Assignment 5 CSC263
Due: Dec 4, 2008

1. [15 marks| Let G = (V, E) be a directed acyclic graph in which each vertex u € V is labelled with a
unique integer L(u) from the set {1,2,...,|V|}. For each vertex u € V, let R(u) be the set of vertices
that are reachable from u. Define min(u) to be the vertex in R(u) whose label is minimum, i.e., min(u)
is the vertex v such that L(v) = min{L(w) : w € R(u)}. Give an O(|V| + |E|) time algorithm that
computes min(u) for all vertices u € V. Briefly justify your algorithm’s correctness and why it runs in
O(|V] + |E|) time.

2. Consider an “extendable array” data structure for representing a dictionary ADT in which only the
following two operations are supported:

e ADD(x): adds the element 2 to the next empty space in the array.
e RETRIEVE(i): returns the ith item in the array.

Suppose that in our implementation, instead of copying the elements of the array into an array of
double the size (i.e., from n to 2n) whenever capacity is reached, we copy the elements into an array
with [y/n] additional cells. That is, whenever the array is full, we go from capacity n to n + [/n].

(a) [15 marks] Use the aggregate method to give a tight bound on the amortized complexity of ADD
operations in this implementation.

(b) Bonus [10 marks] Now use the accounting method to give a tight bound on the amortized com-
plexity of ADD operations.

3. In this question we will investigate implementing an open addressing hash table using a dynamic array.
The hash table will be a dynamic array that doubles whenever it becomes 3/4 (or more) full and halves
whenever it becomes 1/4 (or less) full. More precisely, when the array grows, we have to create a new
array of twice the size, go through every slot in the old array and, whenever we find a nonempty slot,
rehash the item into the new array. We handle the shrinking case similarly. Assume that the array
starts out empty. The hashing will be done by some arbitrary hash function with some arbitrary type
of probing. Throughout the question, we will measure the cost of each INSERT and DELETE by the
number of array slots that we need to access (read or write).

(a) [2 marks] Recall from lecture that the expected number of probes needed to INSERT or DELETE
an item from a hash table with n elements and m slots is ﬁ where a = 7+ is the load factor.

In the scheme described above, what is a,4,, the biggest that the load factor ever becomes? For
simplicity, assume from now on that every INSERT or DELETE requires exactly probes.

1—amaa

(b) [5 marks| Let m be the current size of the array. What is the cost of doing an INSERT in the case
where the array needs to double? What is the cost of doing a delete in the case where the array
needs to halve? Briefly explain your answers.

(c) [8 marks] Use the accounting method to show that the amortized cost for an INSERT or a DELETE
operation is O(1). In particular, detail a “credit scheme” so that we can always cover all the costs
of an insertion or a deletion. Make sure to specify how much to charge for INSERT and DELETE,
what the credit invariant will be and, briefly, how to maintain the credit invariant.

(d) [5 marks] Now consider an extensible hash-table that only halves the hash-table size whenever
the load factor falls strictly below 3/8 (i.e., re-sizing is done if the load factor falls to any number
less than 3/8 but is not done if the load factor is exactly 3/8.) In such an implementation, is the
amortized cost of a INSERT or a DELETE operation still O(1)? Justify your answer: if yes, the
accounting method to prove that the amortized cost is O(1); if not, give a sequence of n INSERT
and DELETE operations that take cannot be completed in time O(n).

