
Time-Bounded Best-First Search

Carlos Hernández Roberto Ası́n
Depto. de Ingenierı́a Informática

Universidad Católica de la Santı́sima Concepción
Concepción, Chile

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Abstract

Time-Bounded A* (TBA*) is a single-agent deterministic
search algorithm that expands states of a graph in the same
order as A* does, but that unlike A* interleaves search and
action execution. Although the idea underlying TBA* can
be generalized to other single-agent deterministic search al-
gorithms, little is known about the impact on performance
that would result from using algorithms other than A*. In
this paper we propose Time-Bounded Best-First Search (TB-
BFS) a generalization of the time-bounded approach to any
best-first search algorithm. Furthermore, we propose restart-
ing strategies that allow TB-BFS to solve search problems
in dynamic environments. In static environments, we prove
that the resulting framework allows agents to always find a
solution if such a solution exists, and prove cost bounds for
the solutions returned by Time-Bounded Weighted A* (TB-
WA*). We evaluate the performance of TB-WA* and Time-
Bounded Greedy Best-First Search (TB-GBFS). We show
that in pathfinding applications in static domains, TB-WA*
and TB-GBFS are not only faster than TBA* but also find
significantly better solutions in terms of cost. In the context
of videogame pathfinding, TB-WA* and TB-GBFS perform
fewer undesired movements than TBA*. Restarting TB-WA*
was also evaluated in dynamic pathfinding random maps,
where we also observed improved performance compared to
restarting TBA*. Our experimental results seem consistent
with theoretical bounds.

Introduction
In many search applications, time is a very scarce resource.
Examples range from video game path finding, where a
handful of milliseconds are given to the search algorithm
controlling automated characters (Bulitko et al. 2011), to
highly dynamic robotics (Schmid et al. 2013). In those set-
tings, it is usually assumed that a standard search algorithm
will not be able to compute a complete solution before an
action is required, and thus execution and search must be
interleaved.

Time-Bounded A* (TBA*) (Björnsson, Bulitko, and
Sturtevant 2009) is an algorithm suitable for searching un-
der tight time constraints. In a nutshell, given a parameter
k, it runs a standard A* search towards the goal rooted in
the initial state, but after k expansions are completed a move

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is performed and then search, if still needed, is resumed. It
terminates when the agent has reached the goal.

TBA* is among the fastest algorithms for real-time-
constrained applications. In fact, Hernández et al. (2012)
showed it significantly outperforms state-of-the-art real-
time heuristic search algorithms such as RTAA* (Koenig
and Likhachev 2006) and daRTAA* (Hernández and Baier
2012).

In this paper we extend the time-bounded search approach
to a broader class of algorithms. Specifically, we propose
Time-Bounded Best-First Search (TB-BFS), which is a fam-
ily of time-bounded algorithms suitable for static environ-
ments. In addition, we propose two restart strategies—eager
and lazy restart—that allow TB-BFS to solve search prob-
lems in dynamic domains, in which action costs may change
during execution. Furthermore, we propose measures of
quality inspired by videogame applications that go beyond
solution cost and aim at capturing when solutions “look
good” to an observer.

We focus on two instances of TB-BFS: Time-Bounded
Weighted A* (TB-WA*) and Time-Bounded Greedy Best-
First Search (TB-GBFS). Theoretically, we show that TB-
BFS is complete, and establish an upper bound on the cost
of solutions returned by TB-WA* in static domains. Our cost
bound establishes that in some domains solution cost may be
reduced significantly by increasing w; hence, in contrast to
Weighted A*, we might obtain better solutions by increasing
the weight. This result is important since it suggests that TB-
WA* (with w > 1) should be preferred to TBA* in domains
in which WA* runs faster than A*. While WA* does not
always run faster than A* (see e.g., Wilt and Ruml, 2012), it
is known that it does in many domains.

Experimentally, we evaluate the two algorithms on
pathfinding benchmarks in static terrain and show that in-
creasing w allows finding significantly better solutions in
less time. In terms of our videogame-inspired quality mea-
sures TB-GBFS seems to be superior in static domains. In
dynamic domains we evaluate TB-WA* on random maps
and, yet again, we show that the use of weights greater than
one allows improving performance rather significantly. We
also show that lazy restart is superior to eager restart.

The rest of the paper is organized as follows. We start off
describing the background needed for the rest of the paper.
Then we describe TB-BFS for static and dynamic domains



and carry out a theoretical analysis. This is followed by a
description of our videogame-inspired measures of quality.
Then we describe the experimental results, and finish with a
summary and perspectives for future research.

Background
Below we describe the background for the rest of the paper.

Search in Static and Dynamic Environments
A search graph is a tuple G = (S,A), where S is a set of
states (vertices),A ⊆ S×S is a set of edges which represent
the actions available to the agent in each state. A path over
graph (S,A) is a sequence of states π = s0s1 · · · sn, where
(si, si+1) ∈ A, for all i ∈ {0, . . . , n− 1}.

