
Preferences play a significant role in human decision making, partic-
ularly as they relate to deciding how to act. As such, it comes as no sur-
prise that preferences also play a significant role in AI automated plan-
ning, providing a means of specifying those properties of a plan that
distinguish it as high quality. Given some task to be achieved, users may
have preferences over what goals to achieve and under what circum-
stances. They may also have preferences over how goals are achieved—
properties of the world that are to be achieved, maintained, or avoided
during plan execution, and adherence to a particular way of doing some
or all of the tasks at hand. Interestingly, with the exception of Markov
decision processes (MDPs), nontrivial user preferences have only recent-
ly been integrated into AI automated planning.

In classical planning, the oldest and best-known planning paradigm,
we are given a description of a dynamic domain, an initial state, and a
description of a goal. The problem is to find a course of action (that is, a
plan) that, when performed in the initial state, leads to a state where the
goal is achieved. In a typical planning problem, there may be many plans
that achieve the goal, but the problem specification provides no addi-
tional criteria to distinguish between good and bad plans. Planners are
often constructed to find shortest plans first. This has been extended to
minimal cost plans where the cost of a plan is the sum of the cost of its
constituent actions.

Preference-based planning (PBP) (see for example, Son and Pontelli
[2006]; Bienvenu, Fritz, and McIlraith [2006]) is an extension to the well-
known classical planning problem. In PBP we are provided with a crite-
rion to determine when a plan is preferred to another. To this end, we
normally consider the relative merit of properties that desirable plans
would satisfy. By way of illustration, consider a logistic planning domain
in which packages can be transported between cities using trucks. In the
classical planning setting, one is typically interested in finding a
sequence of actions that results in a state were all packages are located at

Articles

WINTER 2008 25Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Planning
with Preferences

Jorge A. Baier
and Sheila A. McIlraith

n Automated planning is a branch of
AI that addresses the problem of gener-
ating a set of actions to achieve a spec-
ified goal state, given an initial state of
the world. It is an active area of
research that is central to the develop-
ment of intelligent agents and au -
tonomous robots. In many real-world
applications, a multitude of valid plans
exist, and a user distinguishes plans of
high quality by how well they adhere to
the user's preferences. To generate such
high-quality plans automatically, a
planning system must provide a means
of specifying the user's preferences with
respect to the planning task, as well as
a means of generating plans that ideal-
ly optimize these preferences. In the last
few years, there has been significant
research in the area of planning with
preferences. In this article we review
current approaches to preference repre-
sentation for planning as well as
overviewing and contrasting the various
approaches to generating preferred
plans that have been developed to date.

their destination. Preferences arise naturally in this
domain. For instance, a user may assign higher pri-
ority to certain packages, and may prefer that high
priority packages be delivered first. Moreover, they
may have preferences over the trucks that are used
in the plan, perhaps preferring to use trucks with
lower gas consumption. Users may also have pref-
erences over truck routes, for example, preferring
to use freeways at off-peak times. How to specify
user preferences in the context of PBP has been one
avenue of research recently.

Once we know the user’s preferences, we must
relate them to preferences over plans. In particu-
lar, we must formally define when one plan is pre-
ferred to another. In our example, one might con-
sider that satisfying the preference about priority
packages is more important than using freeways.
Moreover, we might also like to consider the
amount of gas consumed by the trucks as a factor
to compare two plans. To define our preference
relation among plans, we typically need a language
that (1) allows us to define preferences and (2)
allows us to aggregate different preferences.

With a specification of the PBP problem in
hand, the second challenge is to efficiently gener-
ate preferred plans and, ideally, those that are opti-
mal with respect to the criterion provided. The
already hard classical planning task of finding one
plan is now complicated by requiring a preferred
plan. Intuitively, the PBP task is much harder
(although in most cases the complexity class does
not change). Consequently, as in traditional opti-
mization, we might not be able to find an optimal
plan, due to limitations in computational power.
In such cases we might still be satisfied with a rea-
sonably good plan, given a reasonable time bound.

In this survey we focus our attention on two dif-
ferent aspects related to the PBP problem: planning
preference languages, and algorithms for planning
with preferences. We start by providing formal def-
initions of the classical and PBP problems and then
follow with a description of languages and algo-
rithms for PBP. We conclude with a discussion and
a description of open lines of research.

Classical Planning
In order to define the problem of planning with
preferences, we must first review the definition of
the classical planning problem. A classical planning
instance is a tuple I = (S, s0, O, G), where S is a set of
states, in which each state is a collection of facts.
Moreover, s0 ∈ S is an initial state, G � S is a set of
goal states, and O is a set of operators, where each
operator maps a state into another one.

The classical planning problem consists of find-
ing a sequence of operators a1a2 an, which, when
applied to the initial state, will produce a state in
G. We refer to the sequence of operators as a plan.

It is also possible to describe a plan as a sequence
of sets of operators A1A2 An, where each set Ai
contains operators that are not mutually exclusive
(that is, which can be performed concurrently
without any precondition or effect interactions).
The makespan of a plan is the minimum number
of (concurrent) steps in which a plan can be car-
ried out. Thus, plan A1A2 An has a makespan of
n.1

The planning community has developed a vari-
ety of languages to define planning instances. In
STRIPS (for example, Bylander 1994), the oldest
and best known of these languages, operators are
described as triples of the form (pre(o), add(o),
del(o)), where pre(o) are the preconditions—a set of
facts that must hold in a plan state prior to apply-
ing o, add(o) is the add-list—a set of facts that will
be added to the current state after o is applied, and
finally del(o) is the del-list—a set of facts that will be
deleted from the current state after o is applied.
Other languages for specifying planning instances
include ADL (Pednault 1989), and PDDL, the Plan
Domain Definition Language (McDermott 1998),
which is currently the de facto standard for speci-
fying planning instances. Planning in the STRIPS
formalism is PSPACE-complete (Fikes and Nilsson
1971).

Preference-Based Planning (PBP)
In preference-based planning (PBP), we are looking
for a most-preferred plan for a planning instance I.
To define the notion of a most-preferred plan, we
use an ordering relation that specifies when a plan
for a planning instance I is preferred to another.
The planning instance I does not need to satisfy
any restrictions; indeed, in the definitions that fol-
low we do not need the instance I to adhere to any
of the traditional planning paradigms.

An instance of the PBP problem is a pair (I,),
where I is a standard planning instance. Further-
more, is a transitive and reflexive relation in P�

P, where P contains precisely all plans for I. The
relation is the formal mechanism for comparing
two plans for I. Intuitively p1 p2 stands for “p1 is
at least as preferred as plan p2.” Moreover, we use
p1 ≺ p2 to abbreviate that p1 p2 and p2 p1. Thus,
p1 ≺ p2 holds true if and only if p1 is strictly pre-
ferred to p2. Note that, since ≺ is a partial preorder,
our definition of preference over plans allows
incomparability; that is, there could be two plans
p1 and p2 such that neither p1 p2 nor p2 p1 hold
true. As we will see later, there are some formalisms
that do not allow incomparability. In those cases
is total, that is, for any two plans p1, p2 either p1
p2 or p2 p1.

