′,s′),

TransK(if φ then δ1 else δ2 endif,δ ,s,δ ′,s′)≡Knows(φ ,s)∧
TransK(δ1,s,δ

′,s′) ∨Knows(¬φ ,s)∧TransK(δ2,s,δ
′,s′),

TransK(while φ do δ endW,δ ,s,δ ′,s′)≡Knows(¬φ ,s)∧ s = s′∧
δ
′ = nil∨Knows(φ ,s)∧TransK(δ ;while φ do δ endW,s,δ ′,s′).

We define DoK(δ ,s,s′) def= (∃δ ′)Trans∗K(δ ,s,δ ′,s′) ∧
FinalK(δ ′,s′), analogously to the definition of Do. Hence-
forth we use T to refer to a set containing all of Golog’s
transition semantics axioms.

In contrast to Trans, TransK of an if-then-else explicitly
requires the agent to know the value of the condition. Re-
turning to Example 1, if now D∪T 6|= KWhether(φ ,S0),
then D ∪ T |= ¬(∃s)DoK(∆,S0,s). However, if senseφ

senses φ , then D∪T |= (∃s)DoK(senseφ ;∆,S0,s).
A natural question to ask is when this semantics is equiv-

alent to the original semantics. We can prove that both are
equivalent for self-sufficient programs (in the sense of McIl-
raith & Son (2002)).

Lemma 1 Let D be a theory of action such that Kinit con-
tains the reflexivity axiom for K. Then,

D∪T |= (∀δ ,s).ssf (δ ,s)⊃
{(∀s′).Do(δ ,s,s′)≡ DoK(δ ,s,s′)}

Proof: By induction in the structure of δ . �
The preceding lemma is fundamental to the rest of our

work. In the following sections we show how theory com-
pilation relies strongly on the use of regression of the DoK
predicate. Given our equivalence we can now regress Do
instead of DoK which produces significantly simpler formu-
lae.

An important point is that the equivalence of the se-
mantics is achieved for self-sufficient programs. Proving
that a program is self-sufficient may be as hard as do-
ing the regression of DoK . Fortunately, there are syn-
tactic accounts of self-sufficiency (McIlraith & Son 2002;
Sardina et al. 2004), such as programs in which each if-
then-else and while loop that conditions on φ is preceded
by a senseφ , or more generally that φ is established prior to
these constructs and persists until their usage.

4 Planning with programs that sense
We now return to the main objective of this paper – how to
plan with programs that sense by enabling operator-based
planners to treat programs as black-box primitive actions. A
plan in the presence of sensing is a program that may contain
conditionals and loops (Levesque 1996). As such, we define
a plan as a Golog program.

Definition 3 (A plan) Given a theory of action D, and a
goal G we say that Golog program δ is a plan for situation-
suppressed formula G in situation s relative to theory D iff
D∪T |= (∀s′).DoK(δ ,s,s′)⊃ G[s′].

In classical planning, a planner constructs plan δ by
choosing actions from a set A of primitive actions. Here,
the planner has an additional set C of programs from which
to construct plans.

Example 2 Consider an agent that uses the following com-
plex action to paint objects:

δ (o) def=sprayPaint(o); look(o);
if ¬wellPainted(o) then brushPaint(o) else nil endif



The action sprayPaint(o) paints an object o with a spray gun,
and action brushPaint(o) paints it with a brush. We assume
that action sprayPaint(o) well-paints o if the spray is not
malfunctioning, whereas action brushPaint(o) always well-
paints o (this agent prefers spray-painting for cosmetic rea-
sons). Action look(o) is a sense action that senses whether
or not o is well painted.

Below we show some axioms in Dap and Deff that are
relevant for our example.

Poss(sprayPaint(o),s)≡ have(o),
Poss(look(o),s)≡ have(o),
a = sprayPaint(o)∧¬malfunct(s)⊃ wellPainted(o,do(a,s)),
a = brushPaint(o)⊃ wellPainted(o,do(a,s))

The SSAs for the fluents wellPainted and K are as follows.
wellPainted(x,do(a,s))≡

a = brushPaint(x)∨ (a = sprayPaint(x)∧¬malfunct(s))∨
wellPainted(x,s)∧a 6= scratch(x),

K(s′,do(a,s))≡ (∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧
{(∀x).a = look(x)⊃

(wellPainted(x,s′′)≡ wellPainted(x,s))}.
The SSA for wellPainted says that x is well painted if it

has just been brush painted, or it has just been spray painted
and the spray is not malfunctioning or if it was well painted
in the preceding situation and x has not been scratched. On
the other hand, the SSA for K talks about a unique sensing
action, look(x), which senses whether x is well painted.