A cost function c for a search graph (S,A) is such that
c : A → R+ ∪ {∞}; i.e., it associates an action with
a positive cost. The cost of a path π = s0s1 · · · sn is∑n−1

i=0 c(si, si+1), i.e. the sum of the costs of each edge con-
sidered in the path. Given c, we say that t is a successor of s
if (s, t) is an edge in A with finite cost; moreover, for every
s ∈ S we define Succc(s) = {t | (s, t) ∈ A, c(s, t) 6= ∞}.
Thus, our framework allows two alternatives for represent-
ing that state t is not a successor of state s: either by saying
(s, t) 6∈ A or by defining c(s, t) = ∞. As we see later, this
will help us with the definition of dynamic environments.

In this paper we assume the search graph is undirected,
which informally means that every action is reversible. This
restriction is true in many interesting search problems, but
we need it here because TBA* and hence TB-BFS may
have the agent undo previously performed actions—a pro-
cess known as physical backtracking.

We focus on search problems in two general settings:
static and dynamic environments. A search problem in a
static environment is a tuple P = (S,A, c, sstart , sgoal),
where G = (S,A) is a search graph, c a cost function and
sstart , sgoal ∈ S are, respectively, the initial and the goal
state. The problem is to compute a path π = s0s1 · · · sn
such that s0 = sstart , sn = sgoal , and such that si+1 ∈
Succc(si), for all i ∈ {0, . . . , n− 1}.

For dynamic environments we assume that after the agent
moves, the costs of the arcs may change. Given a tuple,
P = (S,A, γ, sstart , sgoal) where S, A, sstart , and sgoal
are as above and γ = c0c1 · · · is an infinite sequence of
cost functions over (S,A), the problem is to compute a path
π = s0s1 · · · sn such that s0 = sstart , sn = sgoal , and
such that si+1 ∈ Succci(si), for all i ∈ {0, . . . , n − 1}.
Observe that given the way we define Succci , states can be
disconnected or reconnected to the search space as the agent
executes actions.

Best-First Search
Best-First Search (Pearl 1984) captures a family of search
algorithms for static environments which associate a prior-
ity p(s) with every state s. The priority is computed using
an evaluation function, f , that is such that a lower value to
states that are viewed as closer to the goal.

The algorithm starts off by initializing the priority of all
nodes in search space to infinity, except for sstart , for which

the priority is set to f(sstart). A priority queue Open is
initialized as containing sstart . In each iteration, the algo-
rithm extracts from Open the state with lowest priority, s.
For each successor t of s it computes the evaluation f(t). If
f(t) is lower than p(t), then t is added to Open and p(t) is
set to f(t). The algorithm repeats this process until sgoal is
in Open with the lowest priority.

An instance of Best-First Search is Weighted A* (WA*)
(Pohl 1970). Its evaluation function is defined as f(s) =
g(s) + wh(s), where g(s) is the cost of a path from sstart
to s, h is a user-given heuristic function such that h(s) es-
timates the cost of a path from s to sgoal , and w is a real
number greater than or equal to 1. Note that the way g(s) is
computed here depends on the particular path discovered to
s. Throughout execution state s may be re-discovered mul-
tiple times and hence receive different g-values.

Function h is admissible when h(s) does not overestimate
the cost of an optimal path from s to sgoal , for all s ∈ S. If
h is admissible WA* is known to find a solution whose cost
cannot exceed wc∗, where c∗ is the cost of a shortest path
from sstart to sgoal . As such, WA* may return increasingly
worse solutions as w is increased. The advantage of increas-
ing w is that execution is also faster. When w = 1, WA* is
equivalent to A* (Hart, Nilsson, and Raphael 1968).

Another instance of Best-First Search is Greedy Best-First
Search (GBFS). Here f is equal to the user-given heuris-
tic function h. When w is very large GBFS is similar to
WA* but not equivalent; indeed, in both algorithms search
is mainly driven by h but in WA* g(n) winds up acting as a
tiebreaker.

Real-Time Search
In Real-Time search the objective is to solve a search prob-
lem with an additional real-time constraint: constant—and
usually little—computational time is given to the agent be-
fore each action is performed. As such, to solve a search
problem search must be interleaved with execution. The ob-
jective of the search phase is to provide the agent with a
move that hopefully leads it to the goal.

An example of a Real-Time Search algorithm is Learning
Real-Time A* (LRTA*; Korf, 1990). In static environments
the algorithm is as follows.

1. set s to sstart .

2. set y to argmint∈Succc(s) c(s, t) + h(t); i.e., the most
promising neighbor.

3. If h(s) < c(s, y) + h(y), set h(s) to c(s, y) + h(y).

4. execute the action given by arc (s, y) and set s to y.

5. terminate if at the goal state; otherwise go back to step 2.