To illustrate how we define , consider for
example that we are interested in a classical plan-
ning setting where instances are extended with a

Articles

26 AI MAGAZINE

set of soft goals T. Suppose that a plan p1 is pre-
ferred to another p2 iff p1 satisfies more soft goals
than p2. Then if f1 and f2 are the respective final
states reached by p1 and p2 we would say that p1 ≺
p2 iff the number of soft goals appearing in f1 is
greater than the number of soft goals appearing in
f2. In this simple case, the relation is total; that
is, there are no incomparable plans. On the other
hand, we could have instead preferred p1 to p2 if p1
achieved a strict superset of the soft goals achieved
by p2. In this case, would result in a partial rela-
tion. In the next section, we elaborate on the prop-
erties of as they relate to different PBP for-
malisms.

We conclude this section by providing a formal
definition of the PBP problem. Given an instance
N = (I,), the preference-based planning problem
consists of finding any plan in the set

�N = {p ∈ P | there is no p� ∈ P such that p� ≺ p}.

Intuitively, the set �N contains all the optimal
plans for an instance I with respect to . Observe
that now, as opposed to classical planning, we are
interested in any plan that is optimal based on .

Preference Languages
and Formalisms

The definition of the preference-based planning
problem provided in the previous section requires
that we specify a preference relation between
solutions to a standard planning instance I. How-
ever, in general we might be looking for a relation
 satisfying a number of properties of interest.
Moreover, notice that the relation ranges over all
pairs of plans; we obviously do not want to repre-
sent it explicitly.

Most of the research on languages and for-
malisms for preference specification related to PBP
focus on the development of preference languages
that provide for a compact definition of . Lan-
guages differ with respect to their expressive pow-
er. Most languages provide a means of referring to
properties of a plan—generally that a property
holds (or does not hold) in some or all intermedi-
ate states traversed during the execution of the
plan, or in the final state of the plan. Other lan-
guages additionally provide for preferences over
action occurrences, preferring some actions over
others, perhaps conditioned on state. Languages
may also provide a way to specify the temporal
relationship between the occurrence of actions or
the satisfaction of certain properties during plan
execution.

Most preference languages in the literature have
either a quantitative or qualitative nature, but
some of them admit a combination of both. In
quantitative languages, solutions are associated
with numeric values, through some numeric func-

tion g(·). To compare whether or not p1 p2 we
simply verify whether or not g(p1) � g(p2). In quan-
titative approaches, the induced relation is
always total. In qualitative languages, on the oth-
er hand, p1 p2 is defined compactly in terms of
properties of p1 and p2 but no numbers need to be
assigned to plans. The resulting relation can be
either total or partial.

PDDL3 has recently been extended for prefer-
ence-based planning with hierarchical task net-
works (HTN) (Erol, Hendler, and Nau 1994). This
extension supports preferences on the occurrence,
decomposition, and instantiation of HTN tasks
(Sohrabi, Baier, and McIlraith 2008).

Quantitative Languages
In this subsection we describe some of the prefer-
ence languages and formalisms that have been
used in preference-based planning. Some of these
languages were not proposed specifically for plan-
ning but were later used in planning applications.

Decision-Theoretic Planning. Planning problems
can be naturally expressed as a Markov decision
process (MDP). In MDPs, the state of the world
changes as a result of performing actions. Actions
have nondeterministic effects. After an action is
performed, the agent gets an observation. More-
over, there is a reward function, which associates a
reward to every state transition. The reward func-
tion can be used to define user preferences, as it
quantitatively ranks all possible states. Finally, a
policy in the MDP framework is a function that
returns an action depending on the history of
actions performed and observations received by
the agent.

In decision-theoretic planning, one attempts to
solve the MDP, obtaining an optimal policy
(Boutilier, Dean, and Hanks 1999). The problem of
finding optimal policies is thus a form of prefer-
ence-based planning. Policy π1 is preferred to poli-
cy π2 if and only if the expected discounted reward
obtained by π1 is greater than the discounted
reward obtained with π2. A policy πi implicitly
defines a conditional plan pi, such that if policy π1
is at least as preferred to policy π2 then p1 p2. As
user preferences are specified through the reward
function, a nontrivial problem is how to generate
a utility function that reflects the user’s prefer-
ences. This problem is known as preference elicita-
tion and is discussed further in this issue (Boutilier
and Brazuinas 2008).

Partial Satisfaction Planning (PSP). PSP, also
called oversubscription planning (for example, Smith
[2004] and van den Briel et al. [2004]), is an exten-
sion of classical planning. A PSP problem is a tuple
�F, A, I, G, U, C�, where F is a set of facts, I � F is an
initial state, G � F is a set of goal facts, and A is a
set of actions. Moreover, U associates a nonnega-

Articles

WINTER 2008 27

tive utility to each fact in F, and C associates a non-
negative cost to every action in A. The PSP task
usually consists of finding a classical plan p with
maximum net benefit, which is defined as the sum
of the utilities of the goals reached by p minus the
sum of the costs of the actions in p.

Although the literature in PSP typically does not
refer to the word preference, PSPs can be viewed as
planning with preferences. Indeed, if p1 and p2 are
plans, p1 p2 iff p1’s net benefit is not smaller than
p2’s net benefit.

PSP planning is PSPACE-complete (van den Briel
et al. 2004), that is, it has the same complexity as
classical planning.

PDDL3. PDDL3 (Gerevini and Long 2005) is an
extension of the planning domain definition lan-
guage, PDDL (McDermott 1998), which provides a
rich language for defining user preferences for
planning. PDDL3 was designed for the Fifth Inter-
national Planning Competition (IPC-5),2 which is
the first international competition that included
tracks for preference-based planning.

Preferences in PDDL are formulae that are eval-
uated over a plan; that is, a preference is satisfied

(respectively violated) by a plan p if it logically
evaluates to true (respectively false) in p. Prefer-
ences can be temporal or temporally extended, and
they can hold over preconditions. Temporal prefer-
ences may refer to specific times (for example, I
would like the truck to be in Toronto between 8 AM

and 9 AM). On the other hand, temporally extend-
ed preferences allow the user to express desirable
temporal relationships between properties that
hold true over some part of the plan execution (for
example, I would like priority packages to be deliv-
ered before nonpriority packages). They are defined
in a subset of linear temporal logic (LTL) (Pnueli
1977). Finally, precondition preferences are condi-
tions that are desirable when an action is per-
formed.

In PDDL3, the relation is determined by a so-
called metric function. This is an arithmetic func-
tion that receives a plan as an argument and can be
dependent on the is-violated function, which is a
quantitative measure of the level at which prefer-
ences are violated.

