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Abstract

Determining how well we can efficiently compute approximate solutions to NP-
hard problems is of great theoretical and practical interest. Typically the famous
PCP theorem is used for showing that a problem has no algorithms computing
good approximations. Unfortunately, for many problem this approach has failed.
Nevertheless, for such problems, we may instead be able to show that a large subclass
of algorithms cannot compute good approximations.

This thesis takes this approach, concentrating on subclasses of algorithms de-
fined by the LS and LS+ Lovász-Schrijver hierarchies. These subclasses define
hierarchies of algorithms where algorithms in higher levels (also called ”rounds”)
require more time, but may compute better approximations. Algorithms in the
LS hierarchy are based on linear programming relaxations while those in the more
powerful LS+ hierarchy are based on semidefinite programming relaxations. Most
known approximation algorithms lie within the first two–three levels of the LS+

hierarchy, including the recent celebrated approximation algorithms of Goemans-
Williamson [27] and Arora-Rao-Vazirani [7] for max-cut and sparsest-cut, re-
spectively. So understanding the power of these algorithm families seems important.

We obtain new lower bounds for the LS and LS+ hierarchies for several im-
portant problems. In all cases the approximations we rule out in these hierarchies
are not ruled out by known PCP-based arguments. Moreover, unlike PCP-based
inapproximability results, all our results are unconditional and do not rely on any
computational complexity assumptions.

The lower bounds we prove are as follows:

1. For vertex cover we show that Ω(log n) rounds of LS are needed to obtain
2 − ε approximations and Ω(log2 n) rounds are needed for 1.5 − ε approxima-
tions.

2. For max-3sat and set cover we show that Ω(n) rounds of LS+ are needed
for any non-trivial approximation.

3. For vertex cover on rank-k hypergraphs we show that Ω(n) rounds of LS+

are needed for k − 1 − ε approximations.

4. For vertex cover on rank-k hypergraphs we show that Ω(log log n) rounds
of LS are needed for k − ε approximations.

iii



Acknowledgments

First, I would like to warmly thank my advisor Sanjeev Arora for his guidance over
the past few years. I have learned so much from him not only about the Theory
of Computing, but also on how to be a successful researcher and how to effectively
present my work. This thesis would not have been possible without his help!

I thank my thesis readers Moses Charikar and Boaz Barak as well as my non-
readers Alexander Razborov and Nicholas Pippenger for their helpful comments and
suggestions.

Many thanks also to Mikhail Alekhnovich, Joshua Buresh-Oppenheim, Avner
Magen and Toniann Pitassi for numerous discussions about lower bounds for lift-
and-project methods. Their help (especially that of my co-author Misha) steered
me towards many of the results in this thesis.

I would like to thank Satyen Kale for permission to include his proof of an
integrality gap for vertex cover after one round of LS+.

I would also like to thank Melissa Lawson for all her help and advice while at
Princeton.

A special thanks to my office-mates as well as other friends in and out of the
department for making life at Princeton enjoyable: Amal Ahmed, Nir Ailon, Tony
Capra, Dan “Danilo Tavares” Dantas, Milda Darguzaite, Loukas Georgiadis, Elad
Hazan, Don Johnson, Satyen Kale, Carl Kingsford, Jay Ligatti, Patrick Min, Ananya
Misra, Diego Nehab, Spyros Triantafyllis, Brent Waters, Kevin Wayne, and Tony
Wirth.

I gratefully acknowledge funding through Sanjeev Arora’s David and Lucile
Packard Fellowship and NSF grants CCR 0205594, CCR 0098180, MSPA-MCS
0528414, CCF 0514993, ITR 0205594.

I thank Allison Doerr for her love and support which have made the past few
years so memorable!

Finally, I would like to thank my family for all the encouragement and support
they’ve given me over my graduate studies. This thesis is dedicated to them.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Graphs: Theory and optimization problems . . . . . . . . . 5
1.1.2 Computational complexity and approximability . . . . . . . 6
1.1.3 Integer and linear programming . . . . . . . . . . . . . . . . 7
1.1.4 Farkas’s lemma and Duality . . . . . . . . . . . . . . . . . . 9
1.1.5 Semidefinite programming . . . . . . . . . . . . . . . . . . . 10

2 Lift-and-project methods 12
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 The Lovász-Schrijver method . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Deriving inequalities in LS and LS+ . . . . . . . . . . . . . 18
2.3 The Sherali-Adams method . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Adding a positive semidefiniteness constraint . . . . . . . . . 24
2.4 Previous lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 The Expanding Constraints method 30
3.0.1 Comparison with related results. . . . . . . . . . . . . . . . 31

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Incidence graphs of constraints and their properties . . . . . 32

3.2 Lowerbounds for hypergraph Vertex Cover . . . . . . . . . . . . . . 34
3.2.1 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Lowerbounds for MAX-3SAT . . . . . . . . . . . . . . . . . . . . . 39
3.4 Lowerbounds for Set Cover . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Graph theory lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



4 Lower bounds using LP duality 45
4.1 Lower bounds for graph Vertex Cover . . . . . . . . . . . . . . . . . 46

4.1.1 Intuition for Theorem 4.3 . . . . . . . . . . . . . . . . . . . 46
4.1.2 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . 48
4.1.3 Proof of Lemma 4.5 . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.4 Existence of Y . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Lower bounds for hypergraph Vertex Cover . . . . . . . . . . . . . . 61
4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 The lower bound . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Proof of Theorem 4.15 . . . . . . . . . . . . . . . . . . . . . 62

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 The “Fence” method 72
5.0.1 Comparison with related work . . . . . . . . . . . . . . . . . 72

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.1 The “Fence” trick . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Proof of Theorem 5.5 . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 Round invariants and components . . . . . . . . . . . . . . . 76
5.3.2 The Prover’s strategy for x in round i . . . . . . . . . . . . . 78

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 An integrality gap for Independent Set 86
6.1 Local vs. global properties . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Integrality gaps for Independent Set . . . . . . . . . . . . . . . . . . 87

6.2.1 Proof of Theorem 6.7 . . . . . . . . . . . . . . . . . . . . . . 89

7 Discussion 92
7.1 Integrality gaps for Vertex Cover SDPs . . . . . . . . . . . . . . . . 92

7.1.1 Limitations to our approach . . . . . . . . . . . . . . . . . . 92
7.1.2 An integrality gap for Vertex Cover in the LS+ hierarchy . . 93

7.2 The proof complexity angle . . . . . . . . . . . . . . . . . . . . . . 94
7.3 Lower bounds in the Sherali-Adams hierarchy . . . . . . . . . . . . 96
7.4 The unique games conjecture . . . . . . . . . . . . . . . . . . . . . 96

vi



List of Figures

4.1 Chain of dependencies for the induction in the proof of Theorem 4.3:
Each palette is contained in its respective polytope because some
other palette is contained in the previous polytope. . . . . . . . . . 47

4.2 A positive integer linear combination of the constraints where the
LHS is 0, and which corresponds to two walks p1 and p2 in H with
alternating sign assignments (P1, N1) and (P2, N2), respectively. . . 55

4.3 A walk p in H and the corresponding pair of walks p′, p′′ in G formed
by the bracing edges in p. The walks p′, p′′ could meet, e.g., if p visits
a diagonal vertex in H . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 A portion of a walk p in H in which the bracing node (in this case c)
does not change between edges eij , eij+1

, together with the path p′′ of
bracing edges in G for the portion of p with bracing node c. . . . . 59

4.5 A positive integer linear combination of hypergraph vertex cover
constraints where the LHS is 0, together with its corresponding tiling.
Note Y15, Y45 ∈ UN , and Y47 ∈ UP , Y44 ∈ UPD. . . . . . . . . . . . . 66

vii



Chapter 1

Introduction

Determining how well we can efficiently compute approximate solutions to NP-hard
optimization problems is of both theoretical and practical interest. The approxima-
tion ratio of an algorithm is a number α such that the algorithm is guaranteed to
compute a solution whose cost is within a factor α of the optimal cost. The main
goal of this thesis is to identify which α’s cannot be achieved by algorithms based
on linear and semidefinite programming.

In the last dozen or so years, using techniques based on the famous PCP theorem
from complexity theory [8, 6], researchers have shown that for many problems there
are strong lower bounds on the approximation ratios achievable by any polynomial
time algorithm (i.e., not just those based on linear semidefinite programming). Let
us briefly recall the notion of Probabilistically Checkable Proofs (PCPs) and the
PCP theorem, and their use in proving inapproximability results. Recall that a
language L is in the complexity class NP if there exists a polynomial time verifier
V for L such that for all strings x ∈ L there exists a succinct (i.e., polynomial
size in |x|) proof convincing V that x is in L, whereas for all x 6∈ L no succinct
proof convinces V that x is in L. Surprisingly, the PCP theorem states that if
verifiers are in addition allowed to use O(log n) bits of randomness while checking
a membership proof, then for the NP-complete language 3sat there exists such a
verifier V that can decide the satisfiability of a formula by checking only a constant
number of bits of a candidate membership proof. The catch is that with some small
probability (over the O(log n) random bits the verifier uses) the verifier may accept
an unsatisfiable formula; however, V will never reject a satisfiable formula.

The PCP theorem thus gives a new characterization for NP as the class of all
languages where membership can be probabilistically checked using O(logn) bits of
randomness and examining a constant number of bits of the proof. Feige et al. [23]
had noted before the PCP theorem was discovered that such a characterization
could be used to show that for many optimization problems, attaining a certain
approximation ratio is just as hard as computing 3sat exactly. In general, a PCP-
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based hardness of approximation result for a specific optimization problem L is
proved by coming up with an appropriate reduction from 3sat to L and then
designing and optimizing a PCP verifier tailored for this reduction. Indeed, over
the past dozen or so years, a rich tapestry of inapproximability results has been
discovered using PCPs in this way. For compendia of such results, see Arora and
Lund [5], Feige [21] and Trevisan [53].

However, even with recent advances in designing on the one hand stronger PCPs
and discovering on the other hand better and better approximation algorithms, there
remain two nagging gaps in our knowledge of which problems can and cannot be effi-
ciently well-approximated. First, there are several optimization problems for which
there remain gaps between the approximation ratios achieved by known algorithms
and those ruled out by PCP-based techniques. For example, this is true for vertex
cover and metric travelling salesman, two very basic optimization problems
(indeed vertex cover is in Karp’s original list of NP-complete problems). In
particular, the respective approximation ratios for metric travelling salesman
are 1.5 and 1.02, while for vertex cover they are are 2 and 1.36 [16].

The second gap is that current PCP-based results do not rule out the existence
of slightly subexponential-time approximation algorithms. Algorithms are called
slightly subexponential if they run in time 2nδ

for some fixed 0 < δ < 1. The gap in
our knowledge for such algorithms results from the fact that known PCP-based inap-
proximability results use reductions that greatly increase instance size. For example,
consider the reduction from 3sat to vertex cover used by Dinur and Safra [16]
to show that 1.36-approximations of vertex cover in polynomial time is impossi-
ble unless P = NP. Their proof reduces the polynomial-time computation of 3sat
on instances of size n to the polynomial-time computation of 1.36-approximations
for vertex cover on graphs of size nC for some astronomically large constant C.
Their reduction therefore implies that computing 1.36-approximations of vertex
cover in time T (n) gives an algorithm for 3sat running in time O(T (nC)). Since
we believe computing 3sat requires exponential time, the Dinur-Safra reduction can
be used to rule out 1.36-approximations of vertex cover by any algorithm taking
time asymptotically less than 2n1/C

; however, their reduction, cannot rule out, say,
a 1.2-approximation to vertex cover in 2n0.01

time—an interesting possibility.
PCP-based results are used (in conjunction with some plausible computational

complexity assumption such as P 6= NP) to rule out approximation ratios for all
polynomial algorithms. Moreover, as alluded above they can be used to rule out
even approximation algorithms running in super-polynomial time by appropriately
strengthening the computational complexity assumption used. When PCP-based
approaches stall as for the two gaps in our knowledge mentioned above, Arora,
Bollobás and Lovász [3] suggested pursuing what might be an easier goal: instead
of ruling out all polynomial (slightly subexponential) time algorithms, rule out large
subclasses of polynomial (slightly subexponential, respectively) time algorithms.
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This thesis takes this approach, concentrating on subclasses of algorithms defined
by the LS and LS+ Lovász-Schrijver procedures [43]. These procedures define what
are known as the LS and LS+ hierarchies of algorithms by systematically tightening
linear and positive semidefinite relaxations over many rounds. Algorithms in the
LS hierarchy are based on linear programming relaxations while those in the more
powerful LS+ hierarchy are based on semidefinite programming relaxations. A
relaxation lies in the rth level of the LS (respectively, LS+) hierarchy if it can be
derived by tightening an initial relaxation r times using the LS (respectively, LS+)
procedure. Lovász and Schrijver observe that one can optimize a linear function
over the relaxations produced after r rounds of either the LS or LS+ procedures in
nO(r) time.