Suppose we want to use action δ to construct a plan using
an operator-based planner. Instead of a program, we would
need to consider δ ’s effects and preconditions (i.e. we would
need to represent δ as a primitive action). Among the effects
we must describe both physical effects (e.g., after we per-
form δ (B), B is wellPainted) and knowledge effects (e.g., if
we know that o is not wellPainted, after we perform δ (B),
we know whether or not malfunct!).

The rest of this section presents a method that, under cer-
tain conditions, transforms a theory of action D and a set
of programs with sensing C into a new theory, Comp[D,C],
that describes the same domain asD but that is such that pro-
grams in Comp[D,C] each appear modeled by a new primi-
tive action.

4.1 Theory compilation
A program with sensing may produce both effects in the
world and in the knowledge of the agent. Therefore, we want
to replace a program δ by one primitive action primδ , with
the same preconditions and the same physical and knowl-
edge effects as δ . We now describe how we can generate a
new theory of action that contains this new action. Then we
prove that when primδ is executed, it captures all world and
knowledge-level effects of the original program δ .

Our translation process is restricted to tree programs. This
is because programs containing loops can be problematic
since they may have arbitrarily long executions. However,
in many practical cases loops can be replaced by bounded
loops using the whilek construct introduced in Section 2.

We start with a theory D = Σ∪Dss∪Dap∪Duna∪DS0 ∪
Kinit∪T , describing a set A of primitive actions and a set C
of tree programs, and we generate a new theory Comp[D,C]
that contains new, updated SSA, precondition and unique
name axioms.

We assume that the set of successor state axioms,Dss, has
been compiled from sets Deff and Ks. Furthermore, assume
we have a set of Golog tree programs C which may contain
sensing actions such that for every δ ∈C it holds that D |=
(∀s).ssf (δ ,s).

Intuitively, since primδ replaces δ , we want primδ to be
executable exactly when δ is executable in s. Note that ac-
tion δ is executable in s iff there exists a situation s′ such that
the action theory entails Dok(δ ,s,s′). Moreover, we want
primδ to preserve the physical effects of δ . To that end, for
each fluent, we add effect axioms for primδ such that when-
ever δ makes F true/false, primδ will also make it true/false.
Finally, because we want to preserve knowledge effects of
δ , primδ will emulate δ with respect to the K fluent. To
write these new axioms we use the regression operator Rs

of Section 2 because we will need that precondition and ef-
fect axioms only talk about situation s. We generate the new
theory Comp[D,C] in the following way.

1. Make D′
eff := Deff , D′

ap := Dap, K′
s := Ks, and D′

una :=
Duna.

2. For each δ (~y) ∈C, we add the following precondition ax-
ioms to D′

ap,

Poss(primδ (~y),s)≡Rs[(∃s′)Do(δ (~y),s,s′)]

therefore, primδ (~y) can be executed iff program δ could
be executed in s.

3. For each relational fluent F(~x,s) in the language ofD that
is not the K fluent, and each complex action δ (~y) ∈C we
add the following effect axioms to D′

eff :

a = primδ (~y)∧Rs[(∃s′)(Do−(δ (~y),s,s′)

∧F(~x,s′))]⊃ F(~x,do(a,s)),
(6)

a = primδ (~y)∧Rs[(∃s′)(Do−(δ (~y),s,s′)

∧¬F(~x,s′))]⊃ ¬F(~x,do(a,s)).
(7)

The intuition here is that F must be true (resp. false) after
executing primδ in s if after executing δ in s it is true
(resp. false).

4. For each functional fluent f (~x,s) in the language of D,
and each program δ (~y) ∈ C we add the following effect
axiom to D′

eff :

a = primδ (~y)∧Rs[(∃s′)(Do−(δ (~y),s,s′)∧
z = f (~x,s′))]⊃ z = f (~x,do(a,s)),

5. For each δ (~y) ∈C, we add the following sufficient condi-
tion axiom to K′

s:

a =primδ (~y)∧ s′′ = do(a,s′)∧

Rs′ [Rs[(∃s1,s2)(Do−(δ (~y),s,s1)∧
Do−(δ (~y),s′,s2)∧K(s2,s1))]]⊃ K(s′′,do(a,s)).

(8)



Intuitively, suppose s′ is K accessible from s, and that per-
forming δ in s′ leads to s2, whereas performing δ in s
leads to s1. Then, if s2 is K-accessible from s1, we want
that do(primδ ,s′) be K-accessible from do(primδ ,s).

6. For each δ ,δ ′ ∈ C such that δ 6= δ ′ add primδ (~y) 6=
primδ ′(~y′) to D′

una. For each α(~x) ∈ A, add α(~x) 6=
primδ (~y) to D′

una.
7. Compile a new set of SSAs D′

ss from D′
eff and K′

s. The
new theory is defined as follows.