Figure 1 shows the PDDL3 definitions for some
preferences in our example logistics domain. The
expression (is-violated priority) is equal to 1 if the
formula for preference priority is false and is equal
to 0 otherwise. On the other hand, in-econ, an
externally quantified preference, defines a family
of preferences, with one individual preference for
each package-truck pair. The expression (is-violated
in-econ) returns the number of individual prefer-
ences in the family in-econ that violate the LTL for-
mula.

Qualitative Languages
In this subsection we describe various qualitative
preferences languages for planning that exist in
the literature.

Languages Based on Ranked Knowledge Bases.
Ranked knowledge bases (RKBs) provide a means
of defining qualitative preferences over problem
solutions that correspond to interpretations in
classical logic. They were originally proposed for
default reasoning (Brewka 1989, Pearl 1990). Relat-
ed work is described elsewhere in this issue by
Brewka, Niemelä, and Truszcynski (2008). An RKB
can be represented as a finite set of pairs (f, r),
where f is a logical formula and r is the rank asso-
ciated to f. Consider, for example, the following
RKB:

K = {(at-t1-l1 � at-t2-l1, 3), (at-t1-l1, 2), (at-t2-l1, 1)}.

Brewka (2004) defines several orderings in which K
can be used to represent preferences on final states
achieved for plans. For example, under the maxsat
ordering for K, the maximum rank among all sat-
isfied formulae are used to compare two states.
Thus, states that satisfy both at-t1-l1 and at-t2-l1
(which have rank 3) are strictly preferred to those
that satisfy at-t1-l1 but not at-t2-l1 (which have

Articles

28 AI MAGAZINE

Figure 1. Preference Priority Is Satisfied in a Plan in Which Priority
Packages Are Delivered before Nonpriority Packages.

Preference in-econ defines a preference for loading packages on economical
trucks.

(:constraints
(and

;; truck1 desirably at Toronto between 8 and 9 am

(preference morning
(hold-during 8 9 (at truck1 toronto)))

;; prefer to deliver priority packages first

(preference priority
(forall ?p1 - prio-pck ?p2 - nonprio-pck
(sometime-before (delivered ?p1)

(delivered ?p2))))

;; prefer to load packages in economical trucks

(forall ?p - pck ?t - truck
(preference in-econ

(always (implies (loaded ?p ?t) (cheap ?t)))))

;; metric function

(metric minimize (+ (* 10 (is-violated priority))
(is-violated in-econ)
(* 2 (is-violated morning))))))

rank 2), and, in turn, the latter are strictly preferred
to those that satisfy at-t2-l1 but not at-t1-l1. Fur-
thermore, Brewka (2004) defines several ways in
which preferences induced by two or more RKBs
can be aggregated. Feldmann, Brewka, and Wenzel
(2006) have proposed two extensions to the PDDL
language that allow defining preferences using
RKBs. In both of these extensions, preferences are
on the final state reached by the plan.

Conditional Preference Networks. Conditional
preference networks (CP-nets) (Boutilier et al.
2004) are compact graphical representations for
specifying user preferences. Conditional prefer-
ence relations among variables are represented in a
fashion that resembles conditional probability
tables in Bayesian networks. For example, one can
establish that, all other things being equal (that is,
ceteris paribus), a user prefers eating cookies over
cake if he or she is having coffee, but prefers cake
over cookies if he or she is having dessert. A CP-net
induces a partial ordering over complete assign-
ments of the variables it refers to. Thus, CP-nets are
also an effective tool when representing prefer-
ences between different planning states, and, in
particular, between different goal states. Thus, we
say p1 p2 if the goal state achieved by p1 is at least
as preferred to the goal state achieved by p2. This
relation is partial, since two states can be incom-
parable given a CP-net.

CP-nets have been extended to represent more
expressive notions of preferences, namely trade-
offs between certain variables (Brafman, Domsh-
lak, and Shimony 2006). In the resulting net-
works—called TCP-nets—one can refer to the
relative importance of certain variables over oth-
ers. For example, in our logistics domain, one
could say that delivery of priority packages is more
important than fuel economy. Hence, if we assume
that delivering priority packages first is preferred to
delivering them after nonpriority packages, and
that a plan with low fuel consumption is preferred
to one with high fuel consumption, then a plan
that delivers priority packages first with high fuel
consumption is still preferred to one that does not
deliver the priority packages first with low fuel
consumption. TCP-nets also allow two states being
incomparable.

Temporal and Temporally Extended Prefer-
ences. A variety of formalisms can be found in the
literature that enable the user to define qualitative
temporal and temporally extended preferences. As
we saw earlier, a temporal preference allows the
user to talk about the temporal relationship of
aspects of the execution of the plan, rather than
just to the final state reached by such a plan. Tem-
poral preferences can be expressed in a variety of
ways.

Delgrande, Schaub, and Tompits (2007) propose
a framework for the representation of temporal

preferences, expressed in a Boolean language
extended with arithmetic operators that allows
quantification over time steps of the plan. Formu-
lae in this language can refer, in a simple way, to
properties of the states traversed or to actions that
have occurred in the plan. For example, if deliver-
p denotes the action of delivering a package p, the
formula:

∀i, j.deliver-p1(i) � deliver-p2(j) � i < j

can be used to express that package p1 is delivered
before package p2 (if p1 and p2 are delivered
respectively at time steps i and j, then i < j). In this
framework, the preference relation p1 p2 is
defined by a logical temporal formula that is eval-
uated in p1 and p2. The resulting relation can be
partial, allowing incomparability of plans.
Although their formalism enables the representa-
tion of several different preferences, their work
does not focus on providing a rich language for
aggregating those preferences. Limited forms of
preference aggregation are available, however. Son
and Pontelli (2006), on the other hand, develop a
language, called PP, that enables both the repre-
sentation of temporal preferences and the aggrega-
tion of such preferences. Temporal preferences are
expressed here in a version of LTL. Later, Bienvenu,
Fritz, and McIlraith (2006) developed LPP, an
extension of the PP language with a different
semantics, which allows quantification and further
aggregation. To get a feel for the expressiveness of
these languages consider the following temporal
preferences.