The LS and LS+ procedures are often described as lift-and-project or matrix
cut operators. They are called cut operators since (over repeated application) they
systematically cut away slices of an initial polytope to obtain the polytope’s integral
hull (see Section 1.1.3 for formal definitions). They are called lift-and-project (or
matrix) operators since the cuts are obtained by “lifting” the initial polytope to a
higher dimensional space, adding new constraints to the lifted polytope, and then
projecting the resulting polytope back to the original space. We will describe this
process as well as the intuition behind it in detail in Chapter 2.

It is instructive to view the LS and LS+ lift-and-project procedures as defining
restricted models of computation. For example, in the LS model, an optimization
problem is in “time” nr if it can be computed by a linear relaxation in the rth level
of the LS hierarchy. In particular, relaxations in rounds r = O(1) corresponds to
“polynomial time”, while relaxations in rounds r = nδ where 0 < δ < 1 correspond
to “slightly subexponential time”.

These computation models seem quite powerful: It is known that both of these
procedures yield the integral hull after n rounds. In particular, all of NP is
computable in “exponential time” even in the weaker LS model. On the other
hand, many recent celebrated approximation algorithms such as the Goemans-
Williamson [27] algorithm for max-cut and the Arora-Rao-Vazirani [7] algorithm
for sparsest-cut can be derived using a constant number of LS+ rounds and
hence, are computable in “polynomial time” in the LS+ model. Thus, it seems
important to study the power of the LS and LS+ procedures. In particular, prov-
ing (unconditional) inapproximability results in these computation models may give
evidence about a problem’s true inapproximability. Indeed, such lower bounds may
be viewed as analogous to lower bounds proved for other restricted computation
models such as for monotone circuits [48] or specific proof systems [10].

Lift-and-project procedures also provide a tool for studying the approximation
ratios achievable by slightly subexponential algorithms: Proving strong inapprox-
imability results for slightly subexponential algorithms in the LS and LS+ hierar-
chies may give evidence that a problem does not have even slightly subexponential
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non-trivial approximation algorithms.
Initially research on lift-and-project methods concentrated on studying how

many rounds were required by such methods to derive specific inequalities given
an initial linear relaxation [43, 50, 26]. How the integrality gap improved with each
round of lift-and-project was not analyzed. Motivated by the weak PCP-based in-
approximability results for vertex cover mentioned above, Arora et al. [3] were
the first to explicitly study integrality gaps for the LS hierarchy. They showed
that the integrality gap remains 2 − o(1) even after tightening the standard linear
relaxation for vertex cover with Ω(

√
log n) rounds of LS lift-and-project. Con-

temporarily with [3], Feige and Krauthgamer [24] showed that a large integrality gap
remains for relaxations of independent set derived after even Ω(log n) rounds of
tightening with the stronger LS+ method (Feige and Krauthgamer do not explicitly
state their results as integrality gaps but such gaps are an immediate corollary).
Buresh-Oppenheim et al. [11] showed that Ω(n) rounds of LS+ lift-and-project are
needed to achieve non-trivial approximations for max-ksat for k ≥ 5. While strong
PCP-based inapproximability results are known for max-ksat, the results in [11]
can be interpreted as showing that in the LS+ computation model there do not
exist even slightly subexponential non-trivial approximation algorithms for these
problems. We discuss work previous to this thesis more thoroughly in Section 2.4.

In this thesis we build on previous work as well as introduce new techniques to
prove several new inapproximability results in both the LS and LS+ hierarchies.
We now give a high-level description of our results together with an outline of this
thesis; more details on our results will be given in Section 2.5 after first giving a full
technical description of lift-and-project systems in Chapter 2. In Chapter 2 we will
also describe a related lift-and-project system due to Sherali and Adams [49] which
was introduced contemporaneously to that of Lovász and Schrijver and for which
there are still no known non-trivial inapproximability results.

In Chapter 3 we use the “expanding constraints” method to show that non-
trivial approximations for max-3sat, set cover and rank-k hypergraph vertex
cover require Ω(n) rounds of LS+ lift-and-project. In particular, no nontrivial
slightly subexponential approximation algorithms exist for these problems in the
LS+ “computation model”.

In Chapter 4 we extend the results in [3] to show both that (1) the integrality
gap for vertex cover relaxations remains 2−o(1) even after tightening the initial
relaxation with Ω(log n) rounds of LS lift-and-project and that (2) the integrality
gap for vertex cover on rank-k hypergraphs remains k−o(1) even after tightening
the initial relaxation with Ω(log log n) rounds of LS lift-and-project. This may
suggest that the true inapproximability factors for graph and rank-k hypergraph
vertex cover are 2 − o(1) and k − o(1), respectively, even though the strongest
PCP-based hardness results only rule out 1.36 [16] and k−1−ε [15] approximations,
respectively, for these problems.
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In Chapter 5 we introduce the “fence method” and use it to show that the
integrality gap for (graph) vertex cover remains at least 1.5 − o(1) even after
tightening the initial relaxation with Ω(log2 n) rounds of LS lift-and-project.

In Chapter 6 we show that any linear relaxation for independent set where
each inequality uses at most nε(1−γ) of the input variables has an integrality gap
of n1−ε. While this result does not obviously translate into an integrality gap for
independent set in the LS or LS+ hierarchies, it is in the same “spirit” as it also
proves an integrality gap for a large class of linear relaxations.

Finally, in Chapter 7 we discuss some limitations to our approaches as well as
describing several directions for future work.

1.1 Preliminaries

The notation [n] will denote the set {1, . . . , n}. We will use ei to denote the ith
unit vector and define the vector fi, i ≥ 1, to be e0 − ei. The dimensions of ei and
fi will always be clear from context.

1.1.1 Graphs: Theory and optimization problems

Given a graph G = (V, E), we will let n denote the number of vertices in G and
will assume V = [n]. The set of vertices adjacent to a vertex i in a graph will be
denoted by Γ(i). We extend this notation to sets S ⊆ V by having Γ(S) = ∪i∈SΓ(i).
A graph G is drawn from the random graph model G(n, p) by choosing each of the
(

n
2

)

possible edges for G with probability p.
An independent set in G is a subset of vertices such that no two vertices in the

subset are adjacent. A vertex cover in G is a subset S ⊆ V of vertices such that
every edge e ∈ E contains an endpoint in S. Note that if S is an independent set,
then V \S is a vertex cover and vice versa. The maximum independent set problem
(independent set) is to find the an independent set of maximum size in the input
graph G. The independence number of G, denoted α(G), is the maximum size of an
independent set in G. The minimum vertex cover problem (vertex cover) is to
find a vertex cover of minimum size in the input graph G. By the above observation,
the size of a minimal vertex cover in a graph G is n − α(G).

A hypergraph H = (V, E) consists of a set V of vertices (again assumed without
loss of generality to be [n]) and a set E of subsets of V . That is, E is a subset of
the power-set of V . If all sets in E have size k, then we say that H is a k-uniform
hypergraph, or alternatively, a rank-k hypergraph. Note that a rank-2 hypergraph
is of course a standard graph. The concepts of independent sets and vertex covers
are naturally extended to hypergraphs as are the maximum independent set and
minimum vertex cover problems. The size of a maximal independent set in a hyper-
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graph H is denoted by α(H) and it is not hard to verify that the size of a minimum
vertex cover in an n-node hypergraph H is n − α(H), just as in the graph case.

1.1.2 Computational complexity and approximability

The reader is assumed to be familiar with basic concepts from Computational Com-
plexity theory. For completeness, we will review the complexity classes used in this
thesis. More details on Computational Complexity can be found in standard texts
on complexity theory such as Garey and Johnson [25] and Papadimitriou [45].

A computational problem L is a subset of {0, 1}∗; the “problem” is to decide
whether a given string belongs to L. We denote the length of a string x ∈ {0, 1}∗

by |x|. A problem L ⊆ {0, 1}∗ is in the complexity class DTIME(f(n)) if there
exists a deterministic Turing machine M that accepts L and runs in time f(n) on
inputs of size n. The complexity class P is then defined to be ∪c≥1DTIME(nc). A
problem L ⊆ {0, 1}∗ is in the complexity class NTIME(f(n)) if there exists a non-
deterministic Turing machine M that accepts L and runs in time f(n) on inputs of
size n. Alternatively, L ∈ NTIME(f(n)) if there exists L′ ∈ DTIME(n) such that

L =
{

x : ∃y ∈ {0, 1}f(n) such that (x, y) ∈ L′
}

(here “(x, y)” denotes the concate-

nation of the strings x and y). The class NP is then defined to be ∪c≥1NTIME(nc).
Recall that a language L is polynomial-time reducible to another language L′ if

there exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗ such that
x ∈ L iff f(x) ∈ L′. A problem L is NP-hard if all languages in NP are polynomial
time reducible to L. A problem L is NP-complete if it is NP-hard and also in NP.

An important class of problems we will be concerned with are the class of NP-
hard optimization problems. An optimization problem L is either a minimization or
maximization problem and is defined by a polynomial-time computable predicate
P (x, y), a polynomial p, and a cost function f : {0, 1}∗ → Z. Given an input x, a
minimization problem outputs a string y, |y| ≤ p(|x|), such that P (x, y) holds and
such that f(y) is minimized; a maximization instead seeks to maximize f(y). An
optimization problem L is NP-hard if for every problem L′ in NP there exists a
polynomial time algorithm that decides L′ provided access to L as an oracle.

Example 1.1. The problem of finding a vertex cover of minimum size in a graph
is an NP-hard optimization problem: The predicate P (x, y) takes as input a graph
x and a candidate vertex cover y and checks that y is a vertex cover in x. Since the
problem “A graph G has a vertex cover of size k” is known to be NP-complete, it
follows that minimum vertex cover is indeed NP-hard.

Since computing an optimal solution for an instance of an NP-hard optimization
problem is intractable unless P = NP, we can ask if it is possible to efficiently find
a solution whose cost is not much worse than the optimal cost. A minimization
optimization problem L has a polynomial time α-approximation algorithm, α ≥ 1,
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if there exists a polynomial time algorithm which for every instance produces a
solution with cost at most αOPT where OPT is the value of the optimal solution.
Note that α can depend on n. A maximization problem has an α-approximation
algorithm if the solutions have cost at most OPT/α. For more about approximation
algorithms see Vazirani [55] and Hochbaum [33].

Probabilistically checkable proofs (PCPs) and the PCP theorem [8, 6] have been
used to show for several NP-hard optimization problems that for certain factors
α > 1, computing an α-approximation of the problem is also NP-hard. That is, for
many problems finding an approximate solution is just as hard as computing the
optimum exactly. Compendia of such results can be found in Arora and Lund [5],
and more recently, Feige [21] and Trevisan [53].

1.1.3 Integer and linear programming

Two important tools in combinatorial optimization for obtaining approximate solu-
tions for NP-complete problems are linear programming and positive semidefinite
programming relaxations (the latter is the topic of Section 1.1.5).

Before describing these methods, we begin with some definitions. A set S is
called convex if for all x, y ∈ S, 1

2
(x + y) ∈ S. The convex hull of a set S ⊆ Rn,

denoted conv(S), is the smallest convex set in Rn containing S. A set P is a polytope
if it can be defined by {x : Ax ≥ b} for some matrix A and vector b. Let P be a
polytope. If aT x ≥ b is an inequality such that a point x satisfies the inequality iff
x ∈ P then the inequality is called a facet of P . The polytope PI consisting of all
points in the convex hull of the set P ∩ {0, 1}n is called the integral hull for P .

A set is called a cone if it is closed under multiplication by a nonnegative num-
ber. A convex cone is therefore a cone that is closed under nonnegative linear
combinations. Given a closed convex cone K, its polar cone K∗ is defined as

K∗ =
{

a ∈ Rn+1 : aT x ≥ 0 ∀x ∈ K
}

. (1.1)

Intuitively, K∗ consists of all valid linear constraints for K.
The motivation behind using linear (and positive semidefinite) programming

relaxations is the fact the Ellipsoid method can be used to efficiently optimize
any linear function arbitrarily well over any convex set K that has a polynomial-
time weak separation oracle which we define shortly (see Grötschel, Lovász and
Schrijver [28, 29] for details).1 In particular, the set need not have an explicit
polynomial size description. To keep the notation clean we will define separation
oracles for convex cones rather than polytopes; extending the definition to polytopes
is straightforward.