Comp[D,C] = Σ∪D′
ss∪D′

ap∪D′
una∪DS0 ∪Kinit ∪T .

The reader very familiar with the situation calculus may
have noticed that the formula (∃s′)Do−(δ (~y),s,s′)—as well
as others in the compilation—is not directly regressable (Re-
iter 2001, pg. 62). However it is simple to get around this
technical difficulty. This is justified by the following two
results.

Proposition 3 Let δ be a tree program, then there ex-
ists a set of action sequences {~ai}, and a set of formulae
{ψi(~y,s)}, where each ψi(~y,s) is regressable in s (in partic-
ular, it only mentions the situation variable s), such that:

T |= Do−(δ ,s,s′)≡
∨

i

ψi(~y,s)∧ s′ = do(~ai,s)

Proof: By induction in the number of constructs of δ . The
proof also defines a way to construct ψi. �

Corollary 1 There is a procedure to construct regress-
able equivalent formulae for (∃s′)(Do−(δ (~y),s,s′),
(∃s1,s2)(Do−(δ (~y),s,s1) ∧ Do−(δ (~y),s′,s2) ∧ K(s2,s1)),
and (∃s′)(Do−(δ (~y),s,s′)∧ [¬]F(s)).

Proof: Replace each of the Do−’s by its equivalent formula
following proposition 3. Now it is possible to eliminate the
existential quantifiers in each of the formulae, and a regress-
able formula is obtained. �

We now turn to the analysis of some properties of the re-
sulting theory Comp[D,C].

Theorem 1 IfD is consistent and C contains only determin-
istic tree programs then Comp[D,C] is consistent.

Proof: We prove that the SSAs of Comp[D,C] are consistent
following (Reiter 2001, pg. 31). �

Indeed, if C contains one non-deterministic tree program,
we cannot guarantee that Comp[D,C] is consistent. Now
we establish a complete correspondence at the physical level
between our original programs and the compiled primitive
actions after performing primδ .

Theorem 2 Let D be a theory of action such that Kinit con-
tains the reflexivity axiom. Let C be a set of determinis-
tic Golog tree programs. Finally, let φ(~x) be an arbitrary
situation-suppressed formula that does not mention the K
fluent. Then,

Comp[D,C] |= (∀s,s′,~x).DoK(δ ,s,s′)⊃
(φ(~x)[s′]≡ φ(~x)[do(primδ ,s)])

Proof: See appendix.
It is worth noting that the preceding theorem is also valid

when δ does not contain sensing actions.
Also, there is a complete correspondence at a knowledge

level between our original complex actions and the compiled
primitive actions after performing primδ .
Theorem 3 Let D be a theory of action such that Kinit con-
tains the reflexivity axiom. Let C be a set of deterministic
Golog tree programs, and φ(~x) be a situation-suppressed
formula that does not mention the K fluent. Then,

Comp[D,C] |= (∀~x,s,s1).DoK(δ ,s,s1)⊃
{Knows(φ(~x),s1)≡Knows(φ(~x),do(primδ ,s))}.

Proof: See the appendix.
Now that we have established the correspondence be-

tween D and Comp[D,C] we return to planning. In order
to achieve a goal G in a situation s, we now obtain a plan
using theory Comp[D,C]. In order to be useful, this plan
should have a counterpart in D, since the executor cannot
execute any of the “new” actions in Comp[D,C]. The fol-
lowing result establishes a way to obtain such a counterpart.
Theorem 4 Let D be a theory of action, C be a set of de-
terministic Golog tree programs, and G be a formula of
the situation calculus. Then, if ∆ is a plan for G in theory
Comp[D,C] and situation s, then there exists a plan ∆′ for G
in theoryD and situation s. Moreover, ∆′ can be constructed
from ∆.
Proof sketch: We construct ∆′ by replacing every occur-
rence of primδ in ∆ by δ . Then we prove that ∆′ also
achieves the goal, from theorems 2 and 3. �

Example 2 (cont.) The result of applying theory compila-
tion to the action theory of our example follows. The pre-
condition axiom obtained for primδ is