�1 always(¬occ(drive(t1, A, B))),

�2 eventually(at(t2, A)),

�3 until(¬delivered(p2), delivered(p1)),

�4 until(¬delivered(p3), delivered(p2)),

where �1 expresses that the action drive(t1, A, B)
never occurs in the plan, �2 that truck t2 must be at
A at some point in the plan, and �3 (respectively
�4) express a preference for delivering p1 (respec-
tively p2) before delivering p2 (respectively p3). A
so-called atomic preference formula (APF) can be
used to express the relative importance of different
preferences. APFs explicitly refer to the level of sat-
isfaction that is attained by the user. Let us assume
that V = {excellent, good, ok, bad} is an ordered set
containing the user’s levels of satisfaction (where
excellent is the best and bad is the worst). Then if:

�1 �1 � �2[excellent] �2[good] �1[ok],

�2 �3[excellent] �4[good],

�1 expresses that it is “excellent” to satisfy both �1
and �2 whereas it is still “good” to satisfy �2 and
“ok” to satisfy �1. Moreover, LPP preferences can
be aggregated using conjunctive, disjunctive, and
conditional connectives. For example �1 & �2
means that the user would like to satisfy both �1
and �2 as much as possible; thus, it is “excellent” if

Articles

WINTER 2008 29

�1, �2, and �3 are satisfied by the plan but only
“good” if �1, �2, �4, but not �3 are satisfied by the
plan. Preference formulae in LPP evaluated on a
plan always evaluate to a value in the set of user
satisfaction levels V, and thus the relation induced
by an LPP formula is total. This is not the case in
the PP language, which does allow incomparabili-
ty. LPP was recently extended to LPH, a language
that enables the expression of qualitative prefer-
ences for HTN planning. It maintains the expres-
sive power of LPP, augmenting it with preferences
over the occurrence, decomposition, and instanti-
ation of HTN tasks (Sohrabi and McIlraith, 2008).

Qualitative and Quantitative Combined
Some of the languages we have mentioned above
are not exclusively qualitative. Many of them can
integrate quantitative criteria into the preference
language. In the formalism of Delgrande, Schaub,
and Tompits (2007) we can use a number of aggre-
gation functions, which enables us to define the
preference relation in quantitative terms. For
example, the aggregator count[�] returns the num-
ber of times the property � is true during the exe-
cution of the plan. One could then establish that a
plan p1 is preferred to another plan p2 if the num-
ber of times some fluent f is true in p1 does not
exceed the number of times f is true in p2. In a sim-
ilar way, LPP allows resorting to preference aggre-
gators that could sum up the levels of satisfaction
achieved by different input preference formulae to
compare two plans.

Fritz and McIlraith (2006) provide a clean inte-
gration of qualitative preferences, in the afore-
mentioned LPP language, and quantitative prefer-
ences, represented through a utility function over
plan states. Their work builds upon the DT-Golog
agent programming language (Boutilier et al.
2000), whose semantics is designed in such a way
that, given a program �, the interpreter searches for
the best possible execution of � for the given a util-
ity model. Given a preference formula � in LPP, a
DT-Golog program can be synchronized with
another program generated from � in such a way
that the interpreter will search for the quantita-
tively best plan among the set of most preferred
plans given by �. If � cannot be satisfied at its max-
imum level, then the interpreter will iterate
through the remaining levels of satisfaction,
searching for the qualitatively best solution in each
level.

Algorithms for PBP
In this section, we describe different approaches to
addressing the PBP problem, and in particular how
to generate most-preferred preference-based plans.
Although one way of achieving PBP is to do classi-
cal planning on each possible instance that results

from some combination of the user’s preferences,
and then choose the best, the focus of current
research is on efficient PBP. Like their classical plan-
ning counterparts, many of the top-performing
preference-based planners perform some form of
domain-independent heuristic search.

Although PBP planners focus on efficiency not
all of them guarantee optimality (that is, finding a
most-preferred plan). Some algorithms, for exam-
ple, return a succession of potentially suboptimal
plans of increasing quality, until an optimal plan is
eventually found or resources are exhausted.
Because of this, there are other properties, besides
optimality, that we are going to be interested in
analyzing.

We start by the definition of optimality, which
essentially defines that an algorithm solves the PBP
problem. Note that we require that the algorithm
eventually returns an optimal. We do not preclude
it from returning other suboptimal plans.

Definition 1 (Optimal). An algorithm A is optimal
for the PBP instance (I,) if it eventually outputs
an optimal plan with respect to .

Some of the algorithms we describe below will not
be able to achieve optimality, basically because
they are not designed to search for an arbitrarily
long plan. Some of these algorithms are able to
achieve a restricted notion of optimality, which we
call k-optimality.

Definition 2 (k-optimal). Given a positive integer
k, an algorithm A is k-optimal iff given any PBP
instance (I,) it outputs an optimal plan with
respect to from all those plans whose makespan
is at most k, if such a plan exists.

Finally, an incremental planner is one that
returns a sequence of plans with increasing quali-
ty.

Definition 3 (Incremental). An algorithm A is
incremental iff there exists a nonempty family F of
PBP instances such that for each instance (I,) ∈ F,
it outputs a nonempty and nonsingleton sequence
of plans for I, p1p2, such that pi≺ pj for all i, j such
that 1 ≤ i < j.

There is a subtle difference between incremental
and anytime planners. An anytime planner must
guarantee a solution at any time during the com-
putation. This is not possible when the planning
problem has hard goals, since a solution will only
be available when one plan has been found. If the
planning problem lacks hard goals, any incremen-
tal planner is also anytime.

We now describe some of the most important
approaches to planning with preferences in the lit-
erature. We divide the planners into two groups:
those that use general-purpose solvers as the plan-
ning engine, and those that adapt a search algo-
rithm for planning without preferences.

Articles

30 AI MAGAZINE

Search-Based PBP
Search-based planners utilize standard search algo-
rithms for the purpose of planning with prefer-
ences. In this category we include algorithms that
use off-the-shelf search algorithms using special-
ized heuristics for preferences.

Many of the PBP algorithms in the literature can
be thought of as applying some kind of best-first
search with branch-and-bound pruning. Figure 2
shows PREF-SEARCH, a generic example of such an
algorithm, which searches for a solution that min-
imizes the quality of the plan (note that it can be
trivially modified to maximize the quality). The
algorithm does not actually require that quality be
a numeric value but rather that there is a well-
defined (partial) ordering between the qualities
assigned to different plans. This feature allows it to
work for both qualitative and quantitative
approaches.

PREF-SEARCH stores in the variable bestQuality the
quality of the best plan found so far. Moreover, for
each node current considered, PREF-SEARCH com-
putes an estimated lowerbound on the quality of
all plans that visit the current state (line 5). The
algorithm expands a node (line 7) only if this low-
er bound is better than bestQuality, which allows
pruning states that are not going to yield plans
that are better than those already found by the
algorithm. To sort the search frontier, it uses the
evaluation function EVALFN().

PREF-SEARCH is an incremental algorithm, since it
can output a sequence of plans depending on the
termination condition, given by the function TER-
MINATE?(). Note that if TERMINATE?() is true only
when OpenList is empty, we obtain an exhaustive
incremental planner. There are two conditions
that are key to the optimality of PREF-SEARCH: (1)
EVALFN() underestimates the actual value of the
quality of the best plan that visits current (that is
it is an admissible function), and (2) the ESTIMATE-
LOWER-BOUND function effectively returns a lower
bound on the quality of any plan that visits cur-
rent. Condition 1, as in standard best-first search,
guarantees optimality because search is guided
towards an optimal. On the other hand, condition
2 guarantees that no state that leads to an optimal
will be pruned from the search space. If condition
1 does not hold but condition 2 holds, then PREF-
SEARCH can still be optimal if it exhausts the search
space. Now we turn our attention to some of the
search-based PBP planners that have been pro-
posed in the literature. A summary of the features
of the planners described is shown in table 1.