1In addition, K must satisfy some technical properties, namely that K both contains and is
contained within two balls whose sizes are known.
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Definition 1.2. A strong separation oracle for a convex cone K ⊆ Rn is an running
in polynomial time that given a vector x ∈ Rn either states that x ∈ K or returns
a vector w ∈ Rn such that wT y ≥ 0 for all y ∈ K, but wT x < 0. The vector w is
called a separating hyperplane. A weak separation oracle allows numerical errors:
The input now consists of a vector x ∈ Rn and a rational number ε > 0. The oracle
then states in time polynomial in n and 1/ε either that the Euclidean distance
between x and K is at most ε or it returns a vector w such that |w| ≥ 1, wTx ≤ ε
and the Euclidean distance between w and K∗ is at most ε.

An n-variable linear program is the following optimization problem:

min cT x
s.t. Ax ≥ b,

x ≥ 0,
(1.2)

where x is an n-dimensional vector, and A ∈ Rm×n, b ∈ Rm and c ∈ Rn. When the
variables are restricted to be integers we get an integer linear program or simply
integer program for short. By definition, the set of feasible solutions for a linear
program forms a polytope. The central object of study in this thesis is to determine
for a variety of linear programs how the polytope of feasible solutions compares with
its integral hull, the convex hull of all integral solutions.

The problem of checking if a 3CNF formula φ is satisfiable can be expressed as
an integer program of size polynomial in |φ| and hence integer programming is NP-
hard. On the other hand, the feasible region of a linear program with polynomially
many constraints (in n) trivially has a strong separation oracle. Hence, (polynomial
size) linear programming is in P.

This suggests the following approach for approximating NP-hard optimization
problems: We wish to optimize a linear function f over some set F ⊆ {0, 1}n.
First we obtain a description for the convex hull polytope conv(F ). By the above
discussion, the convex hull generally need not have a polynomial description (or
even a weak separation oracle), so we instead try to find a (polynomial size) linear
program whose integral hull PI = conv(F ). The polytope P of feasible solutions
to the linear program is called a linear programming relaxation or simply a linear
relaxation for PI . The quality of the relaxation P is measured by its integrality gap
which is the ratio optimum value of f over PI

optimum value of f over P
.2

Example 1.3. For vertex cover on graphs, represent each vertex cover as an
incidence vector on the set of vertices and denote the convex hull of all such vectors

2When designing approximation algorithms, one also needs some kind of rounding algorithm

which converts fractional solutions to integer ones in polynomial time. However, it has been
empirically observed that no matter which rounding algorithm is used, the resulting approximation
algorithm never has an approximation ratio better than the integrality gap. Hence, we will not
worry about rounding algorithms in this thesis.
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by V C(G). Then V C(G) = PI where P is the polytope defined by the following
constraints:

xi + xj ≥ 1 ∀ {i, j} ∈ E, (1.3)

0 ≤ xi ≤ 1 ∀i ∈ V. (1.4)

It can be shown that each xi ∈
{

0, 1
2
, 1
}

in any optimal solution. Hence, the
integrality gap for this relaxation of V C(G) is 2 since we can obtain a vertex cover
from a fractional solution by taking all vertices i such that xi ∈

{

1
2
, 1
}

(for details
see [32]).

Given a linear relaxation we could try to “tighten it” by adding to it inequalities
satisfied by the integral hull. Extensive research has been done for finding tighter
relaxations for specific optimization problems. Moreover, several techniques have
been developed for systematically tightening relaxations over many rounds. This is
the topic of Chapter 2 where we discuss “lift-and-project” methods and how they
are used to tighten relaxations.

1.1.4 Farkas’s lemma and Duality

For proofs of the results given in this section see Papadimitriou and Steiglitz [46]
or Vazirani [55].

Recall the general linear program given in (1.2). Farkas’s lemma tells us precisely
when the set of conditions for such an LP are satisfiable:

Lemma 1.4 (Farkas’s Lemma). The set of conditions in (1.2) is infeasible iff
there exist an m-dimensional vector λ ≥ 0 such that λT A < 0 but λ · b > 0.

Above, the notation u < v (respectively, u ≤ v) for two vectors u, v means u is
componentwise strictly less (respectively, less than or equal) than v.

Aside from giving a useful condition for testing whether a set of constraints is
feasible (indeed we will use Farkas’s lemma for this purpose in Chapter 4), Farkas’s
lemma is also used to prove the (strong) LP duality theorem which we state shortly.
First we define the dual of the linear program given in (1.2). Our original linear
program (1.2) (called the primal) had n variables and m constraints. The dual of
(1.2) has m variables y1, . . . , ym, and n constraints and is given by the following
linear program:

max yT b
s.t. yTA ≤ cT ,

y ≥ 0.
(1.5)

Note that if the primal contains an equality constraint instead of an inequality, then
the variable in the dual corresponding to that constraint is unconstrained (i.e., it
need not be non-negative). Note also that the dual of the dual is the primal.
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Theorem 1.5 (LP duality theorem). If the primal and dual are both feasible,
then their optima are identical.

1.1.5 Semidefinite programming

One powerful technique for tightening relaxations is positive semidefinite program-
ming. Recall that an n × n matrix Y is positive semidefinite (notated Y � 0) if it
is symmetric and xT Y x ≥ 0 for all x ∈ Rn.

Lemma 1.6. Let Y be an n × n symmetric matrix. Then the following are equiva-
lent:

1. Y is positive semidefinite

2. All the eigenvalues of Y are nonnegative

3. There exist real-valued vectors v1, . . . , vn such that Yij = vT
i vj.

4. For all i ∈ [n] the upper-left i × i submatrix of Y has a positive determinant.

Corollary 1.7. The set of positive semidefinite matrices is a convex cone.

A semidefinite program is the following optimization problem:

max C · Y

s.t. A1 · Y ≥ b1,

...

Am · Y ≥ bm,

Y � 0,

where Y is an n × n matrix of variables, C, A1, . . . , Am ∈ Rn×n, b1, . . . , bm ∈ R and
X · Y is interpreted as

∑

i,j∈[n] XijYij. Note that the semidefinite program is just a

linear program on the n2 variables Yij together with linear constraints Ai·Y ≥ bi, but
with the extra condition that the variables Yij must also form a positive semidefinite
matrix.

On account of Corollary 1.7, if there exists a weak separation oracle for the
constraints of a positive semidefinite program, then the Ellipsoid method can be
used to solve the program to arbitrary precision in polynomial time (see Grötschel,
Lovász and Schrijver [28, 29] for details).

Example 1.8. We can often use semidefinite programming to try to “simulate” the
power of quadratic programming. For example, consider the following quadratic
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integer programming formulation for graph vertex cover:

min
n
∑

i=1

(1 + xix0)/2

(x0 − xi)(x0 − xj) = 0 ∀ {i, j} ∈ E
xi ∈ {−1, 1} ∀i ∈ {0, 1, . . . , n} .

The set of vertices i with xi = x0 correspond to the vertex cover. Suppose we relax
the variables xi ∈ {−1, 1} to vectors vi of norm 1:

min

n
∑

i=1

(1 + vi · v0)/2

(v0 − vi) · (v0 − vj) = 0 ∀ {i, j} ∈ E
‖vi‖ = 1 ∀i ∈ {0, 1, . . . , n} .

(1.6)

To see that the above is in fact a semidefinite relaxation, we use Lemma 1.6 which
shows that (1.6) is equivalent to the following (more explicit) semidefinite program:

min

n
∑

i=1

(1 + Yi0)/2

Y00 − Y0j − Y0i + Yij = 0 ∀ {i, j} ∈ E
Yii = 1 ∀i ∈ {0, 1, . . . , n}
Y � 0.

Semidefinite programming relaxations are at the root of many recent break-
through approximation algorithms such as the Goemans-Williamson [27] algorithm
for max-cut, the Karloff-Zwick [35] algorithm for max-3sat, and the Arora-Rao-
Vazirani [7] algorithm for sparsest-cut.
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Chapter 2

Lift-and-project methods

2.1 Motivation

Consider the standard linear relaxation for vertex cover:

min
∑

i∈[n]

xi (2.1)

xi + xj ≥ 1 ∀ {i, j} ∈ E (Edge constraints) (2.2)

0 ≤ xi ≤ 1 ∀i ∈ [n] (Non-negativity constraints) (2.3)

In this relaxation the xi’s are real numbers in [0, 1]. Suppose we wish to tighten the
relaxation to force the xi’s to be 0/1 in any optimal solution. To this end, we could
introduce any constraints satisfied by 0/1 vertex covers. For instance, the xi’s can
be required for every odd-cycle C to satisfy the following constraint:

∑

i∈C

xi ≥ |C| + 1

2
(Odd-cycle constraint) (2.4)

Many other families of inequalities satisfied by 0/1 vertex covers are known, but
a complete listing will probably never be found because of complexity reasons:
since vertex cover is NP-complete, such a list cannot be polynomial size unless
P = NP.

Lovász and Schrijver [43] and Sherali and Adams [49] give automatic methods
for generating over many rounds all valid inequalities. In particular, they give meth-
ods for obtaining tighter and tighter relaxations for any 0/1 optimization problem
starting from an arbitrary relaxation. The idea is to “lift” to n2 dimensions, add
constraints in this high-dimensional space, and then project back to n-space. This
is why their procedures are called “lift-and-project” or sometimes simply “lifting”.

The motivation is two-fold. On the one hand, while a polytope may have ex-
ponentially many facets, it may be that the polytope is a projection of a high-
dimensional polytope with fewer facets. The second (related) motivation is to try
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to simulate the power of quadratic programs. Solving quadratic programs is of
course NP-hard since adding the quadratic constraints xi(1 − xi) = 0 to a linear
relaxation forces 0/1 answers. For example, all 0/1 vertex covers satisfy

x2
i = xi

(1 − xi)(1 − xj) = 0 ∀ {i, j} ∈ E

To linearly simulate these constraints, the methods of Lovász and Schrijver intro-
duce new linear variables Yij to “represent” the products xixj and then demand
that the “lifted” variables satisfy 1 − xi − xj + Yij = 0 for all edges {i, j}. In addi-
tion, since xi = x2

i for 0-1 variables, we can demand that Yii = xi. Using this rule,
we can then take positive linear combinations of these constraints to eliminate all
“quadratic” terms and obtain constraints using only the original variables xi.

Note that the relaxation we obtain in this way is at least as good as the trivial
linear relaxation for vertex cover. Indeed since the lifted variables Yij must lie
in [0, 1], the constraint 1 − xi − xj + Yij = 0 implies the original edge constraint
xi + xj ≥ 1.

Since the variables Yij are supposed to “represent” the products xixj , we can
also add constraints that force the matrix Y of variables Yij to “behave” like the
matrix X whose (i, j)th entry is the product xixj . For example, since x2 = x for
boolean variables, we should have xi = Yii. Moreover, since xixj = xjxi, the matrix
Y should be symmetric. This justifies our use above of the notation Yij instead of
Yi,j. Finally, note that Lemma 1.6 implies that X is positive semidefinite since the
(i, j)th entry of X is equal to the dot-product of the (one-dimensional) vectors xi

and xj . Hence, we can also demand that Y � 0. The more constraints we put on
Y , the tighter the relaxation we should get. Indeed, Lovász and Schrijver obtain
three progressively stronger methods for tightening relaxations by adding more and
more such constraints to Y .

2.2 The Lovász-Schrijver method

The notation uses homogenized inequalities. In particular, we introduce a new
variable x0 and replace each constraint aT x ≥ b in our relaxation with the constraint
aT x ≥ bx0. Hence, if P is an n-dimensional polytope contained in [0, 1]n, we work
instead with the (closed) convex cone

KP =

{(

λ

λx

)

∈ Rn+1 : x ∈ P, λ ∈ R
}

.

In practice, the polytope P will always be clear from context so we will simplify our
notation and simply write K for KP . Let KI denote the convex cone generated by
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all 0-1 vectors in K. Note that the projection of KI on the hyperplane x0 = 1 is
precisely the convex hull of all integral vectors in P which we denote by PI .