Poss(primδ (o),s)≡ have(o,s).
For the fluent wellPainted, the negative effect axiom

a =primδ (o)∧Rs[(∃s′)(Do−(δ (o),s,s′)∧
¬wellPainted(o,s′))]⊃ ¬wellPainted(o,do(a,s)),

simplifies to

a = primδ (o)∧
Rs[(¬wellPainted(o,S3)∧¬wellPainted(o,S1))∨

(wellPainted(o,S3)∧¬wellPainted(o,S2))]⊃
¬wellPainted(o,do(a,s)),

where S1 = do([sprayPaint(o), look(o),brushPaint(o)],s),
S2 = do([sprayPaint(o), look(o)],s), and S3 =
do([sprayPaint(o)],s), which finally simplifies into the futile
axiom a = primδ (o) ∧ False ⊃ ¬wellPainted(o,do(a,s)).
Analogously, the positive effect axiom obtained for
wellPainted is, a = primδ (o) ⊃ wellPainted(o,do(a,s)).
The resulting SSA for wellPainted is:

wellPainted(o,do(a,s))≡
a = brushPaint(o)∨a = primδ (o)∨
a = sprayPaint(o)∧¬malfunct(s)∨
wellPainted(o,s)∧a 6= scratch(o),



which means that o is well painted after primδ (o) is per-
formed.

For K, we obtain the following SSA,

K(s′,do(a,s))≡ (∃s′′).s′ = do(a,s′′)∧K(s′,s)∧
{a = look(o)⊃ (wellPainted(o,s′′)≡ wellPainted(o,s))}∧
{a = primδ (o)⊃ (ψ(o,s′′)≡ ψ(o,s))},

where ψ(o,s) def= malfunct(s)∧¬wellPainted(o,s). The ax-
iom for K reflects the fact that primδ (o) is obtaining the truth
value of ψ .

Clearly, the process has captured the world-
altering effect of δ (o), namely that wellPainted(o).
Moreover, it is easy to confirm a conditional
knowledge effect: Knows(¬wellPainted(o),s) ⊃
KWhether(malfunct,do(primδ (o),s)).

Note that our theory compilation can only be used for
complex actions that can be proved self-sufficient for all sit-
uations. As noted previously, an alternative was to use the
conditions that need to hold true for a program to be self-
sufficient as a precondition for the newly generated prim-
itive actions. Indeed, formula ssf (δ ,s) encodes all that is
required to hold in s to be able to know how to execute
δ , and therefore we could have added Poss(primδ (~y),s) ≡
Rs[(∃s′)Do(δ ,s,s′)∧ ssf (δ ,s)] in step 2 of theory compila-
tion. This modification keeps the validity of our theorems
but the resulting precondition expression may contain com-
plex formulae referring to the knowledge of the agent, which
we view as problematic for practical applications. The good
news is that most Web services are self-sufficient by design.

Finally, the compilation method we have described here
is only defined for programs that contain primitive actions,
i.e. it does not allow programs to invoke other programs.
However, the method can be extended for a broad class of
programs that include such calls. If there are no unbounded
recursions or the programs can be stratified with respect to
recursive calls, it is always possible to iteratively apply the
compilation method presented until all programs have been
reduced to a primitive action.

5 From theory to practice
We have shown that under certain circumstances, planning
with programs can be in theory reduced to planning with
primitive actions. In this section we identify properties nec-
essary for operator-based planners to exploit these results,
with particular attention to some of the more popular ex-
isting planners. There are several planning systems that
have been proposed in the literature that are able to con-
sider the knowledge of an agent and (in some cases) sensing
actions. These include Sensory Graphplan (SGP) (Weld, An-
derson, & Smith 1998), the MDP-based planner GPT (Bonet
& Geffner 2000), the model-checking-based planner MBP4

(Bertoli et al. 2001), the logic-programming-based planner
π(P) (Son, Tu, & Baral 2004), the knowledge-level planner

4MBP does not consider sensing actions explicitly, however they
can be ‘simulated’ by representing within the state the last action
executed.

PKS (Petrick & Bacchus 2002), and Contingent FF (CFF)
(Hoffmann & Brafman 2005).

All of these planners are able to represent conditional ef-
fects of physical actions, therefore, the representation of the
physical effects of primδ is straightforward. Unfortunately,
the representation of the knowledge effects of primδ is not
trivial in some cases. Indeed, without loss of generality, sup-
pose that C contains only one program δ (~y). After theory
compilation, the SSA for the K fluent in Comp[D,C] has the
general form:

K(s′,do(a,s))≡
(∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧ϕ(s)∧∧

j

{
(∀~y).a = primδ (~y)∧α j(~y,s)⊃

∧
i

βi j(~y,s)≡ βi j(~y,s′′)
}
, (9)

where ϕ(s) describes the knowledge effect for the original
actions in D, and therefore does not mention the action term
primδ . Intuitively, as before, βi j are the (regressed) proper-
ties that are sensed and α j are the (regressed) conditions of
if-then-else constructs that had to be true for the program to
sense βi j.