Final State Preferences. There are a number of PBP
planners that are limited to considering prefer-
ences over properties of the final state of the plan.
One of the first approaches to planning for PSP
problems is the one proposed by Smith (2004) for
NASA applications. In this approach, the cost of

subgoals is estimated from a relaxed plan (Hoff-
mann and Nebel 2001) over an abstracted version
of the original planning problem, which ignores
the cost of some actions. Using the information of
the costs for each subgoal, an orienteering problem
is constructed and then solved using standard
search techniques. The solution to the orienteering
problem is then used to feed a partial order planner
with a sequence of goals to achieve.

SapaPS (van den Briel et al. 2004) is a forward-
chaining best-first incremental planner for PSP
problems. Its evaluation function estimates the
maximum net benefit that can be obtained from
the current state. To compute such an estimate for
a state s, it builds a relaxed plan for all (soft) goals
from s, and estimates the subgoals that achieve
maximum net benefit in the relaxed plan using a
greedy algorithm. The evaluation function is also
used to prune states that look unpromising; SapaPS

will prune a node if its evaluation function is worse
than the net benefit of the best plan found so far.
The evaluation function in SapaPS is inadmissible,
and therefore the search might miss an optimal
plan, because a state leading to an optimal might
be pruned from the search space. YochanPS (Benton,
Kambhampati, and Do 2006), one of the IPC-5
competitors, casts PDDL3 planning problems with
final-state and precondition preferences into PSPs
by interpreting precondition preferences as condi-
tional action costs and by associating rewards to
final-state preferences, which are obtained from
the PDDL3 metric function to each final-state pref-

Articles

WINTER 2008 31

Figure 2. Generic Forward-Chaining, Best-First Search Algorithm with
Branch-and-Bound Pruning for Finding Minimal-Quality Plans.3

1: function PREF-SEARCH(PBPinstance I)
2: OpenList ← INITFRONTIER(init) � initializesearchfrontier
3: bestQuality ← Qualityupperbound
4: while notTERMINATE?() do
5: current ← Extractbestelementfrom OpenList
6: lbound ← ESTIMATE-LOWER-BOUND(current)
7: if lbound < bestQuality then � pruningbybounding
8: if PLAN?(current) and current.quality < bestQuality

then
9:

10: bestQuality ← current.quality
11: endif
12: succ ← successorsof current
13:
14: OpenList ← merge succ into OpenList
15: end if
16: end while
17: end function

Outputplan current

ComputeEVALFN() onelementsin succ

erence. It invokes SapaPS for solving the resulting
PSP. YochanPS obtained a distinguished perform-
ance award in the simple (final-state or precondi-
tion) preferences track of IPC-5.

Recently, Benton, van den Briel, and Kamb-
hampati (2007) proposed BBOP-LP, an incremental
branch-and-bound algorithm, which uses a linear
programming (LP) solution to an integer program-
ming encoding of a relaxation of the original prob-
lem to obtain search heuristics. Specifically, the LP
solution is used to bias the computation of relaxed
plans which in turn is used to estimate the maxi-
mum net benefit that can be achieved by states
evaluated by the search. The evaluation function
used by BBOP-LP is admissible, and, as in SapaPS, it
is used to prune unpromising states.

A quite different approach to PSP planning is
taken by the AltAltPS planner, also by van den Briel
et al. (2004). This is a backward-chaining planner,
which also uses a relaxed plan to greedily deter-
mine a subset of the goals that are estimated to

produce a maximum net benefit. Then, a standard
planning algorithm is used to plan for such a sub-
set of goals. Because the estimation of the subset of
goals to achieve is heuristic, the algorithm is not
guaranteed to find an optimal.

Bonet and Geffner (2006) have proposed a
framework for planning in the presence of action
with costs and where costs and rewards can be
associated with fluents that become true at some
point during the execution of the plan. Their cost
model can represent PSPs as well as the simple pref-
erences subset of PDDL3. They propose admissible
heuristics, obtained from compiling a relaxed
instance of the problem into a d-DNNF represen-
tation. They also propose an optimal algorithm for
planning under this model based on best-first
search. The approach does not scale very well for
large planning instances, in part because of its
need to employ an admissible heuristic. We refer
to this planner as BG-KCOMP.

Finally, Feldmann, Brewka, and Wenzel (2006)

Articles

32 AI MAGAZINE

Table 1. Features of PBP Planners.

Note that most planners that are optimal can be easily made k-optimal if search is limited to plans of makespan of at most k. (*): Finds opti-
mal plans of length equal to k.

Planner Input Language Optimal k-Optimal Incremental

SapaPS PSP No No Yes

Yochan PS PDDL3 No No Yes

BBOP-LP PSP Yes No Yes

BG-KCOMP A variation of PSP When actions have no
conditional costs

No No

PPLAN LPP No Yes No

HPLAN-P PDDL3 Dependent on metric
function

Yes Yes

HPLAN-QP LPP Yes Yes Yes

MIPS-XXL PDDL3 Yes No Yes

MIPS-BDD PDDL3 Yes No No

SGPlan5 PDDL3 No No No

ASPLAN PP No Yes (*) No

CPP PP No Yes (*) No

PRIOMFF Extended RKBs Yes No Yes

PREFPLAN TCP-nets No Yes No

SATPLAN(P) PDDL3 No Yes No

propose an incremental approach to planning
with preferences on the final-state. (Since this
planner does not have a formal name, we refer to
it here as PRIOMFF.) The planner repeatedly
invokes the METRIC-FF planner (Hoffmann 2003) to
obtain plans of increasing quality. It does so by
representing the quality of plan in a new fluent val,
which is added to the input domain. Then, if in
the i-th iteration it obtains a plan of quality Vi, in
the (i + 1)-th iteration it adds val > Vi as a new hard
goal. Feldmann, Brewka, and Wenzel (2006) define
two extensions of PDDL, which they use to repre-
sent planning problems. One of them, PDDLq,
enables the specification of final-state preferences
in the style of RKBs.

Temporally Extended Preferences (TEPs). There
are a number of planners in the literature that are
able to plan with TEPs. Temporal preferences are
compelling, but much of the work in the area was
motivated by the interest in the new features in
PDDL for the 2006 planning competition.

PPLAN (Bienvenu, Fritz, and McIlraith 2006) is a
forward-chaining best-first search planner for the
LPP language. Its planning algorithm, also an
instance of PREF-SEARCH, searches the space of plans
whose length is at most a parameter k. It searches
using an admissible evaluation function that uses
an optimistic estimator of the plan quality and
then a pessimistic estimator for breaking ties. In a
nutshell, the optimistic estimator regards as satisfi-
able all preferences that could still be made true.
For example, it considers that eventually(�) is
always satisfiable, while always(�) is regarded vio-
lated if and only if the plan has made � false at
some state visited by the current plan. PPLAN is k-
optimal. Descendants of PPLAN include GOLOG-
PREF, a version of PPLAN that supports procedural
domain control knowledge (Sohrabi, Prokoshyna,
and McIlraith 2006), and HTNPLAN a reimple-
mentation of the PPLAN search algorithm within an
HTN planner (Sohrabi and McIlraith 2008). Both
extensions were motivated by the task of web serv-
ice composition.