Let Q ⊆ Rn+1 denote the closed convex cone generated from the polytope [0, 1]n

using the above homogenization procedure (i.e., Q = K [0,1]n). Note that since the
polytope [0, 1]n is defined by the constraints eT

i x ≥ 0 and (e0 − ei)
T x ≥ 0, the polar

cone Q∗ for Q is therefore the cone spanned by the 2n vectors ei and fi = e0 − ei.
Now suppose K1 is a closed convex cone contained in Q. Then Q∗ ⊆ K∗

1 and
hence, the constraints xT ei ≥ 0 and xT fi ≥ 0 are satisfied by all x ∈ K1. Suppose
moreover that uTx ≥ 0 is some constraint satisfied by all x ∈ K1, that is, u ∈ K∗

1 .
Then the quadratic constraints (uT x)(xT ei) ≥ 0 and (uTx)(xT fi) ≥ 0 are also
satisfied by all x ∈ K1. Intuitively, this can be interpreted as follows when we
project back onto the hyperplane x0 = 1: multiplying the constraints defining a
polytope P ⊆ [0, 1]n by the constraints xi ≥ 0 and xi ≤ 1 gives quadratic constraints
valid for P .

More generally, we could multiply the constraints defining K1 by any constraints
satisfied by K1 to obtain valid quadratic constraints on K1. Formally, suppose K1

and K2 are closed convex cones contained in Q, and consider the cone K1 ∩ K2 (in
practice, we will always have K1 ⊆ K2 so that K1 ∩ K2 = K1). Then for all u ∈ K∗

1

and all v ∈ K∗
2 , the constraint (uTx)(xT v) ≥ 0 is valid for K1 ∩ K2. Indeed, it is

easy to see that

K1 ∩ K2 =
{

x : (uTx)(xT v) ≥ 0 ∀u ∈ K∗
1 , ∀v ∈ K∗

2

}

.

Let us focus on all 0-1 vectors x ∈ K1 ∩ K2 such that x0 = 1, i.e., on vectors
x ∈ (K1 ∩K2)I . For such a vector x, if we set Y = xxT and use the fact that x2

i = xi

for 0-1 variables, then the following properties hold:

1. uTY v ≥ 0 for all u ∈ K∗
1 and all v ∈ K∗

2 . Equivalently, Y K∗
2 ⊆ K1.

2. Y e0 = diag(Y ), i.e., Yi0 = Yii.

3. Y is symmetric.

4. Y is positive semidefinite.

Lovász and Schrijver derive their lift-and-project procedure by relaxing the above
constraints to include all matrices Y ∈ R(n+1)×(n+1) that satisfy the above proper-
ties.

Formally, given K1 and K2, define the following cones:

M(K1, K2) =
{

Y ∈ R(n+1)×(n+1) : Y satisfies (1)–(3)
}

,

M+(K1, K2) =
{

Y ∈ R(n+1)×(n+1) : Y satisfies (1)–(4)
}

.
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The above represent the “lifting” part of the construction since the cones M and
M+ are over (n + 1)2 dimensions.

The cones M and M+ “simulate” quadratic constraints with linear constraints
in the following sense: Consider the set of quadratic constraints on x obtained by
multiplying a constraint uT x ≥ 0 for K1 with a constraint vT x ≥ 0 for K2. Next
“linearize” these quadratic constraints by replacing quadratic products xixj with
linear variables Yij . Then these linear constraints are satisfied by all matrices Y in
M(K1, K2) and M+(K1, K2).

The projections of the cones M(K1, K2) and M+(K1, K2) are defined as follows:

N(K1, K2) = {Y e0 : Y ∈ M(K1, K2)} ,

N+(K1, K2) = {Y e0 : Y ∈ M+(K1, K2)} .

By the above discussion it immediately follows that,

(K1 ∩ K2)I ⊆ N+(K1, K2) ⊆ N(K1, K2).

On the other hand, suppose x ∈ N(K1, K2). Then there exists Y ∈ M(K1, K2)
such that Y e0 = x. Since Q∗ ⊆ K∗

2 , it follows from property (1) that uT Y ei ≥ 0
and uTY fi ≥ 0 for every u ∈ K∗

1 . But then, adding these inequalities we have that
uT Y e0 = uTx ≥ 0 for all u ∈ K∗

1 , and hence, x ∈ K1. Similarly, x ∈ K2. Hence,

(K1 ∩ K2)I ⊆ N+(K1, K2) ⊆ N(K1, K2) ⊆ K1 ∩ K2. (2.5)

In this thesis we will only be concerned with the case K2 = Q in which case we
will simply write N(K) = N(K, Q) and N+(K) = N+(K, Q). Note that given a
polytope P we will often abuse notation and write N(P ) or N+(P ) to denote the
cones N(KP ) and N+(KP ).

The operators N and N+ may be iterated. Define N r(K) recursively by having
N0(K) = K and letting N r(K) = N(N r−1(K)) for r ≥ 1. The iterated N+ operator
is defined analogously. The hierarchies defined by these iterated operators are called
the LS and LS+ hierarchies, respectively.

By definition of Q, we have the following lemma characterizing the N and N+

operators:

Lemma 2.1. Let K be a closed convex cone in Rn+1. Then x ∈ N(K) iff there
exists a symmetric matrix Y ∈ R(n+1)×(n+1) satisfying

1. Y e0 = Diag(Y ) = x.

2. For 1 ≤ i ≤ n, both Y ei and Y (e0 − ei) are in K.

Moreover, x ∈ N+(K) iff Y is in addition positive semidefinite.
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Following Buresh-Oppenheim et al. [11] we will often call the matrix Y witness-
ing that x is in N(K) (or N+(K)) a protection matrix since it “protects” x for one
round of lift-and-project.

Lemma 2.1 will be at the root of all lower bounds proved in this thesis. Recall
that a linear relaxation has an integrality gap of α if there exists a feasible vector
x for the relaxation for which the objective is a factor α better than the cost of the
best integral solution. Such a vector x witnesses the integrality gap of α. So to
show that the integrality gap of a relaxation remains α even after r applications of,
say, the N operator, it suffices to show that some vector witnessing that integrality
gap is “protected” for r rounds of the N operator. Lemma 2.1 then suggests using
an inductive argument to prove such a result. This is indeed what we will do when
proving integrality gaps for polytopes in the LS and LS+ hierarchies.

In practice, we will only be concerned with showing that vectors x ∈ Rn+1 with
x0 = 1 survive a round of lifting. For such points, we have the following corollary
of Lemma 2.1:

Corollary 2.2. Let K be a cone in Rn+1 and suppose x ∈ Rn+1 where x0 = 1.
Then x ∈ N(K) iff there is a symmetric matrix Y ∈ R(n+1)×(n+1) satisfying

1. Y e0 = diag(Y ) = x.

2. For 1 ≤ i ≤ n: If xi = 0 then Y ei = ~0; If xi = 1 then Y ei = x; Other-
wise, Y ei/xi, Y (e0 − ei)/(1 − xi) both lie in the projection of N(K) onto the
hyperplane x0 = 1.

Moreover, x ∈ N+(K) iff Y is in addition positive semidefinite.

Lovász and Schrijver [43] show that at most n iterations of even the weaker N
operator suffice to obtain the integral hull.

Theorem 2.3 ([43]). Let K ⊆ Q be a closed convex cone in Rn+1. Then Nn(K) =
KI .

Proof. Suppose first that x ∈ N(K) and let Y ∈ M(K, K) be a protection matrix
for x. Since Y is a protection matrix for x, it follows that (Y ei)i = (Y ei)0 and
(Y fi)i = 0. Hence, Y ei ∈ K|xi=x0 and Y fi ∈ K|xi=0. But then, since x = Y e0 =
Y ei + Y fi, it follows that x ∈ K|xi=x0 + K|xi=x0. Since this holds for all i ∈ [n], it
follows that,

N(K) ⊆
⋂

i∈[n]

(K|xi=x0 + K|xi=x0) .

Iterating, it then follows that,

N r(K) ⊆
⋂

{i1,i2,...,ir}⊆[n]





∑

T∈{0,x0}r

K|(xi1
,xi2

,...,xir )=T



 .
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For r = n this becomes,

Nn(K) ⊆
∑

T∈{0,x0}n

K|(x1,x2,...,xn)=T = KI .

On the other hand, equation (2.5) implies that KI ⊆ Nn(K). The theorem follows.

Corollary 2.4. Suppose N r(K) 6= KI where 0 ≤ r < n. Then N r+1 $ N r(K).

Lovász and Schrijver [43] define a third lift-and-project operator N0 for a cone
K by having

N0(K) =
⋂

i∈[n]

(K|xi=x0 + K|xi=x0) .

The hierarchy corresponding to this operator is called the LS0 hierarchy. As the
proof of Theorem 2.3 shows, even though this operator is weaker than the N oper-
ator, it still derives the integral hull after at most n rounds. Note that the operator
N0 has the same characterization as the one given for N by Lemma 2.1 with the
exception that a protection matrix Y witnessing that a point survives one round of
the N0 operator does not need to be symmetric.

The cones N0(K), N(K) and N+(K) have the following important algorithmic
property:

Theorem 2.5. Suppose K has a polynomial (in n) time separation oracle. Then
there exists an nO(r) time separation oracle for N r

+(K) (and hence, for N r
0 (K),

N r(K) also). Hence, using the ellipsoid one can optimize a linear function over
N r

0 (K), N r(K) and N r
+(K) in time nO(r).

Proof. By induction on r. The base case r = 0 follows trivially, so assume there
is an nO(r−1) time algorithm for optimizing over N r−1

+ (K). Let Y be any matrix
and suppose we want to check that Y satisfies the conditions of Lemma 2.1. If
Y violates condition (1) in the lemma or is not positive semidefinite, then this is
trivially detected and a separating hyperplane is also trivially given. To check that
Y satisfies condition (2) of the lemma it suffices to check that each of the Y ei and
Y fi are in N r−1

+ (K). But this can be done by calling the separation oracle for
N r−1

+ (K) which runs in time nO(r−1) by the induction hypothesis.

In contrast, a polynomial time separation oracle for K is not known to imply the
existence of a polynomial time algorithm for optimizing over the (potentially tighter)
polytopes N(K, K) and N+(K, K). The problem is that instead of condition (2) of
Lemma 2.1 we would now have to check whether Y K∗ ⊆ K, and K∗ (unlike Q∗)
may require exponentially many vectors to generate.
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2.2.1 Deriving inequalities in LS and LS+

Given a relaxation

aT
r x ≥ b r = 1, 2, . . . , m

0 ≤ xi ≤ 1 i = 1, 2, . . . , n,

one round of N produces a system of inequalities in (n + 1)2 variables Yij for i, j =
0, 1, . . . , n. As already mentioned, the intended “meaning” is that Yij = xixj and
Y00 = 1, Y0i = xix0 = xi, and Y00 = 1 so every quadratic expression in the xi’s can
be viewed as a linear expression in the Yij’s. This is how the quadratic inequalities
below should be interpreted. The following inequalities are derived in one round:

(1 − xi)a
T
r x ≥ (1 − xi)b ∀i = 1, . . . , n, ∀r = 1, . . . , m

xia
T
r x ≥ xib ∀i = 1, . . . , n, ∀r = 1, . . . , m

xixi = xi ∀i = 1, 2, . . . , n

The last constraint corresponds to the fact that x2
i = xi for 0/1 variables. In the

LS+ system we also require that the matrix with entries Yij is positive semidefinite.
Since any positive combination of the above inequalities is also implied, we can use
such combinations to eliminate all non-linear terms.

Example 2.6. Consider the relaxation for vertex cover given by the edge con-
straints (2.2) and the bounding constraints 0 ≤ xi ≤ 1 for all i ∈ [n]. We show that
the linearization Y00−Yi0−Yj0+Yij = 0 of the quadratic constraint (xi−1)(xj−1) = 0
for all edges {i, j} ∈ E is derived by one application of the N operator.

Suppose {i, j} ∈ E. Then given the constraint xi + xj ≥ 1, one round of N
derives the constraint (1 − xi)(xi + xj) ≥ 1 − xi. Simplifying using the rule xi = x2

i

and replacing products xixj with Yij , we get that Y00 − Yi0 − Yj0 + Yij ≤ 0. On
the other hand, starting from the constraint xi ≤ 1, one round of N derives the
constraint (1−xj)xi ≤ 1−xj , whose linearization is Y00 −Yi0 −Yj0+Yij ≥ 0. Hence,
Y00 − Yi0 − Yj0 + Yij = 0 is indeed derived after one round of the N operator.