Step 3 is called the learning step; it makes h more informed
and is essential to avoid infinite loops.

Under reasonable conditions, LRTA* and many other
variants (e.g., LSS-LRTA*; Koenig and Sun, 2009) are guar-
anteed to lead the agent to sgoal when there is a path from
sstart to sgoal . However when there is no solution to the
problem, many of these algorithms iterate forever. As we



see later Time-Bounded algorithms have the additional ad-
vantage that they will prove a solution does not exist, and
always terminate.

Time-Bounded Best-First Search
Time-Bounded A* (Björnsson, Bulitko, and Sturtevant
2009) is a real-time search algorithm based on A*. Intu-
itively, TBA* can be understood as an algorithm that runs an
A* search rooted at sstart whose objective is to reach sgoal.
Unlike A*, TBA* expands a constant number of states be-
tween the execution of each action. More specifically, TBA*
alternates a search phase with a movement phase until the
goal is reached. If the goal state has not been reached, in
each search phase it expands k states, and then builds a path
from sstart to the state in Open that minimizes the evalua-
tion function f . The path is built quickly by following parent
pointers, and it is stored in variable path . In the movement
phase, if the current position of the agent, scurrent, is on
path, then the agent performs the action determined by the
state immediately following scurrent on path . Otherwise, it
performs a physical backtrack, moving the agent to its pre-
vious position. Physical backtracking is a mechanism that
guarantees that the agent will eventually reach a state in vari-
able path . As soon as such a state is reached the agent will
possibly start moving towards the state believed to be closest
to the goal.

A pseudo-code for Time-Bounded Best-First Search (TB-
BFS) is presented in Algorithm 1. The parameters are
a search problem (S,A, c, sstart , sgoal), and an integer k
which we refer to as the lookahead parameter. TB-BFS is
like TBA* but a generic Best-First Search which expands
at most k states per call is run instead of A*. The current
position of the agent is kept in scurrent. Routine Initialize-
Search()—which is only called once— initializes the prior-
ity of each state. Variable goalFound is set initially to false
and made true as soon as a solution is found by Best-First-
Search().

Algorithm 1 is equivalent to TBA* when the evaluation
function is defined as f(s) = g(s) + h(s), where h is a
user-given heuristic and g(sstart) = 0, and g(s) = g(s′) +
c(s′, s) when s was expanded from s′. We call the algorithm
resulting from using f(s) = g(s) + wh(s) Time-Bounded
WA* (TB-WA*). Finally, we call Time-Bounded GBFS (TB-
GBFS) the algorithm that results when f(s) = h(s) is used.

Properties
Now we analyze a few interesting properties of the algo-
rithms we have just proposed. First, just like TBA*, TB-BFS
always terminates and finds a solution if one exists. This is
an important property since many real-time algorithms (e.g.,
LRTA*) enter an infinite loop on unsolvable problems. Sec-
ond, we prove an upper bound on the cost of solutions re-
turned by TB-WA*. This bound is interesting since it sug-
gests that by increasing w one might obtain better solutions
rather than worse.

Theorem 1 TB-BFS will move an agent to the goal state
given a problem P if a solution to P exists. Otherwise, it

Algorithm 1: Time-Bounded Best-First Search
1 procedure InitializeSearch()
2 sroot ← scurrent
3 Open ← ∅
4 foreach s ∈ S do
5 p(s) =∞
6 p(sroot )← f(sroot )
7 Insert sroot in Open
8 goalFound ← false

9 function Best-First-Search()
10 expansions ← 0
11 while Open 6= ∅ and expansions < k and

p(sgoal ) > mint∈Open p(t) do
12 Let s be the state with minimum priority in Open
13 Remove s from Open
14 foreach t ∈ Succc(s) do
15 Compute f(t) given this newly found path.
16 if f(t) < p(t) then
17 p(t)← f(t)
18 parent(t)← s
19 Insert t in Open

20 expansions ← expansions + 1

21 if Open = ∅ then return false
22 Let sbest be the state with minimum priority in Open .
23 if sbest = sgoal then goalFound ← true
24 path ← path from sroot to sbest
25 return true

26 function MoveToGoal()
27 scurrent ← sstart
28 InitializeSearch()
29 while scurrent 6= sgoal do
30 if goalFound = false and Best-First-Search() = false then
31 return false;

32 if scurrent is on path then
33 scurrent ← state after scurrent on path
34 else
35 scurrent ← parent(scurrent );

36 Execute movement to scurrent

37 return true

38 procedure Main
39 if MoveToGoal() = true then
40 print(“the agent is now at the goal state”)
41 else
42 print(“no solution”)

will eventually print “no solution”.

Proof: Straightforward from the fact that Best-First Search
returns a solution iff one exists. �

The following two lemmas are intermediate results that
allow us to prove an upper bound on the cost of solutions
obtained with TB-WA*. The results below apply to TBA*
but to our knowledge Lemma 1 and Theorem 2 had not been
proven before for TBA*.

