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Abstract
Focused D* and D*-Lite are two popular incremental heuris-
tic search algorithm amenable to goal-directed navigation in
partially known terrain. Recently it has been shown that, un-
like commonly believed, a version of A* is in many cases
faster than D*-Lite, posing the question of whether or not
there exist other variants of A* which could outperform algo-
rithms in the D* family on most problems. In this paper we
present Multipath Adaptive A* (MPAA*), a simple, easy-to-
implement modification of Adaptive A* (AA*) that reuses
paths found in previous searches to speed up subsequent
searches, and that almost always outperforms D*Lite. We
evaluate MPAA* against D*-Lite on random maps and stan-
dard game, room, and maze maps, assuming partially known
terrain. In environments comparable to indoor and outdoor
navigation (room and game maps) MPAA* is 35% faster than
D*Lite on average, while on random maps MPAA* is over 3
times faster than D*Lite. D*Lite is faster than MPAA* only
in mazes; notwithstanding, we show that if a small percentage
of obstacle cells in a maze are made traversable, MPAA* out-
performs D*Lite. In addition, we prove MPAA* is optimal
and that it finds a solution if one exists. We conclude that for
most real-life goal-directed navigation applications MPAA*
should be preferred to D*Lite.

Introduction
Focused D* (Stentz 1995), and D*Lite (Koenig and
Likhachev 2005) are popular replanning algorithms
amenable for path-planning in partially known terrain.
D*Lite, the simplest to understand of the two, implements
the same behavior as Focused D* and has a comparable
performance (Koenig and Likhachev 2005). D*Lite exten-
sions are used in deployed applications; to name a few, it
has been used in the navigation algorithms for a Mars Rover
(Ferguson and Stentz 2007), and in the DARPA Urban
challenge competition (Likhachev et al. 2005).

The main motivation for using algorithms of the D* fam-
ily over A* replanning (Hart, Nilsson, and Raphael 1968)
is that re-using information from previous search speeds up
subsequent searches significantly. Indeed Stentz (1995) re-
ported orders-of-magnitude speedups over A*.

A recent evaluation by Hernández et al. (2012) has shown
that a careful implementation of A* replanning, called For-
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ward Repeated A*, is in many cases faster than D*Lite. This
naturally motivates the question of whether or not there ex-
ist versions of A* superior to D*-family algorithms. A pos-
itive answer to this question is interesting both from a prac-
titioner’s standpoint and for academic reasons, since A* is a
more standard algorithm, and has been studied more exten-
sively than the D*-family algorithms.

In this paper we present Multipath Adaptive A*
(MPAA*), an extremely simple yet powerful extension of
Adaptive A* (AA*) (Koenig and Likhachev 2006), which
we show almost always outperforms an optimized version
of D*Lite. The idea underlying MPAA* is to reuse paths
found by previous A* searches when replanning is needed.
As such, when a state that belongs to a previously found path
is selected for expansion, MPAA* runs a quick procedure to
check whether or not such a path is still optimal. In that case,
the A* search is stopped early, allowing it to save significant
computation compared to AA*. Like AA*, it uses a simple
and efficient rule to update the heuristic values of states ex-
panded. We prove MPAA* inherits all of AA*’s desirable
properties: it is optimal and terminates if a solution exist.

We evaluate MPAA* against Repeated A*, Adaptive A*,
and D*Lite over benchmarks traditionally used in the liter-
ature for evaluating these algorithms. We observe MPAA*
outperforms D*Lite in almost all problems we tried. Our
empirical evaluation suggests, actually, that the only navi-
gation problems in which D*Lite is still competitive is in
problems in which there are very few optimal paths between
the current position and the goal state. Those situations do
not seem common in real-world navigation settings.

MPAA* is not the only extension of Adaptive A* that out-
performs D*Lite. Tree Adaptive A* (Hernández et al. 2011),
an algorithm that during runtime builds a tree of previously
found paths, has also been shown to outperform D*Lite. Un-
like MPAA*, the implementation of Tree AA* is more com-
plicated, is harder to explain and requires specific data struc-
tures. We elaborate on this later in the paper.