From the syntax of K, we determine the following re-
quirements for achieving planning with programs that sense
in practical planners.
1. The planner must be able to represent conditional sensing

actions. These are the α j formulae appearing in (9).
2. The planner must be able to represent that primδ senses

the truth value of, in general, arbitrary formulae. This is
because βi j in (9) could be any first-order formula.
Most of the planners do not satisfy these requirements di-

rectly. However, in most cases one can modify the planning
domain, and still plan with our compiled actions. Below we
show how this can be done.

Belief-state-based planners
All the planners we investigated, except PKS, are in this cat-
egory. They represent explicitly or implicitly all the states
in which the agent could be during the execution of the plan
(sometimes called belief states). They are propositional and
cannot represent functions5. In our view, the expressiveness
of these planners is extremely restrictive, especially because
they are unable to represent functions of arbitrary range,
which is of great importance in many practical applications
including WSC.

Among the planners investigated, SGP is the only one that
cannot be adapted to achieve requirement 1. The reason
is that sensing actions in SGP cannot have preconditions or
conditional effects. Others (π(P), MBP) can be adapted to
simulate conditional sensing actions by splitting primδ into
several actions with different preconditions.

Regarding requirement 2, SGP and MBP can handle arbi-
trary (propositional) observation formulae. However, all the

5GPT can indeed represent functions, but with limited, integer
range.



remaining planners are only able to sense propositions (GPT,
π(P), PKS, and CFF).

In GPT, or in any other propositional planner able to han-
dle actions that have both physical and knowledge effects,
this limitation can be overcome by adding two extra fluents
for each primδ action. For each formula βi j, add the the
fluents Fi j and Gi j to the compiled theory. Fluent Fi j(~y,s)
is such that its truth value is equivalent to that of formula
βi j(~y,s). The SSA for Fi j can be obtained by the following
expression (Lin & Reiter 1994):

Fi j(~y,do(a,s))≡Rs[βi j(~y,do(a,s))]. (10)

Furthermore, we define Fi j(~y,S0) ≡ βi j(~y,S0). On the other
hand, the fluent Gi j(~y,do(a,s)) is such that its truth value is
equivalent to that of βi j(~y,s) (i.e., it “remembers” the truth
value that βi j had in the previous situation). The SSA for
Gi j is simply Gi j(~y,do(a,s))≡ Fi j(~y,s).

To model primδ in these planners we can obtain their
world-level effects by looking into the SSA of every fluent
(Pednault 1989). On the other hand, the knowledge-level ef-
fect is simply that primδ (~y) senses the truth value of fluent
Gi j(~y,do(a,s)), for all i, conditioned on whether α j(~y,s) is
true. The correctness of this approach is justified by the fol-
lowing result.
Proposition 4 Let Comp[D,C] be a theory of action that
contains axiom (9), and fluents Fi j and Gi j. Then
Comp[D,C] entails that (9) is equivalent to

K(s′,do(a,s))≡
(∃s′′).s′ = do(a,s′′)∧K(s′′,s)∧ϕ(s,s′′)∧∧

j

{
a = primδ (~y)∧α j(~y,s)⊃

∧
i

Gi j(~y,do(a,s))≡ Gi j(~y,do(a,s′′))
}
.

Proof: Follows from the correctness of regression. �
The immediate consequence of this result is that

Comp[D,C] |= α j(~y,s)⊃
∧

i
KWhether(Gi j(~y,do(primδ ,s))),

which intuitively expresses that primδ (~y) is observing the
truth value of Gi j(~y).

As we mentioned, the previous construction works with
planners like GPT, where actions can have both world effects
and observations. However, this still doesn’t solve the prob-
lem completely for the planners like π(P) and CFF, since
(currently) they do not support actions with both world-level
and knowledge-level effects. Nonetheless, this can be ad-
dressed by splitting primδ into two actions, say Physδ and
Obsδ . Action Physδ would have all the world-level effects
of primδ and action Obsδ would be a sensing action that
observes Fi j. In this case, we also need to add special pre-
conditions for action Physδ , since we would need it to be
performed always and only immediately after Obsδ . Such
an axiomatization is described by Baier & McIlraith (2005).

Extending PKS
To our knowledge, PKS (Petrick & Bacchus 2002) is the only
planner in the literature that does not represent belief states

explicitly. Moreover, it can represent domains using first-
order logic and functions. Nevertheless, it does not allow
the representation of knowledge about arbitrary formulae.
In particular it cannot represent disjunctive knowledge.

PKS, does not directly support requirement 2 either.
Moreover, its reasoning algorithm is not able to obtain rea-
sonable results when adding the fluents Fi j and Gi j, due to
its incompleteness.