Example 2.7. Lovász and Schrijver [43] show that the set of inequalities derivable
in one round of N for the trivial vertex cover relaxation (i.e., the one given
by the edge constraints (2.2) and the constraints 0 ≤ xi ≤ 1, i ∈ V ) are exactly
the odd-cycle inequalities. To illustrate, we show how to derive in one round the
odd-cycle inequality x1 + x2 + x3 ≥ 2 for a triangle on nodes {1, 2, 3} starting from
the edge constraints (2.2). One round of N generates the following inequalities
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(amongst others):

(1 − x1)(x1 + x2) ≥ 1 − x1 (2.6)

(1 − x2)(x2 + x3) ≥ 1 − x2 (2.7)

(1 − x3)(x1 + x3) ≥ 1 − x3 (2.8)

x1(x2 + x3) ≥ x1 (2.9)

x2(x1 + x3) ≥ x2 (2.10)

Adding inequality (2.6) twice to the sum of the remaining four inequalities and then
simplifying using the rule x2

i = xi gives x1 + x2 + x3 ≥ 2 as desired.

In the next three subsections we derive some standard SDP relaxations using
N+. These derivations appear to be “folklore” results (the latter two derivations
were noted in [1]).

Deriving the standard SDP relaxation for Vertex Cover

Recall the standard LP relaxation for vertex cover given by (2.1)–(2.3) and let K
be the cone obtained by homogenizing the polytope corresponding to this relaxation.
We show that the relaxation obtained after tightening K with one round of N+ is at
least as good as the standard SDP relaxation for vertex cover given in (1.6) in
the following sense: We will show that for every point x ∈ N+(K)|x0=1 there exists
a feasible set of vectors vi for (1.6) such that the value of (2.1) at x is the same as
the value of the SDP objective for the vectors vi.

Suppose x ∈ N+(K)|x0=1. Then there exists a matrix Y ∈ M+(K) such that
x = Y e0 = diag(Y ) and Y00 = 1. Since Y is positive semidefinite, there exist vectors
u0, u1, . . . , un such that Yij = ui · uj for all i, j ∈ {0, 1, . . . , n}. For i = 0, 1, . . . , n,
let vi = u0 − 2ui. Then

‖vi‖2 = u0 · u0 − 4ui · u0 + 4ui · ui = Y00 − 4Y0i + 4Yii = 1.

Moreover, if {i, j} ∈ E, then

(v0 − vi) · (v0 − vj) = 4(u0 − ui) · (u0 − uj) = 4(Y00 − Yi0 − Yj0 + Yij).

But the latter is 0 as shown in Example 2.6. Hence, the vectors vi give a feasible
solution for (1.6). Finally, note that the value of this solution is

1

2

∑

i∈V

(v0 · vi + 1) =
1

2

∑

i∈V

((u0 − 2u0) · (u0 − 2ui) + 1) =
∑

i∈V

u0 · ui =
∑

i∈V

xi.
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Deriving the standard SDP relaxation for Max-Cut

Given a graph G, the quadratic integer programming formulation of max-cut is
as follows:

max
∑

{i,j}∈E

1

4
|xi − xj |2

xi ∈ {−1, 1} .

In the Goemans-Williamson [27] SDP relaxation we instead have to find unit vectors
u1, u2, . . . , un that maximize

∑

{i,j}∈E

1

4
‖ui − uj‖2. (2.11)

We show how to derive this relaxation with one round of N+ on the trivial linear
relaxation for max-cut.

The integer programming formulation of max-cut has 0/1 variables xi and dij

where xi indicates which side of the cut vertex i is on, and dij is 1 iff i and j are on
opposite sides of the cut. The IP formulation is then:

max
{i,j}∈E

dij

dij ≥ xi − xj ∀i, j = 1, 2, . . . , n

dij ≤ xi + xj ∀i, j = 1, 2, . . . , n

dij ≤ 2 − (xi + xj) ∀i, j = 1, 2, . . . , n

In the linear programming relaxation we allow the variables dij, xi to take values in
[0, 1]. Let P be the polytope corresponding to this relaxation and let K denote its
homogenization.

One round of N+ generates the following inequalities on dij (amongst others):

xidij ≥ xi(xi − xj)

(1 − xi)dij ≥ (1 − xi)(xj − xi).

(Above xixj is of course short-hand for Yij.) Adding these inequalities and simpli-
fying using the fact that x2

i = xi, we obtain dij ≥ (xi − xj)
2. Similarly one can

obtain dij ≤ (xi − xj)
2 whereby it follows that

dij = (xi − xj)
2 = Yii + Yjj − 2Yij. (2.12)

Suppose now that y ∈ N+(K)|y0=1 where the first n coordinates correspond to
the variables xi and the last n2 coordinates correspond to the variables dij. Let Y ∈
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M+(K) be such that Y e0 = diag(Y ) = y. Since Y is positive semidefinite, then by
Lemma 1.6, so is the upper-left (n+1)×(n+1) submatrix of Y . In particular, there
exist vectors v0, v1, . . . , vn ∈ Rn+1 such that Yij = vi · vj for all i, j ∈ {0, 1, . . . , n}.
So since the Yij must satisfy (2.12), it follows that dij = ‖vi − vj‖2.

Since the variables in the Goemans-Williamson relaxation are simulating −1/1
variables rather than 0/1 variables as in the LP relaxation, we apply a linear trans-
formation to the vectors vi to obtain a solution for the Goemans-Williamson SDP:
Define vectors u1, u2, . . . , un by having ui = v0 − 2vi. Then these vactors satisfy

dij = 1
4
‖ui − uj‖2

‖ui‖2 = ‖v0‖2 − 4v0 · vi + 4‖vi‖2 = Y00 − 4Y0i + 4Yii = 1,

where the last equality uses the fact that Yi0 = Yii for all Y ∈ M+(K). So the ui’s
are a feasible solution to the GW relaxation. We conclude that one round of N+

produces a relaxation at least as tight as the GW relaxation.

Deriving the Arora-Rao-Vazirani SDP relaxation for Sparsest-Cut

Arora, Rao, and Vazirani [7] derive their
√

log n-approximation for sparsest-cut
using a SDP relaxation similar to the one for max-cut and whose salient feature
is the triangle inequality (see [7] for details):

‖ui − uj‖2 + ‖uj − uk‖2 ≥ ‖ui − uk‖2 ∀i, j, k. (2.13)

In particular, dij = ‖ui − uk‖2 forms a metric space. Note that since the ui are
supposed to be unit vectors, (2.13) is equivalent to

ui · uk ≥ ui · uj + uj · uk − 1 ∀i, j, k.

The ARV relaxation minus the triangle inequality is derived similarly to the GW
relaxation above with one round of N+. We claim now that the triangle inequality
is implied after three rounds of N+. That is, if K is the convex cone corresponding
to the sparsest-cut linear relaxation, and Y ∈ M3

+(K), then Yik ≥ Yij + Yjk − 1.
Note the following corollary of Theorem 2.3:

Corollary 2.8. Let K ⊆ Q be a convex cone in Rn+1. For each I ⊆ [n], |I| rounds
of N on K suffice to derive all inequalities that hold for the integral hull of K and
only involve the variables from I.

Hence, after r rounds the induced solution on subsets of size r lies in the convex
hull of integer solutions for the induced problem on subsets of size r. For sparsest-
cut, the induced problem on subsets is itself a sparsest-cut problem, and hence,
after three rounds the dij variables restricted to sets of size three lie in the cut
cone. Since the cut cone is just the set of `1 (pseudo)metrics, it follows that the dij

variables form a (pseudo)metric. Thus three rounds of N+ give a relaxation that is
at least as strong as the ARV relaxation.
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2.3 The Sherali-Adams method

Sherali and Adams [49] introduced their lift-and-project method contemporane-
ously (and independently) with those of Lovász and Schrijver. Whereas the Lovász-
Schrijver systems obtain tighter and tighter relaxations by repeatedly lifting and
projecting, the Sherali-Adams system keeps lifting and lifting, but only projects at
the end. In fact, it is not even necessary to project in the Sherali-Adam system
since we can optimize a linear function directly over the lifted polytope instead of
projecting first.

The Sherali-Adams system introduces variables to simulate higher and higher
degree products of the basic variables whereas Lovász-Schrijver only introduce vari-
ables to simulate quadratic products: the first level simulates quadratic products,
the second cubic products, etc. Indeed, we will see that one round of Sherali-Adams
tightening gives the same relaxations as one round of LS tightening.

Formally, given a closed convex cone K ⊆ Q in Rn+1, Sherali and Adams define
for each r ∈ [n] a hierarchy of cones SAr(K). The cone SAr(K) has a coordinate for
each s ⊆ n, |s| ≤ r+1 and hence lies in RV (n,r) where V (n, r) =

∑r+1
i=0

(

n
i

)

. The idea

is for each variable ys to “simulate” the homogeneous term (Πi∈sxi)×x
r−|s|
0 . Let y(r)

denote the vector of all V (n, r) variables. We require the following notation: For
subsets s, t, u ⊆ [n] define the “?” operator by having ys ? (ayt + yu) = ays∪t + ys∪u.

The cones SAr(K) are defined inductively as follows. Let SA0(K) be the cone
K where y{i} = xi and y∅ = x0. The constraints defining SAr(K) for r ≥ 1 are
the following: For each constraint aT y(r−1) ≥ 0 in SAr−1(K) and for each i ∈ [n],
SAr(K) has the constraints

y{i} ? aT y(r−1) ≥ 0,

(1 − y{i}) ? aT y(r−1) ≥ 0.

The projected cone Sr(K) in Rn+1 is then defined to be the cone obtained by
projecting each point u ∈ SAr(K) to the point u|s:|s|≤1.

Note that if x ⊆ KI and x0 = 1, then the vector y(r) defined by ys = Πi∈sxi is
in SAr(K) for all r. Hence, KI ⊆ Sr(K) for all r. Indeed, we will show below that
KI = Sn(K).

The following lemma gives an alternative characterization of SAr(K) and will
play a similar role in our analysis of the Sherali-Adams hierarchy as Lemma 2.1
played in our analysis of the Lovász-Schrijver hierarchies.

Lemma 2.9. For u ∈ RV (n,r) define for all i ∈ [n] vectors vi, wi ∈ RV (n,r−1) such
that for all s ⊆ [n],|s| ≤ r, we have vi

s = us∪{i} and wi
s = us − us∪{i}. Then

u ∈ SAr(K) iff for all i ∈ [n] the vectors vi, wi lie in SAr−1(K).

Proof. Suppose that SAr−1(K) has a constraint aT y(r−1) ≥ 0. Then for each i ∈ [n],
SAr(K) has the two constraints y{i} ? aT y(r−1) ≥ 0 and (1 − y{i}) ? aT y(r−1) ≥ 0. If
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we let bT y(r) = y{i} ? aT y(r−1) and cT y(r) = (1 − y{i}) ? aT y(r−1), then

bs =

{

0 if i 6∈ s
as + as\{i} if i ∈ s

and,

cs =

{

as if i 6∈ s
−as\{i} if i ∈ s

Hence, for all s ⊆ [n] such that i ∈ s, we have that us = vi
s = vi

s\{i}, and so,

bT u =
∑

s:i∈s

(as + as\{i})us

=
∑

s:i∈s

asv
i
s +

∑

s:i6∈s

asv
i
s

= aT vi.

On the other hand, we also have that wi
s = 0 whenever i ∈ s and wi

s = us − us\{i}
when i 6∈ s. So,

cT u =
∑

s:i∈s

−as\{i}us +
∑

s:i6∈s

asus

=
∑

s:i6∈s

(−asus∪{i} + asus)

= aT wi.

But then we have shown that u satisfies the constraints for SAr(K) iff for all i ∈ [n],
the vectors vi and wi satisfy the constraints for SAr−1(K).

We remark that the first level of the Sherali-Adams hierarchy is identical to
the first level of the LS hierarchy. Indeed, suppose x ∈ S(K). Then there exists
u ∈ SA(K) such that x = u|s:|s|≤1. Let Y be the (n+1)× (n+1) symmetric matrix
where Yij = u{i,j}. Note that Y e0 = Diag(Y ) = x. Moreover, if for each i ∈ [n] we
let vi, wi ∈ SA0(K) = K be the vectors for u given by Lemma 2.9, then Y ei = vi

and Y fi = wi. It follows then from Lemma 2.1 that x ∈ N(K), and hence that
S(K) ⊆ N(K). Showing N(K) ⊆ S(K) is similar.