The rest of the paper is organized as follows. We for-
mally describe the task of goal-directed navigation in par-
tially known terrain. Then we describe Adaptive A* in de-
tail. We continue describing our algorithm and its properties.
We then describe our experimental evaluation and related
work. We finish with a summary.



Path-Planning in Partially Known Domains
Path-planning in partially known terrain is the problem of
moving an agent from a position sstart to a position sgoal
through the edges defined by an undirected graph G =
(V,E, c), where V is a set of cells, E is a set of arcs, and
c is a cost function c : E → R+. We assume there is a path
between sstart and sgoal in G.

When the agent has partial knowledge of the terrain we
make a freespace assumption (Zelinsky 1992) which is an
optimistic assumption about the grid in which unknown cells
are considered obstacle-free. Specifically, during execution
the agent believes the search graph is Ga = (V,Ea, ca),
where E ⊆ Ea, and c(s, t) ≥ ca(s, t) for each (s, t) ∈ E.
As the agent moves through the terrain it may discover that
an arc inGa is not traversable in the actual domain, in which
case it updates the cost of such an arc to ∞. It may also
discover that an arc cost increased, in which case it updates
the cost to the correct value.

A heuristic function h for a path-planning problem
(sstart , sgoal , G) is a non-negative function such that h(s)
estimates the cost of a path from s to sgoal . Function h
is admissible if for every state s, h(s) does not overesti-
mate the cost of any path from s to sgoal . Furthermore,
we say h is consistent if for every (s, t) ∈ E it holds that
h(s) ≤ c(s, t) + h(t), and h(sgoal) = 0. Consistency im-
plies admissibility.

Adaptive A*
Adaptive A* (AA*) (Koenig and Likhachev 2006) is a re-
planning algorithm that uses A* to compute a complete so-
lution each time one is needed. After a complete path to
the goal is found, AA* updates the h-values of all states in
A*’s closed list (Lines 48–49), making them more informed.
Then it follows the arcs in path[sstart ], which denotes the
path starting in sstart which follows the pointers next(s) up
to sgoal . As soon as the agent detects an increase in the cost
of an arc in the path, it recomputes another path using A*.

Now we clarify some of the specifics of the pseudocode.
We assume H(s, sgoal) (used in the initialization; Lines 39–
42) is an admissible estimate of the cost of a path between
the s and sgoal . Once a path is found by A* function
BuildPath sets the next(s) pointer for each state s along
the path found by A*. Before every A* search, the variable
counter is incremented; such variable is used by procedure
InitializeState to set g(s) to infinity when appropri-
ate. Finally, we point out that Lines 35 and 54, which set the
next pointer to null in different situations, are not strictly
necessary in an AA* implementation, and thus removing
them will not change its behavior.

Properties of Adaptive A* Koenig and Likhachev (2006)
proved the following property of Adaptive A*.
Theorem 1 (Consistency Preservation) If h is consistent
with respect to cost function c, then it remains consistent
after the heuristic update of Lines 48–49.
This results allows to prove that Adaptive A* is optimal, in
the following sense.
Theorem 2 (Optimality) Let Ga denote the search graph
given by the algorithm’s cost function c immediately after a

Algorithm 1: Adaptive A* Pseudo-Code
1 procedure InitializeState(s)
2 if search(s) 6= counter then
3 g(s)←∞
4 search(s)← counter

5 procedure A*(sinit)
6 InitializeState(sinit)
7 parent(sinit )← null
8 g(sinit )← 0
9 Open← ∅

10 insert sinit into Open with f-value g(sinit ) + h(sinit )
11 Closed← ∅
12 while Open 6= ∅ do
13 remove a state s from Open with the smallest f-value g(s) + h(s)
14 if GoalCondition(s) then
15 return s

16 insert s into Closed
17 for each s′ ∈ succ(s) do
18 InitializeState(s′)
19 if g(s′) > g(s) + c(s, s′) then
20 g(s′)← g(s) + c(s, s′)

21 parent(s′)← s

22 if s′ is in Open then
23 set priority of s′ in Open to g(s′) + h(s′)