In the results below, we assume that P =
(S,A, c, sstart , sgoal) is a static search problem, that
TBA-WA* is run with a parameter w ≥ 1 and an ad-
missible heuristic. Furthermore, we assume c∗ is the
cost of a minimum-cost path from sstart to sgoal , that
c+ = max(u,v)∈A c(u, v), and that N(w) is the number of
expansions needed by WA* to solve P .
Lemma 1 The cost incurred by an agent controlled by
TB-WA* before goalFound becomes true does not exceed
bN(w)−1

k cc+.
Proof: N(w) − 1 states are expanded before goalFound
becomes true. If k states are expanded per call to the
search procedure, then clearly bN(w)−1

k c is the number of



calls for which Best-First-Search terminates without setting
goalFound to true. Each move costs at most c+, from where
the result follows. �

Now we focus on the cost that is incurred after a complete
path is found. The following Lemma is related to a property
enjoyed by TBA* and stated in Theorem 2 by Hernández et
al. (2012).
Lemma 2 The cost incurred by an agent controlled by TB-
WA* after goalFound has become true cannot exceed 2wc∗.
Proof: Assume goalFound has just become true. Let π be
the path that starts in sstart , ends in scurrent and that is de-
fined by following the parent pointers back to sstart . Path π
is the prefix of a path to the lowest f -value state in a run of
WA* and therefore is such that c(π) < wc∗. Now the worst
case in terms of number of movements necessary to reach
the goal is that path and π coincide only in sstart . In this
case, the agent has to backtrack all the way back to sstart .
Once sstart is reached, the agent has to move to the goal
through a path of cost at most wc∗. Thus the agent may not
incur in a cost higher than 2wc∗ to reach the goal. �

Now we obtain an upper bound on solution cost for TB-
WA* which follows straightforwardly from the two previous
lemmas.
Theorem 2 The solution cost obtained by TB-WA* is at
most bN(w)−1

k cc+ + 2wc∗.
An interesting observation is that empirical observations

show that in many domains, when w is increased, N(w)
decreases exponentially. Thus, when increasing w the first
term of the sum may decrease exponentially while the sec-
ond may increase only linearly. This suggests that there are
situations in which better- rather than worse-quality solu-
tions may be found when w is increased. As we see later,
this is confirmed by our experimental evaluation. On the
other hand, note that the first term of the bound is less im-
portant if k is large or if N(w) does not decrease signifi-
cantly by increasing w. Thus, we expect less benefits from
running TB-WA* over TBA* if k is large or when search is
carried out in problems in which WA* does not expand sig-
nificantly fewer nodes than A* in offline mode, which is the
case in some domains (Wilt and Ruml 2012).

Dynamic Environments via Restarting
TB-BFS is not amenable for dynamic environments. Indeed
since the cost function changes, the path being followed by
the agent may contain two successive states that are not suc-
cessors anymore. Furthermore, when an arc cost decreases,
there may be a new lowest-cost path, cheaper than the one
being followed so far. When the quality of the solution
matters, following the currently available path may not be
a good decision.

A straightforward approach to dynamic environments is
what we call here eager restarting, which is to restart search
each time the cost function has changed. This way we make
sure the path followed by the agent is always obstacle-free.
In addition this allows us to establish bounds on the cost
incurred by the agent when it is moving forward on a path
that contains the goal (in analogy to Lemma 2).

Algorithm 2: Repeated TB-BFS
1 function MoveToGoal()
2 scurrent ← sstart
3 c← get initial cost function
4 cprev ← c
5 InitializeSearch()
6 while scurrent 6= sgoal do
7 if goalFound = false and Best-First-Search() = false then
8 return false;

9 if scurrent is on path then
10 scurrent ← state after scurrent on path
11 else
12 scurrent ← parent(scurrent );

13 Execute movement to scurrent
14 cprev ← c
15 c← get new cost function
16 if RestartSearch?() then
17 InitializeSearch()

18 return true

A pseudo-code for Restarting TB-BFS is shown in Algo-
rithm 2. Functions not mentioned are inherited from TB-
BFS. There are two main differences with TB-BFS: first,
after each movement a new cost function is retrieved, and,
second, search may be restarted after performing a move-
ment. Eager restarting results from implementing Restart-
Search?() as returning true if and only if cprev 6= c.

Below we propose, however, lazy restarting strategies,
whereby search is restarted only when needed. Algorithm 3
proposes an implementation for RestartSearch?(). If the
cost of an arc (u, v) increases it checks whether or not
(u, v) is an arc to be followed in the future and if that is
the case, it restarts search. If otherwise, its cost decreases
then it estimates the shortest path through arc (u, v) as
c′ = h(scurrent, u) + c(u, v) + h(v, sgoal), where h(s, t)
is an estimate of the cost of a shortest path between s and
t. Search is restarted if wc′ is lower than the cost of the
remaining path.