Theorem 2.10. If K ⊆ Q is a closed convex cone in Rn+1, then KI ⊆ Sr(K) ⊆
Sr−1(K) ⊆ K for every r > 1.
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Proof. That KI ⊆ Sr(K) was already noted above. So suppose x ∈ Sr(K), r ≥ 1.
Hence there exists a vector u ∈ SAr(K) such that x = u|s:|s|≤1. Lemma 2.9 shows
that there exist vectors v, w ∈ SAr−1(K) such that vs = us∪{1} and ws = us −us∪{1}
for each s ⊆ [n], |s| ≤ r − 1. In particular, vs + ws = us for each s ⊆ [n],
|s| ≤ r − 1. But SAr−1(K) is a convex cone, and hence, v + w ∈ SAr−1(K) and so,
x = (v + w)|s:|s|≤1 ∈ Sr−1(K). So Sr(K) ⊆ Sr−1(K) and the theorem follows.

The following theorem shows that Sn(K) = KI . The proof is nearly identical to
that of Theorem 2.3 but uses Lemma 2.9 instead of Lemma 2.1 and is thus omitted.

Theorem 2.11. If K ⊆ Q is a closed convex cone in Rn+1 then Sn(K) = KI .

Finally we note that Lemma 2.9 together with the proof of Theorem 2.5 show
that efficient separation oracles exist for cones in the Sherali-Adams hierarchy:

Theorem 2.12. Suppose K has a polynomial (in n) time separation oracle. Then
there exists an nO(r) time separation oracle for SAr(K)

We have already seen that S(K) = N(K). Laurent [42] proves the following
more general relation between the SA and LS hierarchies which shows that the S
operator is at least as strong as the N operator.

Theorem 2.13. [42] If K ⊆ Q is a closed convex cone in Rn+1 then Sr(K) ⊆
N r(K) for all r ≥ 0.

2.3.1 Adding a positive semidefiniteness constraint

Whereas the Sherali-Adams hierarchy is at least as strong as the LS hierarchy, its
relationship with the LS+ hierarchy is not clear since the Sherali-Adams hierarchy
does not include a positive semidefiniteness constraint. Sanjeev Arora has proposed
a way to naturally add a positive semidefiniteness constraint to the definition of
the Sherali-Adams hierarchy in order to obtain a hierarchy at least as strong as
the LS+ hierarchy. This definition is based on the alternate characterization of the
Sherali-Adams hierarchy given by Lemma 2.9.

Definition 2.14. Given a point u ∈ RV (n,r) and a subset T ⊆ [n] of size |T | = r−1,
let Y T ∈ R(n+1)×(n+1) be the symmetric matrix where Y T

00 = uT , and for all i, j ∈ [n]
we have that Y T

ij = uT∪{i,j} and Y T
0i = uT∪{i}.

Definition 2.15 (Sherali-Adams with PSD constraint). Given a cone K ⊆ Q
in Rn+1 let SA0

+(K) be the cone K and for r ≥ 1 let SAr
+(K) ⊆ RV (n,r) be the cone

consisting of all points u ∈ RV (n,r) such that:

1. For all i ∈ [n], the vectors vi, wi ∈ RV (n,r−1) defined by vi
s = us∪{i} and

wi
s = us − us∪{i} are in SAr−1

+ (K).

24



2. For all subsets T ⊆ [n] of size |T | = r−1 the matrix Y T is positive semidefinite.

Similarly to the standard Sherali-Adams hierarchy, let Sr
+(K) denote the projec-

tion of SAr
+(K) back to Rn+1. It is not hard to verify that N+(K) = S+(K). More-

over, Theorem 2.13 can be extended to prove that the inclusion N r
+(K) ⊆ S+(K)

holds for all r. Finally, the same argument that shows that N+(K) has a weak
separation oracle whenever K does also shows that SA+(K) has a weak separation
oracle whenever K does.

2.4 Previous lower bounds

Initially, research on lift-and-project methods concentrated on proving lower bounds
on the number of rounds needed to derive specific inequalities valid for the integral
hull of the problem in question. Results studying integrality gaps for polytopes
derived by lift-and-project methods appear in more recent papers.

We first survey those results proving lower bounds on the number of rounds
needed to derive inequalities using lift-and-project methods.

In their paper introducing the LS and LS+ hierarchies, Lovász and Schrijver [43]
show that the relaxation obtained after one round of N on the trivial linear re-
laxation is exactly the relaxation for independent set defined by the edge and
odd-cycle constraints for independent set (these are analogous to the edge and
odd-cycle constraints for vertex cover given by equations (2.2) and (2.4) above).
In contrast, the relaxation for independent set obtained after one round of N+

derives several other well-known constraint families, such as the so-called clique and
wheel constraints.

Stephen and Tunçel [50] show that Ω(
√

n) rounds of N+ are needed to derive
some simple inequalities for the matching polytope. Cook and Dash [14] and
Goemans and Tunçel [26] independently both show how for some simple relaxations,
the full n rounds of N+ are required to derive some simple inequalities. Laurent [42]
shows that for the same example used by Cook and Dash, and Goemans and Tunçel,
the Sherali-Adams procedure also requires the full n rounds to derive the integral
hull.

Arora et al. [3] were the first to suggest studying the integrality gap of relax-
ations obtained using lift-and-project methods. They showed that the integrality
for vertex cover remains 2 − δ after Ω(

√
log n) rounds of N . Nearly contem-

poraneously, Feige and Krauthgamer [24] also showed that large gaps remain for
independent set after Ω(log n) rounds of N+ liftings. As mentioned in the intro-
duction, Feige and Krauthgamer did not state their results in terms of integrality
gaps; rather, they were interested in determining how many rounds are needed to
derive the independent set integral hull for a graph drawn at random from the
G(n, 1

2
) model. However, their results readily translate to give integrality gaps for

25



such graphs. Concretely, their results show that for almost all graphs in G(n, 1
2
) the

integrality gap remains Ω
( √

n

2r/2 log n

)

after tightening the trivial linear relaxation for

independent set with r rounds of N+ lift-and-project.
Buresh-Oppenheim et al. [11] considered the problem of proving integrality gaps

from the angle of propositional proof complexity. In the proof complexity setting,
LS-type procedures can be viewed as deduction systems with a prescribed set of
derivation rules. The axioms are the polytope constraints and the derivation rules
give the inequalities implied by one round of N+. (For more details on the relation
between LS+ refutations and LS+ approximation algorithms see Section 7.2.) Their
paper [11] shows a linear lower bound on the number of N+ rounds needed to refute
an unsatisfiable linear system for ksat and kxor-sat when k ≥ 5. In particular,
for k ≥ 5 they prove that a linear number of rounds of N+ is needed to obtain an
integrality gap better than (2k − 1)/2k − ε for max-ksat. The cases when k ≤ 4
were left open.

2.5 Results

In this thesis we prove new inapproximability results for both the LS and LS+

hierarchies. These results can be divided into two types. On the one hand, we have
inapproximability results in these hierarchies that rule out stronger approximation
ratios than those ruled out by current PCP-based results. On the other, we have
results for several problems which rule out even slightly subexponential non-trivial
approximation algorithms in these hierarchies.

In Chapter 3 we prove inapproximability results in the LS+ hierarchy for three
different optimization problems. Before giving the results we require some notation.
Let HVC(G) denotes the polytope corresponding to the standard relaxation for
vertex cover on a rank-k hypergraph G (see Section 3.2 for definitions). Let
SAT(φ) denote the polytope corresponding to the standard relaxation for max-
3sat for a 3-CNF formula φ (see Section 3.3 for definitions). An instance of set
cover consists of a tuple (S, C) where C is a collection of n subsets of a finite set
S of size m. Given an instance (S, C) of set cover, let MSC(S, C) denote the
polytope corresponding to the standard relaxation for the set cover problem on
(S, C) (see Section 3.4 for definitions). We prove the following three theorems in
Chapter 3.

Theorem 3.4. Let k ≥ 3. For all α > 0 there exists a constant γ > 0 and a
k-uniform hypergraph G such that the integrality gap of N r

+(HVC(G)) is at least
(k − 1)(1 − α) for all γn.

Theorem 3.14. For any constant α > 0, there exist constants β, γ > 0 such that if
φ is a random βn clause 3-CNF formula on n variables, then with high probability
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the integrality gap for N r
+(SAT(φ)) is at least 8

7
− α for all r ≤ γn.

Theorem 3.20. For all ε > 0, there exists δ > 0 and an instance (S, C), |S| = n,
of set cover for which the integrality gap of N r

+ MSC(S, C) is at least (1− ε) ln n
for all r ≤ δn.

These three results are joint work with Mikhail Alekhnovich and Sanjeev Arora
and appear in [1]. Note that there are inapproximability results in the PCP set-
ting where all the above factors appear [15, 30, 20, 47]. However, all these results
use reductions that greatly blow up the instance size, and hence imply the above
integrality gaps—regardless of the computational complexity assumption—for only
nδ rounds (for some small constant δ > 0) and not for Ω(n) rounds. Moreover, for
set cover the PCP results are even weaker: an integrality gap of (1− ε) ln n for is
implied only for no(1) rounds [20]. Note that the PCP results for set cover in [47]
do imply an Ω(log n) gap for nδ rounds for some constant δ > 0; however the gap
given is at most c log n for some small constant c.

The integrality gaps given by the above three theorems are all proved using a
refined version of the “expanding constraints” method first introduced in Buresh-
Oppenheim et al. [11]. This method takes advantage of certain graph expansion
properties satisfied by the constraints defining the initial relaxation. It uses these
expansion properties to “clean up” the vectors being protected with Lemma 2.1 in
the inductive lower bound proof. The main technical contribution in our results is
a more refined “cleaning up” strategy (called expansion correction; see Chapter 3
for details) necessitated by the far more complicated (yet still positive semidefinite)
protection matrices demanded by the optimization problems we consider.

As is clear from the section on related work above, the approximation gap for the
minimum vertex cover problem on graphs has focused on this problem a lot of
the attention of researchers working with lift-and-project methods. We contribute
to this line of work by proving the following integrality gaps for vertex cover in
the LS hierarchy in Section 4.1 of Chapter 4. Given a graph G, let VC(G) denote
the polytope corresponding to the standard relaxation for vertex cover for G.

Theorem 4.1. For all ε > 0 there exists an integer n0 and a constant δ(ε) > 0 such
that for all n ≥ n0, there exists an n vertex graph G for which the integrality gap of
N r(VC(G)) for any r ≤ δ(ε) log n is at least 2 − ε.

This result is joint work with Sanjeev Arora, Béla Bollobás and László Lovász
and appears in [4]. The proof builds on techniques used to prove LS hierarchy lower
bounds both for vertex cover in Arora et el. [3] and for independent set in
Lovász and Schrijver [43]. In particular, like those results, the protection matrices
used to prove Theorem 4.1 are not explicitly described; instead the appropriate
protection matrices for proving the lower bound are implicitly shown to exist using
Farkas’s lemma (Lemma 1.4).
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As previously mentioned, the approximation ratio ruled out by Dinur et al. [15]
for vertex cover on rank-k hypergraph is only k − 1 − ε. In contrast, the best
algorithms known achieve only k − o(1) approximations. We give evidence that
the latter is indeed the best ratio achievable by proving the following theorem in
Section 4.2 of Chapter 4.

Theorem 4.13. For all k ≥ 2, ε > 0 there exist constants n0(k, ε), δ(k, ε) > 0
s.t. for every n ≥ n0(k, ε) there exists a k-uniform hypergraph G on n vertices for
which the integrality gap of N r(HVC(G)) is at least k−ε for all r ≤ δ(k, ε) log log n.

This result can be viewed as saying that no non-trivial “polynomial time” ap-
proximation algorithms exist for rank-k hypergraph vertex cover in the LS
computation model. This result was published in [51]. Like Theorem 4.1, the pro-
tection matrices used in the proof of Theorem 4.13 are not explicitly defined but
instead implicitly described using LP duality.

In Chapter 5 we prove a second inapproximability result for graph vertex
cover in the LS hierarchy.

Theorem 5.3. For all ε > 0 there exists a constant δ > 0 and an integer n0 such
that for all n ≥ n0 there exists an n-vertex graph G for which N r(VC(G)) has an
integrality gap of at least 1.5 − ε for all r ≤ δ log2 n.

This result has a different trade-off than Theorem 4.1 between integrality gap
size and number of rounds: while the integrality gap is smaller than that shown in
Theorem 4.1, the integrality gap holds for asymptotically more rounds.

Theorem 5.3 was published in [52]. Unlike the proof of Theorem 4.1 we use
explicit protection matrices for our lower bound. Moreover, we crucially use a new
technique which we call the “fence method”. This method is used to “clean up”
the vectors we are inductively protecting thus making it possible to push our lower
bound to Ω(log2 n) rounds.