24 else
25 insert s′ into Open with priority g(s′) + h(s′)

26 return null

27 procedure BuildPath(s)
28 while s 6= sstart do
29 next(parent(s))← s
30 s← parent(s)

31 procedure Observe(s)
32 for each arc (t, t′) in the range of visibility from s do
33 if cost of (t, t′) has increased then
34 update c(t, t′)
35 next(t)← null

36 procedure main()
37 counter ← 0
38 Observe (sstart )
39 for each state s ∈ S do
40 search(s)← 0
41 h(s)← H(s, sgoal )
42 next(s)← null

43 while sstart 6= sgoal do
44 counter ← counter + 1
45 s← A*(sstart )
46 if s = null then
47 return “goal is not reachable”

48 for each s′ ∈ Closed do
49 h(s′)← g(s) + h(s)− g(s′) /* heuristic update

*/

50 BuildPath(s)
51 while no action cost has just increased in path[sstart ] do
52 t← sstart
53 sstart ← next(sstart )
54 next(t)← null
55 Move agent to sstart
56 Observe(sstart)

Algorithm 2: Adaptive A*’s Goal Condition
1 function GoalCondition(s)
2 return s = sgoal

movement is performed at Line 55. Then such a movement
lies on an optimal path to sgoal over graph Ga.
In other words, optimality here intuitively refers to the fact
that the agent always does the best it can given its current



knowledge about the terrain.
Finally, it is simple to prove termination.

Theorem 3 (Termination) Adaptive A* terminates.
Finally, Forward Repeated A* (Hernández et al. 2012) is

AA* without heuristic update (Lines 48–49).

Multipath Adaptive A*
One of the main characteristics of incremental heuristic
search algorithms is that they exploit information gained in
a search episode to speed up subsequent searches. As such,
each time a search episode finishes, Adaptive A* updates the
h values of many of the states of the search space, making
them more informative. Indeed, the h-values of states in the
path connecting sstart to sgoal are perfect after the update.

Heuristic update is however just one piece of information
exploitable for later searches. An additional exploitable ele-
ment is information contained in the A* tree. For example,
each time an A* search returns, an optimal path—say, σ—to
the goal has been found. Usually, even after discovering ad-
ditional obstacles there exists a suffix of σ that still defines
an optimal path to the goal.

MPAA*, exploits this fact by stopping an A* search as
soon it selects a state s for expansion and the following con-
ditions hold: (1) s belongs to a previously found path σ,
and (2) the suffix of σ that starts in s is a provably optimal
path from s to the sgoal . Checking condition (1) is actually
very simple since already Adaptive A* sets the next(s) in
the BuildPath procedure, immediately after an A* finds
a path to the goal. Condition (2), on the other hand, can be
checked efficiently by using the fact that h remains consis-
tent (if initially consistent).

MPAA* is obtained by simply replacing the
GoalCondition function in Adaptive A*’s pseu-
docode by Algorithm 3. The reader may infer that a
MPAA* implementation differs from an Adaptive A*
implementation by only a handful of lines of code.

Algorithm 3: MPAA*’s Goal Condition
1 function GoalCondition(s)
2 while next(s) 6= null and h(s) = h(next(s)) + c(s, next(s)) do
3 s← next(s)

4 return sgoal = s

Properties of MPAA*
We prove that MPAA* has the same properties of Adaptive
A* when h is initially consistent.
Theorem 4 (Consistency Preservation) If h is consistent
with respect to cost function c, then it remains consistent
after the heuristic update of Lines 48–49.
Proof: It is a trivial modification of the original proof pro-
vided by Koenig and Likhachev (2006). �

We also obtain that MPAA* is optimal.
Theorem 5 (Optimality) Let Ga denote the search graph
given by the algorithm’s cost function c immediately after a
movement is performed at Line 55. Then such a movement
lies on an optimal path to sgoal over graph Ga.

Algorithm RunTime Expansions Percolations
Repeated A* 1.00 1.00 1.00
AA* 0.99 1.00 1.00
D*Lite 1.08 0.60 0.61
MPAA* 0.46 0.37 0.37

Table 1: Performance ratios wrt. to Repeated A* (Setting 1).