PKS deals with knowledge of an agent using four
databases. Among them, database Kw stores formulae whose
truth values are known by the agent. In practice, this means
that if an action senses property p, then p is added to Kw after
performing it. While constructing a conditional plan, the Kw
database is used to determine the properties on which it is
possible to condition different branches of the plan. PKS’s
inference algorithm, IA, when invoked with ε can return
value T (resp. F) if ε is known to be true (resp. false) by
the agent. On the other hand, it returns W (resp. U) if the
truth value of ε is known (resp. unknown) by the agent.

Nevertheless, since Kw can only store first-order conjunc-
tions of literals, this means that in some cases, information
regarding sensing actions of the type generated by our trans-
lation procedure would be lost. E.g., if ¬ f and g are known
to the planner and an action that senses f ∨ g∧ h is per-
formed, PKS is not able to infer that it knows the truth value
of h. For cases like this, this limitation can by overcome by
the extension we propose below.

We propose to allow Kw to contain first-order CNF for-
mulae. In fact, assume that Kw can contain a formula
Γ1(~x)∧Γ2(~x)∧ . . .∧Γk(~x), where Γi is a first order clause,
and free variables~x are implicitly universally quantified. We
now modify PKS’s inference algorithm IA by replacing rule
7 of the algorithm of Bacchus & Petrick (1998) by the fol-
lowing rule (unfortunately, space precludes us from showing
the whole algorithm). We assume the procedure is called
with argument ε:

7. If there exists φ(~x) = Γ1(~x) ∧ . . . ∧ Γk(~x) ∈ Kw and a
ground instance of φ , φ(~x/~a) is such that (1) ~a are con-
stants appearing in K f , (2) There exists an αm ∈ Γi such
that αm(~x/~a) = ε , (3) For every Γ j ( j 6= i) there exists
a β ∈ Γ j such that IA(β (~x/~a)) = T, and (4) For every
α` ∈ Γi (` 6= m), IA(α`(~x/~a)) = F. Then, return(W).

Theorem 5 The modified inference algorithm of PKS is
sound.

Proof sketch: The proof is based on the following facts
(1) The modification only affects when the algorithm re-
turns a W (2) The new rule’s conclusions are based
on the following valid formulae KWhether(α ∧ β ,s) ∧
Knows(α,s) ⊃ KWhether(β ,s), KWhether(α ∨ β ,s) ∧
Knows(¬β ,s) ⊃ KWhether(α,s), and Knows(α,s) ∨
Knows(β ,s)⊃Knows(α ∨β ,s).

To actually use action primδ to plan with PKS, we need to
divide it into two primitive actions, a world-altering action,
say Physδ , and a sensing action, say Obsδ . Action Obsδ has
the effect of adding βi j—in CNF—to the Kw database. On
the other hand, Physδ contains all the world effects of primδ .
Again, through preconditions, we need to ensure that ac-
tion Physδ is performed only and always immediately after



N CFF PKS CFF +seek PKS +seek
1 0.01 5.19 0.0 0.01
2 0.1 nomem 0.01 0.01
3 5.01 nomem 0.01 0.08
4 nomem nomem 0.02 0.77
5 nomem nomem 0.03 5.89

Table 1: Instances of the briefcase domain with sensing
solved by PKS and CFF. “nomem” means the planner ran
out of memory.

Obsδ . This transformation is essentially the same that was
proposed for belief-state-based planners that cannot handle
actions with both physical and knowledge effects, and can
be proved correct (Baier & McIlraith 2005).

This extension to PKS’ inference algorithm is not yet im-
plemented but is part of our future work. In the experiments
that follow, we did not need to use this extension since the
sensed formulae were simple enough.

6 Practical relevance
There were at least two underlying motivations to the work
presented in this paper that speak to its practical relevance.

6.1 Web service composition
Web services are self-contained programs that are
published on the Web. The airline ticket service
at www.aircanada.com, or the weather service at
www.weather.com are examples of Web services. Web
services are compellingly modeled as programs comprising
actions that effect change in the world (e.g., booking you
a flight, etc.) as well as actions that sense (e.g., telling
you flight schedules, the weather in a particular city, etc.).
Interestingly, since Web services are self-contained, they
are generally self-sufficient in the formal sense of this term,
as described in this paper. As such, they fall into the class of
programs that can be modeled as planning operators. This
is just what is needed for WSC.

WSC is the task of composing existing Web services to re-
alize some user objective. Planning your trip to the KR2006
conference over the Web is a great example of a WSC task.
WSC is often conceived as a planning or restricted program
synthesis task (McIlraith & Son 2002). Viewed as a plan-
ning task, one must plan with programs that sense to achieve
WSC. While there has been significant work on WSC, few
have addressed the issue of distinguishing between world-
altering and sensing actions, fewer still have addressed the
problem of how to represent and plan effectively with pro-
grams rather than primitive (one step) services. This work
presents an important contribution towards addressing the
WSC task.