Algorithm 3: Lazy Restart Search for WA*
1 function RestartSearch?()
2 for each (u, v) such that cprev (u, v) 6= c(u, v) do
3 if c(u, v) > cprev (u, v) then
4 if v is on path then return true
5 else
6 c′ ← h(scurrent , u) + c(u, v) + h(v, sgoal )
7 c← cost of the suffix of path after scurrent
8 if wc′ < c then return true

9 return false

The particular way search is restarted allows us to prove
the following result, which is analogous to Lemma 2 for
static domains.

Theorem 3 Let P = (S,A, c0c1 · · · , sstart , sgoal) be a
search problem over a dynamic environment, and consider a
run of Repeated TB-WA* with parameter w ≥ 1 and an ad-
missible heuristic. Let cpath be the cost of path with respect
to cost function cn, and c∗n be the cost of a cost-minimal path
from scurrent to sgoal . Then cpath ≤ wc∗n.

In dynamic domains, it is unfortunately not possible to ob-
tain completeness results like the one in Theorem 1 since an



ever changing cost function may eventually block all paths
to the goal.

Quality Measures Beyond Solution Cost
Even though real-time heuristic search algorithms are ap-
plicable to videogame pathfinding, they are not used in de-
ployed video games. Bulitko et al. (2011) argue that the
main reason for this is due to the fact that these algorithms
tend to repeatedly visit certain states of the search space—
a behavior they describe as scrubbing. Indeed algorithms
like LRTA* spend many iterations increasing the h-values
of states in heuristic depressions, and certainly exhibit sig-
nificant scrubbing.

Even though TBA* significantly outperforms LRTA*
(Björnsson, Bulitko, and Sturtevant 2009), it may also ex-
hibit significant scrubbing. To see this, imagine a TBA*
run with lookahead 1. Each time the path to the best state
in Open changes, the agent performs physical backtracking
(i.e., scrubbing).

We say that a move is a back-move whenever the move-
ment is towards the parent of the current state (i.e., when
scurrent is set to parent(scurrent) prior to executing move-
ment. Later we use back-moves to assess the quality of a
solution in addition to cost.

In our experiments below we also measure the number of
non-optimal moves, which we define as the moves that are
not in an optimal path to sgoal . It is well-known that so-
lutions returned by A* never contain a non-optimal move
whereas those returned by WA* may contain a bounded
number of them. This fact does not hold for Time-Bounded
versions of these algorithms and therefore we considered
valuable to include this metric in our evaluation.

Experimental Results
We evaluated variants of TB-BFS on pathfinding tasks in
grid-like static and dynamic terrain. Specifically, we use
eight-neighbor grids since they are often preferred in prac-
tice (Bulitko et al. 2011; Koenig and Likhachev 2005). Fol-
lowing existing experimental evaluations (Sun, Koenig, and
Yeoh 2008; Aine and Likhachev 2013), the agent is aware
of cost changes anywhere in the grid. The cost of a horizon-
tal or vertical movement is 1 and cost of a diagonal move-
ment is

√
2. The user-given heuristic are the octile distances.

All the experiments were run in a 2.00GHz QuadCore Intel
Xeon machine running Linux.

Static Environments
We used all 512 × 512-cell maps from the video games
World of Warcraft III (WC3) and Baldurs Gate (BG), and
all the Room maps (ROOMS) available from N. Sturtevant’s
pathfinding repository (Sturtevant 2012). In addition, we
used larger 1024×1024-cell maps from the StarCraft game.
Specifically, we used the Cauldron, Expedition, Octopus,
PrimevalIsles, and TheFrozenSea map of size 1014 × 1024
from the video game StarCraft.

For the smaller maps we evaluated five lookahead val-
ues: 1, 4, 16, 64, 256, whereas for larger maps we used six

values: 1, 32, 128, 256, 512, 1024. For each map we gener-
ated 100 random solvable test cases. For TB-WA* we used
six weight values: 1.0, 1.4, 1.8, 2.2, 2.6, 3.0. All algorithms
have a common code base and use a standard binary heap
for Open . In TB-WA*, ties in Open are broken in favor of
larger g-values. We evaluated the algorithms considering so-
lution cost and the runtime, as measures of solution quality
and efficiency, respectively.

Figure 1 and Figure 2 show performance measures for
BG and ROOM. Since the WC3 plots look extremely similar
when compared to BG, we omit them due to space restric-
tions. We observe the following relations hold for all maps
regarding solution cost and search time.
Solution Cost For lookahead values up to 64, solution cost

decreases as w is increased. More significant improve-
ments are observed for lower lookahead values. This is
not surprising in the light of our cost bound (Theorem 2)
. For large lookahead parameters (≥ 128), the value of w
does not affect solution cost significantly. TB-GBFS, on
the other hand, obtains the best-quality solutions among
all algorithms when the lookahead parameter is small. In
fact, in ROOMS TB-GBFS outperforms TBA* by almost
an order of magnitude. With greater lookahead values,
TB-WA*(w = 3) is the algorithm obtaining best-quality
solutions overall.