RunTime Ratio Expansions Ratio Percolations Ratio
Dens. 400 600 800 400 600 800 400 600 800
15% 4.46 4.89 5.81 7.23 7.48 8.52 2.24 2.52 2.82
25% 3.93 4.18 4.56 5.32 5.61 6.12 2.61 2.59 2.76
35% 3.86 3.92 4.06 4.33 4.55 4.67 2.54 2.50 2.53
45% 3.98 3.86 3.93 3.46 3.53 3.71 2.64 2.36 2.42

Table 2: Performance ratios with respect to MPAA* (Setting 2).

Theorem 6 (Termination) MPAA* terminates.

Experimental Evaluation
The objective of our evaluation was to compare MPAA*
against Repeated A*, AA*, Tree-AA*, and an optimized
version D*Lite (Koenig and Likhachev 2005) in an appli-
cation widely used in the literature. Specifically we com-
pare the algorithms in path-planning in a priori unknown and
partially known eight-neighbour grids. MPAA* was imple-
mented in ANSI C, using a heap as a priority queue for the
Open list. The heap implementation is very similar to the
heap used by D*Lite. The source code for D*Lite was pro-
vided by their authors. We observed that the differences in
performance between MPAA* and Tree-AA* are very con-
sistent along all three settings and therefore we report results
regarding this comparison at the end of this section.

We considered several evaluation settings. They follow.
Setting 1 We compared Repeated A*, Adaptive A*,
D*Lite and MPAA* in the setting used by Koenig and
Likhachev (2005): i.e., 129 × 129 grids with 40% obstacle
ratio. Each obstacle is modeled as a cell with no incom-
ing or outgoing edges. The initial state is (12, 12) and the
goal state is (116, 116). The cost of cardinal and diagonal
moves is 1 and the minimum of the absolute differences of
the x and y coordinates of any two cells is used as heuristic.
We generated 500 problems. Because Repeated A*’s results
were consistently worse than those of MPAA* (details be-
low), we did not consider this algorithm for the remaining
settings.
Setting 2 We compared D*Lite and MPAA* over larger
random grids, for a broad range of obstacle ratios. We used
random grids of size 400× 400, 600× 600, and 800× 800
with 15%, 25%, 35%, and 45% obstacle ratio. For each grid
size and obstacle ratio, we generate 500 problems, with start
and goal cells chosen randomly. In this and the following
settings, the cost for cardinal moves is 1, for diagonal moves
is
√
2, and the octile distance is used as heuristic.

RoomMaps (Indoor Navigation) Warcraft 3 Maps (Outdoor Navigation)
Dens. Runtime Expansions Percs. Runtime Expansions Percs

5% 1.34 0.96 0.84 1.36 0.95 0.74
10% 1.41 0.91 0.85 1.37 1.00 0.75
15% 1.44 0.85 0.84 1.38 1.06 0.77
20% 1.43 0.78 0.82 1.46 1.17 0.84
Uknown 1.32 0.43 0.67 1.95 0.84 1.06

Table 3: Performance ratios with respect to MPAA* (Setting 3).



%Unblocks Runtime Expansions Percs.
0% 0.22 0.06 0.10
1% 1.13 0.28 0.63
2% 2.11 0.64 1.33
4% 3.13 1.31 2.00
8% 3.81 2.31 2.34

Table 4: Performance ratios with respect to D*Lite (Setting 4).

Setting 3 We compared D*Lite and MPAA* in partially
known terrain. In this setting the robot knows the general
map, but there are certain amount of unknown randomly in-
troduced blocked cells—we used 5%, 10%, 15%, and 20%
obstacle ratio. We evaluated over 40 Room Maps and 36
Warcraft III maps of size 512 × 512 from N. Sturtevant’s
repository (Sturtevant 2012). Room maps and Warcraft III
maps can be regarded as good simulation scenarios for in-
door and outdoor path-planning, respectively. Again, we
generate 500 random problems. Also, for each map, we
compare the algorithms considering an a priori unknown ter-
rain, with no additional obstacles.
Setting 4 We compared D*Lite and MPAA* in a priori
unknown Maze maps. We used 40 512 × 512 mazes from
Sturtevant’s repository. We considered a variation of the
topology of these maps by removing at random 0%, 1%, 2%,
4%, and 8% of the blocked cells. For each configuration we
generate 500 random problems.