6.2 Experiments
Beyond WSC, the second more general motivation for this
work was to understand how to plan with macro-actions or
programs, using operator-based planners. The advantages
of using operator-based planners are many, including avail-
ability of planners and the ability to use fast heuristic search

seek(o) =go(R1); look(o); if at(o,R1) then grasp(o);go(LR)
else go(R2); look(o); if at(o,R2) then grasp(o);go(LR)
else go(R3); look(o); if at(o,R3) then grasp(o);go(LR)
else go(R4); look(o); if at(o,R4) then grasp(o);go(LR)
endIf endIf endIf endIf

Figure 1: Program seek is a tree program that makes the
agent move through all the rooms looking for o and then
bringing it to LR

techniques. In general, the search space of plans of length
k is exponential in k. When using macro-actions usually we
can find shorter plans (composed by such macro-actions),
therefore, the planner will effectively explore an exponen-
tially smaller search space. When planning with sensing ac-
tions, plans are normally contingent, i.e. they have branches
to handle different situations. The search space, therefore, is
much bigger and any reduction in the length of the plan may
exponentially reduce the time needed for planning.

To illustrate the computational advantages of planning
with programs that sense, we performed experiments with a
version of the briefcase domain (Pednault 1988), enhanced
with sensing actions. In this domain, there are K rooms.
The agent carries a briefcase for transporting objects. In any
room r, the agent can perform an action look(o) to deter-
mine whether o is in r. In the initial state, the agent is in
room LR. There are N objects in rooms other than LR. The
agent does not know the exact location of any of the objects.
The goal is to be in LR with all the objects.

We performed experiments with PKS and CFF for K = 4
and N = 1, . . . ,5. Each planner was required to find a plan
with and without the use of macro-action seek(o) (Figure
1). seek(o) was compiled into a primitive action by our
technique. We compared the running time of the planners
using a 2 GHz linux machine with 512MB of main memory.
PKS was run in iterative deepening mode. Table 1 shows
running times for both planners with and without the seek
action. These experiments illustrate the applicability of our
approach in a domain that is challenging for state-of-the-art
planners when only simple primitive actions are considered.

7 Summary and discussion
In this paper we addressed the problem of enabling operator-
based planners to plan with programs. A particular chal-
lenge of this work was to ensure that the proposed method
worked for programs that include sensing, though all the
contributions are applicable to programs without sensing.
We studied the problem in the situation calculus, using
Golog to represent our programs. We did this to facilitate
formal analysis of properties of our work. Nevertheless, be-
cause of the well-understood relationship between ADL and
the situation calculus (Pednault 1989), the results apply very
broadly to the class of planning operators represented in the
popular plan domain description language PDDL (McDer-
mott 1998).

Our contributions include a compilation algorithm for
transforming programs into operators that are guaranteed to



preserve program behaviour for the class of self-sufficient
deterministic Golog tree programs. Intuitively, these are
programs whose execution is guaranteed to be finite and
whose outcome is determinate upon execution. We then
showed how to plan with these new operators using exist-
ing operator-based planners that sense. In the case of PKS,
we proposed a modification to the code to enable its use in
the general case. For those interested in Golog, a side effect
of this work was to define an offline transition semantics for
executable Golog programs.

There were two underlying motivations to this work that
speak to its practical relevance. The first was to address the
problem of WSC. The class of programs that we can en-
capsulate as operators corresponds to most, if not all, Web
services. As such, this work provides an important contribu-
tion to addressing WSC as a planning task. Our second mo-
tivation was the use of programs to represent macro-actions
and how to use them effectively in operator-based planners.
Again, our compilation algorithm provides a means of rep-
resenting macro-actions as planning operators. Our experi-
mental results, though in no way rigorous, illustrate the ef-
fectiveness of our technique.
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Appendix
Proof for Theorem 2
We first prove the following Lemma.

Lemma 2 Let D be a theory of action such that Kinit con-
tains the reflexivity axiom. Let C be a set of deterministic
Golog tree programs. Then, for all fluents F in the lan-
guage of D that are not K, and for every δ ∈ C such that
D |= ssf (δ ,s), theory Comp[D,C] entails

DoK(δ ,s,s′)⊃ (F(~x,s′)≡ F(~x,do(primδ ,s))), and

DoK(δ ,s,s′)⊃ (z = f (~x,s′)≡ z = f (~x,do(primδ ,s)))

Proof: In the interest of space, we show the proof for the
first assertion. The proof of the second assertion is analo-
gous.