Note that the integrality gaps proved in both Theorems 4.1 and 5.3 are larger
than the approximation ratios ruled out by the strongest PCP-based inapproxima-
bility results of Dinur and Safra [16] which only rule out 1.36 approximations. We
should mention however, that 2−o(1) approximations were ruled out in [39] assum-
ing Khot’s Unique Games conjecture [36] (see Chapter 7 for more on the Unique
Games Conjecture).

Finally, in Chapter 6 we prove an integrality gap for linear relaxations for in-
dependent set where the only restriction is on the number of variables present
in each constraint.

Theorem 6.7. Fix ε, γ > 0. Then there exists a constant n0 = n0(ε, γ) such that
for every n ≥ n0 there exists a graph G with n vertices for which the integrality
gap of any linear relaxation for independent set in which each constraint uses
at most nε(1−γ) variables is at least n1−ε.
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Note that the linear relaxations in Theorem 6.7 have may have exponential size
and need not have any separation oracle. Note also that our result is tight in the
sense that a linear relaxation with constraints of size nε can of course calculate a
n1−ε approximation. While this result is somewhat orthogonal to our lower bounds
in the LS and LS+ hierarchies, it is in the same spirit since it also rules out good
approximations for a large subset of algorithms.
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Chapter 3

The Expanding Constraints
method

In this chapter we focus on ruling out slightly subexponential LS+ algorithms for
a trio of problems. Recall that relaxations obtained from r rounds of LS+ lift-and-
project are solvable in nO(r) time. Thus though r = O(1) is the most interesting
case, if we are also interested in slightly subexponential algorithms then any value
of r less than n/ log n is also interesting. We will show that Ω(n) rounds of LS+ do
not suffice to achieve the following approximations for any ε > 0: (i) approximating
max-3sat within a factor better than 7/8 − ε, (ii) approximating vertex cover
in rank-k hypergraphs within a factor better than k −1− ε, (iii) approximating set
cover within a factor better than (1 − ε) ln n.

As already mentioned in Section 2.5, there are inapproximability results in the
PCP setting where all the above factors appear [15, 30, 20, 47]. However, all these
results use reductions that greatly blow up the instance size, and hence imply the
above integrality gaps—under any complexity assumption at all—for only nδ rounds
(for some small constant δ > 0) and not for Ω(n) rounds. Moreover, for set cover
the PCP results are even weaker: an integrality gap of (1 − ε) ln n for is implied
only for no(1) rounds [20].

The work in this Chapter is joint work with Mikhail Alekhnovich and Sanjeev
Arora and appeared in [1].

Organization: In Section 3.0.1 we compare our results with previous work as well
as other results in this thesis. In Section 3.1 we describe our methodology for the
results in this chapter. In Sections 3.2–3.4 we prove our lower bounds. As mentioned
already, section 3.5 discusses interesting issues and open problems arising from this
chapter’s results. Finally, for completeness we include in Section 3.6 proofs of some
standard graph theory lemmas required for our lower bounds.
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3.0.1 Comparison with related results.

As we will see in Chapter 4, the integrality gap for LS relaxations of vertex
cover on rank-k hypergraphs remains k − ε even after Ω(log log n) rounds of LS.
In contrast, for the stronger LS+ system we prove in this chapter integrality gaps
of only k − 1 − ε for rank-k hypergraph vertex cover; however, we show that
these gaps hold even after Ω(n) rounds

The work most closely related to that in this chapter appeared in Buresh-
Oppenheim et al. [11] where it was shown that for k ≥ 5 a linear number of rounds of
LS+ is needed to obtain an integrality gap better than (2k −1)/2k −ε for max-ksat.
The cases k ≤ 4 were left open.

With a couple of exceptions, lower bounds for the LS and LS+ hierarchies prior
to this thesis (including Buresh-Oppenheim et al. [11]) use a simple “protection
lemma” due to Lovász and Schrijver described below in Section 3.1 below. (The
lone exceptions were proofs in [43] and [3] where the protection lemmas rely on LP
duality as do our results in Chapter 4.) This lemma gives a sufficient condition for
showing that a point x outside the integral hull survives one round of lifting. More
generally, the protection lemma shows that such a point survives r rounds if some
specific set T of points survives r − 1 rounds. In the Lovász-Schrijver protection
lemma, T is a set of 2n points that differ from x in exactly one coordinate.

The simple protection lemma fails to prove the integrality gaps for the problems
considered in this chapter, and we introduce new protection lemmas. One curious
feature is that in order for this protection lemma to work for even one round, we
need the underlying problem instance to have some expansion properties. In fact,
expansion plays a key role in our lower bounds.

Note that expansion also played a big role in Buresh-Oppenheim et al. [11].
Their techniques allow integrality gaps (albeit loose ones) to be shown for vertex
cover on rank-k hypergraphs for big values of k. However, their techniques seem
to break down for k = 3 and k = 4—the most interesting cases after k = 2, which is
of course vertex cover on graphs. For related reasons their techniques also fail
when trying to prove optimal integrality gaps for max-3sat and max-4sat.

To prove the results in this chapter we introduce, in addition to the above-
mentioned new protection lemma, a subtle expansion correction strategy. Both
ideas may prove useful in future work.

3.1 Methodology

We will use Lemma 2.1 to prove our lower bounds. Hence, to prove that y ∈
N r+1

+ (Q), we have to construct a specific protection matrix Y and prove that the
2n vectors defined in Lemma 2.1 are in N r

+(Q).
Given a vector y ∈ Rn+1, y0 = 1, the simplest Y one could conceive of is
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Yij = yiyj which is trivially positive semidefinite. However, this matrix satisfies
diag(Y ) = y only if y is a 0-1 vector. The next simplest Y one could conceive
is Y = yyT + Diag(y − y2), that is, the matrix that has Yij = yiyj except along
the diagonal where Yii = yi. For y ∈ [0, 1]n this is clearly positive semidefinite,
and indeed, this matrix was used in early results by Lovasz and Schrijver [43] and
Goemans and Tunçel [26], and more recently, Buresh-Oppenheim et al. [11]. With
this choice of Y , the vectors Y ei/xi and Y (e0 − ei)/(1 − xi) from Corollary 2.2 are
obtained by changing one coordinate in y to a 0 or a 1. However, for max-3sat and
hypergraph vertex cover, these vectors are not guaranteed to be in the polytope.
Thus other than for the set cover problem, this simple protection lemma does
not suffice for us.

Instead we use a more complicated Y , such that most entries satisfy Yij = yiyj,
but some don’t. Then the 2n vectors generated above correspond to modifying Y
in a small number of entries. (A similar idea occurred in [3], except the Y there
was not explicit.) This is at the heart of our new protection lemmas for max-3sat
and hypergraph vertex cover. To make this choice of Y work out, we need the
constraints defining our initial relaxations to satisfy certain expansion requirements.

With our “protection lemma” in hand, the lowerbound strategy will be as follows:
Given our relaxed polytope P , we identify a point w ∈ P for which the ratio between
the integral optimum and the value of the objective function at w is large. We
will then prove the lowerbound by showing that w survives many rounds of LS+.
We do this via a Prover-Adversary game where the Prover is trying to prove that
w ∈ N r

+(P ) and the Adversary’s goal is to show the opposite. For the Adversary
to win, it will suffice for him to exhibit a vector amongst the 2n vectors given by
our “protection lemma” that is not in N r−1

+ (P ). He picks such a vector x and
“challenges” the Prover to show it is in N r−1

+ (P ). Things continue this way, and the
Prover loses if she cannot keep the game going for r steps. To keep the argument
clean, we need to maintain the vector x in a nice form throughout the game. To
this end, we borrow an idea from [11]: during each round, to prove that a particular
point x is in a certain polytope, the Prover can also choose to express the point as a
convex combination

∑

j ρjzj and claims that every zj ∈ N r−1
+ (P ) (and consequently

so is x). To counter this claim, the Adversary picks some zj which he thinks is
not in N r−1

+ (P ), and the game continues for that vector. We will show that if the
constraints defining P satisfy certain expansion requirements, then for appropriate
w, the Prover has a linear round strategy against any Adversary.

3.1.1 Incidence graphs of constraints and their properties

Given a hypergraph G = (V, E), let HG be the bipartite incidence graph on E × V
where each each hyperedge is connected to the vertices it contains. We will require
the notion of expansion in a bipartite graph.
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Definition 3.1. A bipartite graph G = (V1, V2, E) is an (r, c)-expander if every
subset S ⊆ V1, |S| ≤ r, satisfies |Γ(S)| ≥ c|S|, where Γ(S) is the set of neighbours
of S in V2.

Throughout this chapter we will deal with constraints of the form
∑

i v
εi
i ≥ 1

where vεi
i represents vi if εi = 1 and vεi

i represents 1−vi if εi = 0. Say that a variable
vεi

i occurs negated in a constraint if εi = 0. Let C be a set of such constraints on a
set V of n variables. Given an assignment vector x ∈ [0, 1]n for V , we define C(x)
to be the set of constraints obtained from C as follows: (a) If xi = 0, remove all
constraints containing vi negated; (b) if xi = 1, remove all constraints containing
vi unnegated; and (c) remove all variables set to 0-1 by x from the remaining
constraints. Intuitively, C(x) is the set of simplified constraints in C not trivially
satisfied by x. In particular, if x satisfies C(x), then x satisfies C.

Let V (x) be the set of those variables in V not set to 0-1 by x and let H(x)
be the bipartite incidence graph on C(x) × V (x); that is, for each constraint in
C(x) there is an edge to every variable it contains. Let H be the incidence graph
on C × V . We will often abuse notation and say that C(x) is an (r, c)-expander if
H(x) is an (r, c)-expander. We will say that the arity of a constraint is t if it has t
neighbours in H(x). For a subset S ⊆ C(x) of constraints, denote the variables in
S (i.e., the neighbours of S in H(x)) by Γ(S).

Usually C(x) will have some expansion property, and in particular will be at
least a (2, k − 1 − ε)-expander. Then all constraints in C(x) will have arity at least
k −1. Moreover, whenever C(x) is an expander, constraints of arity k −1 will enjoy
some special properties of which we will take advantage. For a vector x ∈ Rn, let
R(x) denote the set of all indices to non-integral coordinates of x.

Definition 3.2. Let 0 < ε < 1/2 and x ∈ {0, 1
k−1

, 1}n and suppose C(x) is a
(2, k−1−ε)-expander. Two indices i, j ∈ R(x) are C(x)-equivalent (written i ∼C(x)

j) if there is a constraint in C(x) of arity k−1 containing vi and vj . Let E(x) ⊆ R(x)
contain all indices i ∈ R(x) for which there exists j ∈ R(x), j 6= i such that i ∼C(x) j.

The following easy proposition will be used repeatedly in our lower bound proofs
and follows easily from expansion.

Proposition 3.3. (Facts about C(x)-equivalences) Let 0 < ε < 1/2 and
x ∈ {0, 1

k−1
, 1}n and suppose C(x) is (2, k − 1 − ε)-expanding.

Fact 1. A given variable can only occur in one arity k − 1 constraint in C(x). Hence,
each C(x)-equivalence class has exactly k − 1 elements.

Fact 2. Any given constraint in C(x) (other than the arity k−1 constraint defining the
equivalence) can contain at most one variable from any given C(x)-equivalence
class.
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3.2 Lowerbounds for hypergraph Vertex Cover

Let G = (V, E), E ⊆ V k, be a k-uniform hypergraph. The vertex cover problem
for G is expressed by the following integer program:

min
∑

i∈V

vi

k
∑

j=1

vj ≥ 1, ∀(1, . . . , k) ∈ E.

The standard linear relaxation is obtained by relaxing to 0 ≤ vi ≤ 1. Let HVC(G)
be the polytope consisting of all feasible points w ∈ Rn for the relaxed constraints.
It is easy to see that for the complete k-uniform hypergraph on n vertices the
optimal value of the integer program is n − k + 1 while the optimum value of the
linear relaxation is n/k. Therefore, the integrality gap between the integer and
linear programs is at least k − o(1).

We prove that even after a linear number of rounds of LS+ tightenings of
HVC(G) there still exists some graph for which the integrality gap is k − 1 − o(1):

Theorem 3.4. Let k ≥ 3. For all α > 0 there exists a constant γ > 0 and a
k-uniform hypergraph G such that the integrality gap of N r

+(HVC(G)) is at least
(k − 1)(1 − α) for all γn.