For each problem we ran, we recorded the total runtime,
the number of expansions and heap percolations, which is
the number of array swaps required to perform heap inser-
tions, deletions, and updates. Experiments were run on a
3.4GHz Intel Xeon machine with 8GB RAM running Linux.
In all problems, the agent could observe the eight neighbors
of the current cell and determine their blockage status.

Now we provide details of our results. Because AA* is
consistently inferior to MPAA*, we only show performance
indicators for Setting 1. On average AA* is about two times
slower than MPAA*.

Table 1 (for Setting 1) shows MPAA* is about twice
as fast as other algorithms, needing fewer expansions and
heap percolations. Despite this, D*Lite is slightly slower;
this phenomenon has been observed in previous evaluations
(Hernández et al. 2012), and is due to the overhead D*Lite
incurs when updating so-called rhs-values.

Table 2 (for Setting 2) shows better performance indica-
tors for MPAA* relative to D*Lite—up to 5.81 times faster
in a 800×800 grid size and 15% of obstacles. Nevertheless,
we observe the performance gap narrows down as the obsta-
cles ratio increases. The opposite is observed when the size
of the grid increases.

Table 3 (Setting 3) again shows that MPAA* is superior to
D*Lite in terms of runtime, getting slightly better as the ob-
stacle ratio increases in Room and Warcraft III maps. When
the terrain is unknown, MPAA* is also faster than D*Lite in
both indoor and outdoor scenarios.

Table 4 (Setting 4) shows D*Lite is 4.55 faster than
MPAA* in mazes when no walls have been removed (0%).
However, when only 1% of wall cells are removed, MPAA*
begins to outperform D*Lite rather significantly. This sug-
gests that D*Lite’s performance niche seems to be problems
in where there are few paths to the goal, an unusual situation
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Figure 1: Tree-AA* 10% faster than MPAA* consistently.

in both indoor and outdoor navigation.
Finally, we compared MPAA* and Tree-AA* in all set-

tings described above and found that the difference in per-
formance is very consistent, with Tree-AA* being between
3–7% faster. As a reference, Figure 1 shows the time ra-
tio (MPAA*/Tree-AA*) versus the number of searches re-
quired per problem averaged over 1,000 random problems
over the map divide-and-conquer from the game Warcraft
III. We observe that the performance difference is quite sta-
ble as the number of searches increase. Tree-AA*, unlike
MPAA*, needs more memory per search since it maintains
a table of paths.

Related Work

Both the idea of updating the heuristic and the idea of
reusing a previously found path were first described by Holte
et al. (1996) in the context of hierarchical search.

MPAA* is more closely related to Tree AA* (Hernández
et al. 2011) which is also an extension of AA* that explic-
itly stores a tree of paths to the goal, where each branch
corresponds to a path previously found by AA*. Such a tree
is actively maintained during runtime and requires a specific
data structure. The main advantage of MPAA* is its simplic-
ity: it differs from AA* only in a handful of lines of code,
and thus possibly simpler to extend. Moreover, it easier to
analyze in theory: e.g., optimality of MPAA* is extremely
simple to prove, which is not the case for Tree AA*.

Summary and Future Work

We presented Multipath Adaptive A* (MPAA*), a simple
extension of Adaptive A*. MPAA* is simple to imple-
ment, simple to analyze, and, we think, simple to extend
too. We showed MPAA* outperforms D*Lite almost always
for path-planning in partially known terrain in situations that
are comparable to indoor and outdoor navigation (game and
room maps). MPAA* outperforms D*Lite on random maps
but not on maze maps. Indeed, D*Lite seems to excel only
in problems in which very few optimal paths exist.

Future work considers studying whether or not state-of-
the-art extensions of D* can also be outperformed by analo-
gous extensions of MPAA*.
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