Let D′ = Comp[D,C]. It suffices to prove that

1. D′ |= DoK(δ ,s,s′)∧F(~x,s′)⊃ F(~x,do(primδ ,s))), and

2. D′ |= DoK(δ ,s,s′)∧F(~x,do(primδ ,s))⊃ F(~x,s′).
Proof for 1: Suppose M is a model of D′ such that
M |= (DoK(δ ,s,S′)∧F(~x,S′)), for some situation denoted
by S′. From Proposition 2 and Lemma 1, we have that
M |= Do−(δ ,s,S′)∧ F(~x,S′). Since regression is correct
and M also satisfies axiom (6), it follows immediately that
M |= F(~x,do(primδ ,s)).
Proof for 2: Assume M is a model for D′ such that M |=
(DoK(δ ,s,s′)∧F(~x,do(primδ ,s))), for any situations s, s′.

By the successor state axiom of F , and correctness of regres-
sion, we conclude that M |= F(~x,do(primδ ,s)) iff

M |=(Do−(δ ,s,S1)∧F(~x,S1))∨
F(~x,s)∧ (∀s2)(Do−(δ ,s,s2)⊃ F(~x,s2)),

for some situation S1. Since δ is deterministic and given
that M |= DoK(δ ,s,S′), by Proposition 2 and Lemma 1,
we have that M |= S1 = s′. The assertion above reduces to
M |= F(~x,s′)∨F(~x,s)∧F(~x,s′), from which we conclude
that M |= F(~x,s′). �

The proof of the theorem is now straightforward by using
Lemma 2. �

Proof for Theorem 3
First we need the following result.

Lemma 3 Let D be a theory of action such that Kinit con-
tains the reflexivity axiom,

D∪T |= K(s′,s)∧K(σ ′,σ)⊃
{(∀δ ).DoK(δ ,s,σ)⊃ Do(δ ,s′,σ ′)}

Proof: By induction on the structure of δ . �
Now, let D′ = Comp[D,C]. It suffices to prove the theo-

rem for any arbitrary situation-suppressed fluent symbol F
different from K. By expanding the definition of Knows, it
suffices to prove

D′ |= (∀~x,s,s1).DoK(δ ,s,s1)⊃
{(∃s′′)(K(s′′,s1)∧F(~x)[s′′])≡

(∃s′′)(K(s′′,do(primδ ,s))∧F(~x)[s′′])},

(⇒) We prove that

D′ |= (∀~x,s,s1).DoK(δ ,s,s1)⊃
{(∃s′′)(K(s′′,s1)∧F(~x)[s′′])⊃

(∃s′′)(K(s′′,do(primδ ,s))∧F(~x)[s′′])},

SupposeM|=D′ and that for some situation denoted by S′′,

M |= DoK(δ ,s,s1)∧K(S′′,s1)∧F(~x)[S′′],

Notice that M |= s v s1, and since M |= K(S′′,s1), there
exists situation denoted by S′′′ such that M |= S′′′ v S′′ and
such that

M|= DoK(δ ,s,s1)∧K(S′′′,s)∧K(S′′,s1)∧F(~x)[S′′]. (11)

From Lemma 3, and Proposition 2, we have that

M |= Do−(δ ,S′′′,S′′)∧F(~x)[S′′]. (12)

From (12) and (6) it follows immediately that M |=
F(~x)[do(primδ ,S′′′)]. Now notice that M |= Do−(δ ,s,s1)
(from Lem. 1 and Prop. 2), which together with (11)
and (12) and the fact that M satisfies (8), implies M |=
K(do(primδ ,S′′′). This finishes the proof for ⇒.
(⇐) Suppose that for some situation S′′,

M |= DoK(δ ,s,s1)∧K(S′′,do(primδ ,s))∧F(~x)[S′′]



From the successor state axiom of K, for some S′′′,

M |= DoK(δ ,s,s1)∧K(do(primδ ,S′′′),do(primδ ,s))∧
K(S′′′,s)∧F(~x)[do(primδ ,S′′′)].

Since M satisfies (8),

M |= DoK(δ ,s,s1)∧K(S2,S1)∧Do−(δ ,S′′′,S2)∧
Do−(δ ,s,S1)∧K(S′′′,s)∧F(~x)[do(primδ ,S′′′)].

From Lemma 1 and the fact that δ is deterministic, M |=
s1 = S1, and therefore,

M |= K(S2,s1)∧Do−(δ ,S′′′,S2)∧
K(S′′′,s)∧F(~x)[do(primδ ,S′′′)].

Now, given that M satisfies (7),

M |= K(S2,s1)∧Do−(δ ,S′′′,S2)∧Do−(δ ,S′′′,S3)∧F(~x)[S3].

Once again, since δ is deterministic, M |= S2 = S3 and
therefore M |= K(S2,s1)∧F(~x)[S2], which proves ⇐. �
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