HPLAN-P (Baier, Bacchus, and McIlraith 2007) is
also a forward-chaining branch-and-bound plan-
ner for TEPs. Its input language is PDDL3, though
it supports a broader LTL subset than that sup-
ported in PDDL3 (in particular, it allows nesting of
temporal operators). There are a number of evalu-
ation functions implemented in HPLAN-P. Given
the planning state current, most of them attempt to
estimate the quality (PDDL metric) of current by
expanding a relaxed planning graph. As opposed
to other planners, like SapaPS, the heuristics do not
make an analysis of the goals that minimize the
metric but rather weight soft goals depending on
the estimated difficulty to achieve them. It also
provides two functions to compute lower bounds.
These functions will not prune a state from the

search space if it can lead to an optimal, under cer-
tain conditions of the metric function (which are
satisfied in the IPC-5 benchmarks). Key to this
approach is the compilation of TEPs into standard,
final-state preferences using a transformation into
nondeterministic, parametrized finite-state nonde-
terministic automata that avoids grounding the
preferences and therefore avoids size blowups in
the output domains. This compilation is fairly
independent of the planning algorithm and there-
fore could be exploited by other planners for final-
state preferences. HPLAN-P obtained a distin-
guished performance award in IPC-5. It has been
extended to plan with a subset of the LPP language
(Baier and McIlraith 2007). The heuristic search
techniques developed for HPLAN-P were the inspi-
ration for the heuristic search in HTNPLAN-P, an
HTN planner that performs heuristic search to find
preferred HTN plans from a version of PDDL3
extended with HTN task preferences (Sohrabi,
Baier, and McIlraith 2008). Of related note, Lin et
al. (2008) recently developed a preference-based
HTN planner that processes vanilla PDDL3 prefer-
ences, while the ASPEN system (Rabideau et al.
2000) performs a simple form of PBP focused main-
ly on preferences over resources, but with the facil-
ity to exploit an HTN-like task decomposition.

MIPS-BDD (Edelkamp 2006) is an optimal plan-
ner for the PDDL3 language. It applies a bidirec-
tional breadth-first search approach that encodes
sets of states into binary decision diagrams (BDDs).
To handle temporally extended preferences it com-
piles them into final-state preferences through
grounded Buchi automata. In the resulting prob-
lem specification, the quality of a plan is encoded
within a new numerical fluent of the problem.
MIPS-XXL (Edelkamp, Jabbar, and Naizih 2006),
on the other hand, uses the same compilation to
implement a heuristic planner based on enforced
hill climbing (Hoffmann and Nebel 2001). MIPS-
XXL repeatedly invokes a modified version of MET-
RIC-FF (following an approach similar to that of PRI-
OMFF) to find plans with increasing quality. An
interesting feature is that MIPS-XXL uses disk space
to store search nodes if main memory is not suffi-
cient.

Finally, SGPlan5 (Hsu et al. 2007) is the search-
based PBP planner that won the IPC-5 planning
competition in all preference tracks. Unlike the
planners described above, SGPlan5 searches for a
plan by using constraint partitioning, decompos-
ing the original planning problem into several sub-
problems. This technique stems from treating the
PBP problem as a standard optimization problem,
where the objective function is to minimize the
makespan of the plan. Using the so-called extend-
ed saddle-point condition, an optimization prob-
lem can be partitioned into subproblems, and a
local minimum or maximum to the global prob-

Articles

WINTER 2008 33

lem can be found by solving the subproblems.
SGPlan5 does the partitioning in such a way that
the resulting problems are planning problems and
therefore can be solved with a state-of-the-art plan-
ner. In particular, it uses a modified version of MET-
RIC-FF to solve the subproblems. SGPlan5 optimizes
the plan quality by formulating different opti-
mization problems (that is different sets of soft
goals and temporal constraints) to be solved by
constraint partitioning. The enumeration strategy
for generating the different optimization problems
is determined using a heuristic algorithm.4 SG -
Plan5 is not optimal; this is both because of the
solving strategy and due to the fact that the search
heuristics used are not admissible. Finally, it is not
incremental.

PBP through General-Purpose Solvers
There are a number of preference-based planning
approaches that use general-purpose solvers such
as SAT, CSP or ASP solvers. We describe some of
them here.

Son and Pontelli (2006) describe ASPlan, a PBP
planner for their PP language. In the approach tak-
en by ASPlan one converts a general preference for-
mula and the planning task into a logic program.
This program is such that, when solved with the
answer-set-programming solver Smodels (Niemelä
1999), it will generate a most-preferred plan of
length k. The key idea is to encode a weight func-
tion that will return a numeric value depending on
how much the preferences are achieved by a cer-
tain plan. The weight function is then maximized
using a standard Smodels maximization construct.
Tu, Son, and Pontelli (2007) later proposed the CPP
planner, which uses a similar translation for the PP
language but runs under GNU-Prolog and per-
forms orders of magnitude faster in some domains.
Both of these planners are k-optimal.

Brafman and Chernyavsky (2005) propose PREF-
PLAN, which uses a solver for constraint satisfaction
problems (CSPs) as the planning engine. PREFPLAN

plans for user preferences on the final state encod-
ed using a TCP-net (Brafman, Domshlak, and Shi-
mony 2006). Given an integer k it encodes a
Graphplan planning graph of depth k into a CSP.
Then, it uses the TCP-net to generate variable and
value orderings for the goal variables mentioned in
the TCP-net. These orderings are then plugged into
the CSP solver, forcing it to check most-preferred
solutions first. PREFPLAN is k-optimal.

SATPLAN(P) (Giunchiglia and Maratea 2007), on
the other hand, is an extension of the award-win-
ning sATPLAN planner (Kautz and Selman 1999) that
is able to plan for final-state preferences by calling
an external SAT solver. The approach is similar to
PREFPLAN in the sense that a variable ordering is
imposed on propositional variables corresponding
to final-state preferences in such a way that most-

preferred plans will be explored first by the SAT
solver. Preferences in sATPLAN(P) can be defined
either in a qualitative or a quantitative language.
In the qualitative language, the relation is
induced from a partial order between final-state
properties on the final state. In the quantitative
language, on the other hand, each preference on
the final state has an associated weight; two plans
are compared based on the sum of the weights of
the preferences satisfied in the final state.

Open Research Directions
There are a number of open research directions for
PBP. We discuss two of them: improvements to
current planning algorithms, and interaction with
the user.