Search Time As w is increased, search time decreases sig-
nificantly for lower lookahead values and decreases mod-
erately for higher lookahead values. TB-GBFS is faster
than TBA*, but in most cases TB-WA* is faster than TB-
GBFS. In the large maps, even for high lookahead values
(> 128) TB-WA*(w = 3) and TB-GBFS are at least six
times faster than TBA*.
Overall, results show that TB-WA* (with w > 1) and TB-

BFS are superior to TBA* in both cost and search time in the
majority of cases, especially when the lookeahead is small
(i.e., when time resources are very limited). This is because
these algorithms require fewer state expansions to reach the
goal compared to TBA*.

Now we focus on the additional quality measures de-
scribed above. Figure 3 and Figure 4 show the total number
of non-optimal moves and the percentage of back-moves in
BG and ROOMS relative to non-optimal moves. Again we
omit WC from the plots for the same reasons given above.
The following relations hold for all three benchmarks.
Non-Optimal Moves We observe the number of non-

optimal moves performed by TB-WA* decreases as w is
increased, except for lookahead 256 in smaller maps and
lookahead 512 or higher for larger maps. For high looka-
head values, TBA* performs fewer non-optimal moves
than TB-WA* (w > 1), which is explained by the fact
that TBA* finds an optimal solution requiring fewer agent
moves when the lookahead parameter is high. TB-GBFS
performs fewer non-optimal moves for small lookaheads.
With higher lookahead values TB-GBFS yields a higher
number of non-optimal moves than other algorithms.

Scrubbing TBA* is the algorithm that on average performs
the highest proportion of back-moves compared to TB-
WA* (w > 1) and TB-GBFS. The tendency is that the



 300

 500

 1000

 2000

 4000

 6000

 10000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

C
os

t

Algorithm

BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 300

 500

 1000

 2000

 4000

 6000

 10000

 30000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TBGBFS

C
os

t
Algorithm

Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 1000

 10000

 100000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TBGBFS

C
os

t (
lo

g 
sc

al
e)

Algorithm

Large Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 1: In static domains, solution cost tends to decrease as w or the lookahead parameter is increased.

 0

 1

 2

 3

 4

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

R
un

tim
e 

(m
s)

Algorithm

BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 0

 2

 4

 6

 8

 10

 20

TB-w
A*(1

.0
)

TB-w
A*(1

.4
)

TB-w
A*(1

.8
)

TB-w
A*(2

.2
)

TB-w
A*(2

.6
)

TB-w
A*(3

.0
)

TB-G
BFS

R
un

tim
e 

(m
s)

Algorithm

Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 1

 10

 100

 1000

TB-w
A*(1

.0
)

TB-w
A*(1

.4
)

TB-w
A*(1

.8
)

TB-w
A*(2

.2
)

TB-w
A*(2

.6
)

TB-w
A*(3

.0
)

TB-G
BFS

R
un

tim
e 

(m
s)

 (
lo

g 
sc

al
e)

Algorithm

Large Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 2: In static domains, search time typically decreases as w or the lookahead parameter is increased.

percentage back-moves decrease as w increases, and TB-
GBFS performs the fewest back-moves among all algo-
rithms.

Overall, if one wants to avoid scrubbing TB-GBFS is
clearly the algorithm of choice. On the other hand TB-
WA*(w = 3) does significantly less scrubbing than TBA*
(but a little more than TB-GBFS) and in most cases performs
fewer non-optimal moves than other algorithms. Thus TB-
WA*(w = 3) seems to be the algorithm that achieves the
best balance among both quality measures.

Dynamic Environments
Following an existing experimental evaluation by Aine and
Likhachev (2013), we evaluated Repeated TB-WA* (hence-
forth RTB-WA*) with lazy restarting, and six weight val-
ues: 1.0, 1.4, 1.8, 2.2, 2.6, 3.0 in 1000 × 1000 grids with a
10% obstacles placed randomly. The original map is given
to the agent before the first search. After 10 moves made
by the agent, (cr/2)% of the originally unblocked cells be-
come blocked and (cr/2)% of the originally blocked cells
become unblocked. We call cr change rate. We tested with
three change rates: 1, 5, and 10. For each change rate we

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

wA*(1
.0

)

wA*(1
.4

)

wA*(1
.8

)

wA*(2
.2

)

wA*(2
.4

)

wA*(3
.0

)

R
un

tim
e 

R
at

io
 (

E
ag

er
 w

A
*/

La
zy

 w
A

*)

Algorithm

Change rate 1
Change rate 2
Change rate 5

Change rate 10

Figure 6: Lazy restart significantly outperforms eager restart
in dynamic domains.