Although there has been progress towards
developing advanced PBP algorithms, in our opin-
ion, these have not yet reached a level of maturity
comparable to current state-of-the-art planners in
at least two respects. First, in terms of efficiency,
although current PBP planners are able to utilize
heuristics, most of these heuristics are based on
relaxed planning graph techniques. Such heuristics
are known to be effective in general but can be
quite uninformative in very simple scenarios.
Something similar applies to bounding functions
used for pruning that are key to the planner’s per-
formance. Most of these functions utilize a relaxed
planning graph too (BBOP-LP being a good coun-
terexample).

Second, PBP development has focused mainly
on deterministic planning (with work by Shapa-
rau, Pistore, and Traverso [2006] as one of the few
exceptions). Consequently, preference languages
are specially designed for a deterministic view of
the world. We expect to see development of lan-
guages and planners for more general settings,
such as planning in the context of incomplete
knowledge.

On a different topic, current approaches to PBP
assume that the problem of preference elicitation
is solved. However, elicitation of users’ preferences
may not be easy to achieve. Arguably, as in other
decision-making processes, users are usually
unable to provide a full account of their prefer-
ences until they are shown different alternatives.
However, in contrast to other decision-making
problems, in PBP showing different alternatives
might be hard to achieve, since coming up with
just one plan could be computationally very hard.
Preference elicitation, as it relates specifically to
PBP, and mixed-initiative PBP, where the user and
planner interact to develop a most-preferred plan,
are topics for future research.

Notes
1. Makespan is typically defined as the minimum time in

Articles

34 AI MAGAZINE

which we can perform the plan. We use this definition
here as we restrict our presentation to planning problems
that, for the most part, do not mention time explicitly.

2. zeus.ing.unibs.it/ipc-5/.

3. For brevity, we have omitted the closed list of nodes for
storing nodes that have already been expanded.

4. Based on a personal communication with C.-W. Hsu.

References
Baier, J. A., and McIlraith, S. A. 2007. On Domain-Inde-
pendent Heuristics for Planning with Qualitative Prefer-
ences. Paper presented at the 7th IJCAI Workshop on
Nonmonotonic Reasoning, Action and Change (NRAC-
07). Hyderabad, India, January 7–8.

Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2007. A
Heuristic Search Approach to Planning with Temporally
Extended Preferences. In Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07),
1808–1815. Menlo Park, CA: AAAI Press.

Benton, J.; Kambhampati, S.; and Do, M. B. 2006.
YochanPS: PDDL3 Simple Preferences and Partial Satisfac-
tion Planning. Paper presented at the Fifth International
Planning Competition (IPC-2006), part of the Interna-
tional Conference on Automated Planning and Schedul-
ing. The English Lake District, Cumbria, UK, June 6–10.

Benton, J.; van den Briel, M.; and Kambhampati, S. 2007.
A Hybrid Linear Programming and Relaxed Plan Heuris-
tic for Partial Satisfaction Problems. In Proceedings of the
17th International Conference on Automated Planning and
Scheduling (ICAPS-07), 34–41. Menlo Park, CA: AAAI
Press.

Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Plan-
ning with Qualitative Temporal Preferences. In Proceed-
ings of the 10th International Conference on Knowledge Rep-
resentation and Reasoning (KR-06), 134–144. Menlo Park,
CA: AAAI Press.

Bonet, B., and Geffner, H. 2006. Heuristics for Planning
with Penalties and Rewards Using Compiled Knowledge.
In Proceedings of the 10th International Conference on
Knowledge Representation and Reasoning (KR-06), 452–462.
Menlo Park, CA: AAAI Press.

Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A Tool for Representing and
Reasoning with Conditional Ceteris Paribus Preference
Statements. Journal of Artificial Intelligence Research 21:
135–191.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-The-
oretic Planning: Structural Assumptions and Computa-
tional Leverage. Journal of Artificial Intelligence Research
11: 1–94.

Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S.
2000. Decision-Theoretic, High-Level Agent Program-
ming in the Situation Calculus. In Proceedings of the Sev-
enteenth National Conference on Artificial Intelligence, 355–
362. Menlo Park, CA: AAAI Press.

Brafman, R., and Chernyavsky, Y. 2005. Planning with
Goal Preferences and Constraints. In Proceedings of the
15th International Conference on Automated Planning and
Scheduling (ICAPS-05), 182–191. Menlo Park, CA: AAAI
Press.

Brafman, R. I.; Domshlak, C.; and Shimony, S. E. 2006.

On Graphical Modeling of Preference and Importance.
Journal of Artificial Intelligence Research 25: 389–424.

Braziunas, D., and Boutilier, C. 2008. Elicitation of Fac-
tored Utilities. AI Magazine 29(4): 79–92.

Brewka, G. 1989. Preferred Subtheories: An Extended
Logical Framework for Default Reasoning. In Proceedings
of the 11th International Joint Conference on Artificial Intel-
ligence (IJCAI-89), 1043–1048. San Francisco: Morgan
Kaufmann Publishers.

Brewka, G. 2004. A Rank Based Description Language for
Qualitative Preferences. Paper presented at the 16th Euro-
pean Conference on Artificial Intelligence (ECAI-04),
303–307. Bruxelles, Belgium: European Corrdinating
Committee for Artificial Intelligence (ECCAI).

Brewka, G.; Niemelä, I.; and Truszczynski, M. 2008. Pref-
erences and Nonmonotonic Reasoning. AI Magazine
29(4): 60–78.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS planning. Artificial Intelligence 69(1–
2): 165–204.

Delgrande, J. P.; Schaub, T.; and Tompits, H. 2007. A Gen-
eral Framework for Expressing Preferences in Causal Rea-
soning and Planning. Journal of Logic and Computation
17(5): 871–907.

Edelkamp, S. 2006. Optimal Symbolic PDDL3 Planning
with MIPS-BDD. Paper presented at the Fifth Interna-
tional Planning Competition (IPC-2006), part of the
International Conference on Automated Planning and
Scheduling. The English Lake District, Cumbria, UK, June
6–10.

Edelkamp, S.; Jabbar, S.; and Naizih, M. 2006. Large-Scale
Optimal PDDL3 Planning with MIPS-XXL. Paper pre-
sented at the Fifth International Planning Competition
(IPC-2006), part of the International Conference on
Automated Planning and Scheduling. The English Lake
District, Cumbria, UK, June 6–10.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN Plan-
ning: Complexity and Expressivity. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI),
1123–1128. Menlo Park, CA: AAAI Press.

Feldmann, R.; Brewka, G.; and Wenzel, S. 2006. Planning
with Prioritized Goals. In Proceedings of the 10th Interna-
tional Conference on Knowledge Representation and Reason-
ing (KR-06), 503–514. Menlo Park, CA: AAAI Press.

Fikes, R. and Nilsson, N. 1971. STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solv-
ing, Artificial Intelligence 2(3/4): 189–208 .

Fritz, C., and McIlraith, S. A. 2006. Decision-Theoretic
Golog with Qualitative Preferences. In Proceedings of the
10th International Conference on Knowledge Representation
and Reasoning (KR-06), 153–163. Menlo Park, CA: AAAI
Press.

Gerevini, A., and Long, D. 2005. Plan Constraints and
Preferences for PDDL3. Technical Report 2005-08-07,
Department of Electronics for Automation, University of
Brescia, Brescia, Italy.

Giunchiglia, E., and Maratea, M. 2007. Planning as Satis-
fiability with Preferences. In Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI-07),
987–992. Menlo Park, CA: AAAI Press.

Hoffmann, J. 2003. The Metric-FF Planning System:
Translating “Ignoring Delete Lists” to Numeric State Vari-

Articles

WINTER 2008 35

ables. Journal of Artificial Intelligence Research 20: 291–341.

Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation through Heuristic Search. Jour-
nal of Artificial Intelligence Research 14: 253–302.

Hsu, C.-W.; Wah, B.; Huang, R.; and Chen, Y. 2007. Con-
straint Partitioning for Solving Planning Problems with
Trajectory Constraints and Goal Preferences. In Proceed-
ings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI-07), 1924–1929. Menlo Park, CA: AAAI
Press.

Kautz, H. A., and Selman, B. 1999. Unifying SAT-Based
and Graph-Based Planning. In Proceedings of the 16th
International Joint Conference on Artificial Intelligence
(IJCAI-99), 318–325. San Francisco: Morgan Kaufmann
Publishers.

Lin, N.; Kuter, U.; and Sirin, E. 2008. Web Service Com-
position with User Preferences. In Proceedings of the 5th
European Semantic Web Conference (ESWC2008). Lecture
Notes in Computer Science, Volume 5021. Berlin:
Springer.

McDermott, D. V. 1998. PDDL—The Planning Domain
Definition Language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol, New Haven, CT.

Niemelä, I. 1999. Logic Programs with Stable Model
Semantics as a Constraint Programming Paradigm.
Annals of Mathematics and Artificial Intelligence 25(3–4):
241–273.

Pearl, J. 1990. System Z: A Natural Ordering of Defaults
with Tractable Applications to Nonmonotonic Reason-
ing. In Proceedings of the 3rd Conference on Theoretical
Aspects of Reasoning about Knowledge (TARK-90), 121–135.
San Francisco: Morgan Kaufmann Publishers.

Pednault, E. P. D. 1989. ADL: Exploring the Middle
Ground between Strips and the Situation Calculus. In
Proceedings of the 1st International Conference of Knowledge
Representation and Reasoning (KR-89), 324–332. San Fran-
cisco: Morgan Kaufmann Publishers.

Pnueli, A. 1977. The Temporal Logic of Programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of Com-
puter Science (FOCS-77), 46–57. Piscataway, NJ: Institute
of Electrical and Electronics Engineers.

Rabideau, G.; Engelhardt, B.; and Chien, S. 2000. Using
Generic Preferences to Incrementally Improve Plan Qual-
ity, In Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS 2000),
236–245. Menlo Park, CA: AAAI Press.

Shaparau, D.; Pistore, M.; and Traverso, P. 2006. Contin-
gent Planning with Goal Preferences. In Proceedings of the

21st National Conference on Artificial Intelligence (AAAI-06).
Menlo Park, CA: AAAI Press.

Smith, D. E. 2004. Choosing Objectives in Over-Sub-
scription Planning. In Proceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS-
04), 393–401. Menlo Park, CA: AAAI Press.

Sohrabi, S; Baier, J; and McIlraith, S. 2008. HTN Planning
with Quantitative Preferences via Heuristic Search. Paper
presented at the ICAPS 2008 Workshop on Oversub-
scribed Planning and Scheduling, Sydney, Australia, Sep-
tember, 2008.

Sohrabi, S and McIlraith, S., 2008. On Planning with Pref-
erences in HTN. In Multidisciplinary Workshop on
Advances in Preference Handling, Ed. J. Chomicki, V.
Conitzer, U. Junker, and P. Perny, 103–109. AAAI Tech-
nical Report WS-08-09. Menlo Park, CA: AAAI Press.

Sohrabi, S.; Prokoshyna, N.; and McIlraith, S., 2006. Web
Service Composition via Generic Procedures and Cus-
tomizing User Preferences. In Proceedings of the 5th Inter-
national Semantic Web Conference (ESWC2008). Lecture
Notes in Computer Science, Volume 4273, 597–611.
Berlin: Springer.

Son, T. C., and Pontelli, E. 2006. Planning with Prefer-
ences Using Logic Programming. Theory and Practice of
Logic Programming 6(5): 559–607.

Tu, P. H.; Son, T. C.; and Pontelli, E. 2007. CPP: A Con-
straint Logic Programming Based Planner with Prefer-
ences. In Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR-
07), volume 4483 of LNCS, 290–296. Berlin: Springer.

van den Briel, M.; Nigenda, R. S.; Do, M. B.; and Kamb-
hampati, S. 2004. Effective Approaches for Partial Satis-
faction (Oversubscription) Planning. In Proceedings of the
19th National Conference on Artificial Intelligence (AAAI-
04), 562–569. Menlo Park, CA: AAAI Press.

Jorge A. Baier received his bachelor and MSc degree for
the Pontificia Universidad Católica in 1999 and 2000,
respectively. In 2002, he joined the Computer Science
Department at the Pontificia Universidad Católica de
Chile, where he is currently holds an instructor position.
He is currently a Ph.D. student at the University of
Toronto. Baier and colleagues received a distinguished
performance award at the International Planning Com-
petition in 2006, qualitative preference track, for their
planner HPLAN-P.

Sheila McIlraith is an associate professor in the Depart-
ment of Computer Science at the University of Toronto.
Prior to joining the University of Toronto, McIlraith
spent six years as a research scientist at Stanford Univer-
sity, and one year at Xerox PARC. McIlraith’s research is
in the area of knowledge representation and automated
reasoning. She has 10 years of industrial R&D experience
developing artificial intelligence applications. McIlraith
has authored more than 20 scholarly publications, is an
associate editor of the journal Artificial Intelligence and
past program cochair of the International Semantic Web
conference. McIlraith's early work on semantic web serv-
ices has had notable impact. Her research has also made
practical contributions to the development of next-gen-
eration NASA space systems and to emerging web stan-
dards.

Articles

36 AI MAGAZINE

The AAAI Conference Turns 25
in San Francisco!

AAAI is pleased to announce that the Twenty-Fifth AAAI Conference on
Artificial Intelligence (AAAI-11) will be held at the Hyatt Regency in San
Francisco, California, August 7–11, 2011. You won’t want to miss this mile-
stone event, held for the very first time in the City by the bay. Details about
the AAAI-11 program will be posted as they become available at
www.aaai.org/aaai11. We hope to see you in San Francisco!

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [630.000 810.000]
>> setpagedevice