 20

 50

 300
 500

 1000

 2000

 4000
 6000

 10000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

N
um

be
r 

of
 N

on
-O

pt
im

al
 M

ov
es

Algorithm

BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 20

 50

 300
 500

 1000

 2000

 4000
 6000

 10000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

N
um

be
r 

of
 N

on
-O

pt
im

al
 M

ov
es

Algorithm

Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 10

 100

 1000

 10000

 100000

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFSN

um
be

r 
of

 N
on

-O
pt

im
al

 M
ov

es
 (

lo
g 

sc
al

e)

Algorithm

Large Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 3: In static domains, as w increases solutions tend to have fewer non-optimal moves, except when the lookahead value
is large.

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

P
er

ce
nt

ag
e 

of
 B

ac
k 

M
ov

es

Algorithm

BG Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

P
er

ce
nt

ag
e 

of
 B

ac
k 

M
ov

es

Algorithm

Room Maps

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

TBwA*(1
.0

)

TBwA*(1
.4

)

TBwA*(1
.8

)

TBwA*(2
.2

)

TBwA*(2
.6

)

TBwA*(3
.0

)

TB-G
BFS

P
er

ce
nt

ag
e 

of
 B

ac
k 

M
ov

es

Algorithm

Large Maps

Lookahead 1
Lookahead 32

Lookahead 128
Lookahead 256
Lookahead 512

Lookahead 1024

Figure 4: In static domains, as w increases solutions tend to have fewer back-moves.

generated 100 random test cases and computed the average
cost and runtime.

First we compare the two restart strategies. For the com-
parison we use TB-WA* used with lookahead parameter set
to infinity. Figure 6 shows the ratio between the runtime
obtained by lazy and eager restarting for different change
rates and weight values. Lazy restart yields substantially
faster executions. Interestingly, eager restarting has been the
standard strategy when evaluating incremental search algo-
rithms in dynamic domains (Sun, Koenig, and Yeoh 2008;
Aine and Likhachev 2013). This evaluation calls for the use
of lazy restarts in future evaluations of those algorithms.

Figure 5 shows the solution cost and the runtime. For both
change rates cost and runtime decrease when w increases,
for all lookahead values. If w = 1, the best solution cost
is obtained with lookahead 256 whereas best runtime is ob-
tained with lookahead 4. On the other hand, best cost results
are obtained with w > 1; costs are similar across all looka-
head values and best runtimes are obtained when lookahead
is equal to 1. We conclude RTB-WA* with lookahead equal
to 1 and w > 1 are the best-performing algorithms because

the agent makes fewer non-optimal moves and restarts are
less frequent.

Conclusions and Perspectives
This paper introduced Time-Bounded Best-First Search
(TB-BFS), a generalization of TBA*, suitable for solving
search problems under real-time constraints. In addition, it
introduced a restarting version of TB-BFS for dynamic envi-
ronments, and quality measures beyond solution cost aimed
at assessing solutions in the context of videogames.

In static domains we proved TB-BFS returns a solution
if the problem is solvable, and, unlike many other real-time
search algorithms, terminates if the problem has no solution.
In addition, we proved a bound on the cost of solutions re-
turned by TB-WA*. Given a weight w, and if the lookahead
parameter is not too large, our bound suggests that TB-WA*
will be significantly superior to TBA* precisely on search
problems in which WA* expands significantly fewer states
than A*. On the other hand our bound suggests that TB-
WA* may not yield benefits in domains in which WA*—run
offline—will not yield any improvements over A*.



 300

 500

 1000

 2000

 4000

 6000

RTB-w
A*(1

.0
)

RTB-w
A*(1

.4
)

RTB-w
A*(1

.8
)

RTB-w
A*(2

.2
)

RTB-w
A*(2

.4
)

RTB-w
A*(3

.0
)

C
os

t

Algorithm

Random Maps Change Rate 1

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 300

 500

 1000

 2000

 4000

 6000

RTB-w
A*(1

.0
)

RTB-w
A*(1

.4
)

RTB-w
A*(1

.8
)

RTB-w
A*(2

.2
)

RTB-w
A*(2

.4
)

RTB-w
A*(3

.0
)

C
os

t
Algorithm

Random Maps Change Rate 5

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 300

 500

 1000

 2000

 4000

 6000

RTB-w
A*(1

.0
)

RTB-w
A*(1

.4
)

RTB-w
A*(1

.8
)

RTB-w
A*(2

.2
)

RTB-w
A*(2

.4
)

RTB-w
A*(3

.0
)

C
os

t

Algorithm

Random Maps Change Rate 10

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 0.5

 1

 2

 3
 4
 5

 10

 20

TB-w
A*(1

.0
)

TB-w
A*(1

.4
)

TB-w
A*(1

.8
)

TB-w
A*(2

.2
)

TB-w
A*(2

.4
)

TB-w
A*(3

.0
)

R
un

tim
e 

(m
s)

Algorithm

Random Maps Change Rate 1

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 0.5

 1

 2

 3
 4
 5

 10

 20

RTB-w
A*(1

.0
)

RTB-w
A*(1

.4
)

RTB-w
A*(1

.8
)

RTB-w
A*(2

.2
)

RTB-w
A*(2

.4
)

RTB-w
A*(3

.0
)

R
un

tim
e 

(m
s)

Algorithm

Random Maps Change Rate 5

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

 0.5

 1

 2

 3
 4
 5

 10

 20

RTB-w
A*(1

.0
)

RTB-w
A*(1

.4
)

RTB-w
A*(1

.8
)

RTB-w
A*(2

.2
)

RTB-w
A*(2

.4
)

RTB-w
A*(3

.0
)

R
un

tim
e 

(m
s)

Algorithm

Random Maps Change Rate 10

Lookahead 1
Lookahead 4

Lookahead 16
Lookahead 64

Lookahead 256

Figure 5: In dynamic domains, solution cost and search time typically decrease as w is increased.

We implemented and analyzed the performance of time-
bounded algorithms on pathfinding benchmarks. Our results
confirmed some of the conclusions that can be drawn from
our theoretical bound. It is well known that in pathfind-
ing, WA* may expand significantly fewer nodes than A*.
Consistent with this, in our experiments, Time-Bounded
versions of suboptimal algorithms like Weighted A* and
Greedy Best-First Search produce significantly better solu-
tions than those obtained by TBA*. Improvements are less
noticeable when the lookahead parameter is large, as is also
predicted by theory. A conclusion we draw from our ex-
perimental analysis is that TB-WA* seems to be the algo-
rithm that achieves the best balance among quality and per-
formance measures. For instance, TB-WA* (w = 3) with
high lookahead values obtains good solutions very fast, per-
forming almost no scrubbing. TB-WA* seems a good choice
for pathfinding in deployed video games. In our evaluation
in dynamic domains, we also observed savings in time and
cost from using weights and we conclude that lazy restarting
is more efficient than eager restarting.

Our findings are consistent with those obtained by Rivera,
Baier, and Hernández (2013), who also obtain better so-
lutions by using weighted heuristics in the context of
real-time search. Our work adds another piece of evi-
dence that justifies studying the incorporation of weights

into other algorithms (e.g., RIBS; Sturtevant, Bulitko, and
Björnsson, 2010). Other avenues of research include mul-
tiagent pathfinding settings (e.g., Standley, 2010), in which
Repeated TB-BFS is applicable.

References
Aine, S., and Likhachev, M. 2013. Truncated incremental
search: Faster replanning by exploiting suboptimality. In
Proceedings of the 27th AAAI Conference on Artificial In-
telligence (AAAI).
Björnsson, Y.; Bulitko, V.; and Sturtevant, N. R. 2009.
TBA*: Time-bounded A*. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
431–436.
Bulitko, V.; Björnsson, Y.; Sturtevant, N.; and Lawrence,
R. 2011. Real-time Heuristic Search for Game Pathfind-
ing. Applied Research in Artificial Intelligence for Com-
puter Games. Springer.
Hart, P. E.; Nilsson, N.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimal cost
paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2).
Hernández, C., and Baier, J. A. 2012. Avoiding and es-



caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research 43:523–570.
Hernández, C.; Baier, J. A.; Uras, T.; and Koenig, S. 2012.
TBAA*: Time-Bounded Adaptive A*. In Proceedings of the
10th International Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS), 997–1006.
Koenig, S., and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics 21(3):354–363.
Koenig, S., and Likhachev, M. 2006. Real-time adaptive
A*. In Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multi Agent Systems (AAMAS),
281–288.
Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189–211.
Pearl, J. 1984. Heuristics: Preintelligent Search Strate-
gies for Computer Problem Solving. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3):193–204.
Rivera, N.; Baier, J. A.; and Hernández, C. 2013. Weighted
real-time heuristic search. In Proceedings of the 11th Inter-
national Joint Conference on Autonomous Agents and Multi
Agent Systems (AAMAS), 579–586.
Schmid, K.; Tomic, T.; Ruess, F.; Hirschmüller, H.; and
Suppa, M. 2013. Stereo vision based indoor/outdoor naviga-
tion for flying robots. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 3955–3962.
Standley, T. S. 2010. Finding optimal solutions to coopera-
tive pathfinding problems. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI).
Sturtevant, N. R.; Bulitko, V.; and Björnsson, Y. 2010. On
learning in agent-centered search. In Proceedings of the 9th
International Joint Conference on Autonomous Agents and
Multi Agent Systems (AAMAS), 333–340.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144 – 148.
Sun, X.; Koenig, S.; and Yeoh, W. 2008. Generalized
adaptive A*. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi Agent Systems
(AAMAS), 469–476.
Wilt, C. M., and Ruml, W. 2012. When does weighted A*
fail? In Proceedings of the 5th Symposium on Combinatorial
Search (SoCS).