Given G = (V, E), let CG be the set of hyperedge constraints defining HVC(G).
Since the underlying graph G will usually be clear, we omit the subscript unless
extra precision is needed. In this section we will always have x ∈ {0, 1

k−1
, 1}n and

C(x) will be at least a (2, k − 1 − ε)-expander. Then all constraints in C(x) will
have arity at least k − 1 and the following will hold:

Proposition 3.5. Let 0 < ε < 1/2, and x ∈ {0, 1
k−1

, 1}n, and suppose that C(x) is
(2, k − 1 − ε)-expanding. Then x ∈ HVC(G).

We now define the vectors that will appear in our “Protection Lemma” for
vertex cover. For the remainder of this section we will always assume 0 < ε <
1/2.

Definition 3.6. Given x ∈ [0, 1]n, for all i ∈ R(x) and all a ∈ {0, 1} define x(i,a) to

be identical to x except that x
(i,a)
i = a.

Definition 3.7. Let x ∈ {0, 1
k−1

, 1}n, and suppose C(x) is (2, k − 1− ε)-expanding.

For all i ∈ E(x) define x[i] to be identical to x except that x
[i]
i = 1 and x

[i]
j = 0 for

all j ∼C(x) i. Let the set Tx ⊆ {0, 1
k−1

, 1}n equal the union {x[i] : i ∈ E(x)}∪{x(i,a) :
i ∈ R(x)\E(x), a ∈ {0, 1}}.
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Lemma 3.8. Let x ∈ {0, 1
k−1

, 1}n, and suppose C(x) is (2, k − 1 − ε)-expanding.
Then R(x) ⊆ HVC(G). Moreover, for all y ∈ Tx, each constraint in C(y) has arity
at least k − 1.

Proof. There are two types of points in Tx: (1) x(i,a) for i ∈ R(x)\E(x) and (2) x[i]

for i ∈ E(x). Consider a point x(i,a) in Tx where i ∈ R(x)\E(x). In this case, vi

does not belong to any arity k − 1 constraint in C(x). Hence, every constraint in
C(x(i,a)) has arity at least k − 1 in C(x(i,a)), and is therefore satisfied by x(i,a).

Now consider a point x[i] in Tx such that i ∈ E(x). By Fact 2 on equivalences
and the definition of x[i], every constraint in C(x) that had arity k in C(x) has arity
at least k −1 in C(x(i,a)), and hence is satisfied by x(i,a). By Fact 1 on equivalences,
the only arity k − 1 constraint in C(x) for which the values of any of its variables
changes under x[i] is the unique arity k − 1 constraint containing vi. But such a
constraint is satisfied by x[i] since vi is set to 1 in x[i].

Lemma 3.9. (Protection Lemma for Hypergraph VC)
Suppose C(x) is (2, k − 1 − ε)-expanding where x ∈ {0, 1

k−1
, 1}n. Suppose moreover

that Tx ⊆ Nm
+ (HVC(G)). Then x ∈ Nm+1

+ (HVC(G)).

Proof. Let y =
(

1
x

)

. The proof uses Lemma 2.1 and the following choice of an
(n+1)×(n+1) positive semidefinite symmetric matrix Y that is yyT +Diag(y−y2)
except that Yij = 0 whenever i ∼C(x) j. Note that Y is symmetric and that
Y e0 = diag(Y ) = y. Moreover, by Proposition 3.10 below, Y is positive semidefinite.
(This uses the expansion properties of C(x).) So by Lemma 2.1, to show that
x ∈ Nm+1

+ (HVC(G)) it remains only to show that for all i ∈ R(x), Y ei/xi and
Y (e0 − ei)/(1 − xi) are in Nm

+ (HVC(G)).
For i ∈ R(x)\E(x), Y ei/xi =

(

1
x(i,1)

)

and Y (e0 − ei)/(1 − xi) =
(

1
x(i,0)

)

and

hence are both in Tx ⊆ Nm
+ (HVC(G)). For i ∈ E(x), Y ei/xi =

(

1
x[i]

)

which is in

Tx ⊆ Nm
+ (HVC(G)). Finally, for i ∈ E(x), Y (e0 − ei)/(1 − xi) =

(

1
z

)

where

z =
1

k − 2

∑

j∼C(x)i, j 6=i

x[j].

In particular, Y (e0 − ei)/(1 − xi) is in the convex hull of Tx ⊆ Nm
+ (HVC(G)), and

hence is also in Nm
+ (HVC(G)).

Proposition 3.10. The matrix Y defined in the proof of Lemma 3.9 is positive
semidefinite.

Proof. By Fact 1 on C(x)-equivalences, there exist disjoint sets I1, . . . , It of indices
such that (a) |Ij| = k − 1 for all j ∈ [t], (b) all indices belonging to an equivalence
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are in one of the Ij, and (c) for each j ∈ [t] all indices in Ij are mutually equivalent.
Then,

Y = yyT + Diag(y − y2) +
∑

j∈[t]

(

Diag(y2
Ij

) − yIj
yT

Ij

)

,

where yI equals y but is zero outside I.
To show Y � 0, we show that zT Y z ≥ 0 for all z ∈ Rn+1. Note that zT (yyT )z =

(yTz)2 ≥ 0 for all z ∈ Rn+1. Moreover, Diag(w) � 0 for all vectors w ≥ 0. Hence,
since the sum of positive semidefinite matrices is positive semidefinite, to show that
Y � 0 it suffices to show for each Ij that the following quantity is non-negative:

zT (Diag(yIj
− y2

Ij
) + Diag(y2

Ij
) − yIj

yT
Ij

)z

= zT (Diag(yIj
) − yIj

yT
Ij

)z.

Since the argument is identical for all Ij we drop the subscript j and assume I =
[k−1]. The above then simplifies to

∑

i∈[k−1](z
2
i xi)−(

∑

i∈[k−1] zixi)
2. Since xi = 1

k−1

for all indices in an equivalence, this further simplifies to

1

k − 1

∑

i∈[k−1]

z2
i − 1

(k − 1)2





∑

i∈[k−1]

zi





2

,

which is non-negative since
∑

i∈[`] a
2
i ≥ 1

`
(
∑

i∈[`] ai)
2.

3.2.1 Proof of Theorem 3.4

Let α, ε > 0 be arbitrarily small. By Lemma 3.21 in Section 3.6, there are constants
β, δ > 0 such that a rank k hypergraph G exists with n vertices and βn edges
such that the bipartite graph HG is a (δn, k − 1 − ε)-expander, and every vertex
cover of G has size at least (1 − α)n. We show that the vector w = ( 1

k−1
, . . . , 1

k−1
),

corresponding to a fractional vertex cover of “size” n/(k − 1), is in N r
+(HVC(G))

where r = εδn
k−1

. It follows that this many rounds of LS+ cannot reduce the integrality

gap below (k − 1)(1 − α), and Theorem 3.4 then follows for γ = εδ
k−1

. Note that HG

is isomorphic to H(w), and hence, C(w) is (δn, k − 1 − ε)-expanding. This will be
crucial for the lower bound.

The lowerbound will follow from a Prover-Adversary game of the type discussed
in Section 3.1. We describe the game more formally. In round i there is a parameter
`i ≥ 2 and a current point x ∈ {0, 1

k−1
, 1}n. For i = 0, x is some initial point

w′ ∈ {0, 1
k−1

, 1}n. At the beginning of round i, C(x) will be an (`i, k − 1 − 2ε)-
expander. In round i the following two moves are made.

1. Adversary Move: The Adversary selects z from Tx.
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2. Expansion Correction: The Prover constructs a set Y ⊆ {0, 1
k−1

, 1}n such
that (1) z is in the convex hull of Y , and (2) for all y ∈ Y , C(y) is an
(`i+1, k − 1 − 2ε)-expander where `i+1 ≤ `i. The Adversary selects one point
y ∈ Y to be the new x.

The game ends when `i+1 ≤ 1.
Intuitively, the Adversary fixes more and more fractional-valued coordinates in

the initial point w′ to 0-1 values by replacing the current point x with a point z
from Tx (note that once a coordinate is set to 0-1 it remains fixed). The Prover
wants this to continue for as long as possible but may run into trouble if C(z) is no
longer a good expander. The Prover therefore does Expansion Correction to obtain
a new x for which C(x) is a good expander. The next lemma shows that a good
Prover strategy implies w′ has high rank.

Lemma 3.11. Suppose w′ ∈ {0, 1
k−1

, 1}n is in HVC(G). If for w′ the Prover has
an m round strategy against any adversary, then w′ ∈ Nm

+ (HVC(G)).

Proof. By induction on m. Since w′ ∈ HVC(G) by assumption, case m = 0 fol-
lows. So suppose the claim is true for m and that the Prover has an m + 1 round
strategy against any adversary. Consider the first round of the game and sup-
pose the Adversary picks z ∈ Tx. Let Y be the set subsequently constructed by
the Prover in the Expansion Correction move. Since the game runs for m more
rounds regardless of which y ∈ Y the Adversary chooses, Y ⊆ Nm

+ (HVC(G))
by induction, and z ∈ Nm

+ (HVC(G)) by convexity. This holds no matter which
z ∈ Tx the Adversary chooses, and so Tx ⊆ Nm

+ (HVC(G)). Lemma 3.9 then implies
w′ ∈ Nm+1

+ (HVC(G)).

So to prove w = ( 1
k−1

, . . . , 1
k−1

) ∈ N r
+(HVC(G)) and complete the proof of

Theorem 3.4, it suffices to describe an r round strategy for the Prover when the
initial point is w.

Lemma 3.12. If C(w) is a (δn, k−1−ε)-expander, then the Prover has an r round
strategy against any Adversary, where r = εδn

k−1
.

Proof. We start the game with x = w. Proposition 3.5 implies w ∈ HVC(G). In
round i of the strategy the parameter `i will be defined such that for the current
point x the Prover can ensure C(x) is an (`i, k − 1 − 2ε)-expander. At the start,
`1 = δn.

The strategy will work as follows: The two moves made in each round of the
game remove more and more variable vertices from the incidence graph H(w) on
C(w)×V (w). In each round at most k−1 variable vertices are removed from H(w)
by the Adversary choosing z ∈ Tx. As for the Expansion Correction move, the
Prover will “correct” expansion in round i by identifying a maximal non-expanding
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set Si of constraints of size at most `i and removing it and its neighbours from H(x).
Letting `i+1 = `i − |Si|, the resulting graph would then be an (`i+1, k − 1 − 2ε)-
expander. The Prover removes these constraints in Si by having the assignments Y
be 0-1 on Γ(Si) and equal to x outside Γ(Si). If `i+1 ≤ 1, the game ends; otherwise,
the game continues. The claim is that such a strategy results in at least r rounds:
Suppose the strategy lasts m rounds and consider S = ∪Si. Then

|S| =

m
∑

i=1

|Si| =

m
∑

i=1

`i − `i+1 = δn − `m+1.

By expansion, S had at least (k − 1 − ε)|S| neighbours in H(w). However, at the
end of the game, S has no neighbours. Expansion Correction removes at most
(k − 1 − 2ε)|S| neighbours. Since the Adversary Move removes at most k − 1
neighbours per round, there must be at least εδn/(k − 1) rounds.

It remains to describe the Prover’s strategy in round i in detail: If `i ≤ 1 the
game ends. Otherwise, Proposition 3.5 implies x ∈ HVC(G) and the Adversary
selects z ∈ Tx. Note that Lemma 3.8 implies z ∈ HVC(G) and that every constraint
in C(z) has arity at least k − 1. We will also require the following lemma:

Lemma 3.13. Let H = (V1, V2, E) be a bipartite graph and let S ⊆ V1 be such that
for for all S ′ ⊆ S, |Γ(S ′)| > k|S ′|. Assume S = {e1, e2, ..., e`}. Then there exists a
mapping η : S → P(Γ(S)) such that (1) for all i ∈ [`], |η(ei)| = k + 1, and (2) for
all i ∈ [`], |η(ei) \⋃j<i η(ej)| ≥ k.

Proof. By the generalization of Hall’s theorem there exists a k-matching from S into
Γ(S). Fix such a k-matching ν once and for all. We construct η in the following
recursive way. By assumption, Γ(S) contains at least `k + 1 elements. So by
the pigeon-hole principle there exists a vertex v ∈ Γ(S) which does not belong to
⋃

e∈S ν(e). Consider any vertex e ∈ S that is adjacent to v (such a point exists
because v ∈ Γ(S)) and let η(e) = {v}∪ν(e). Finally, denote S ′ = S \{e} and repeat
the process recursively for S ′. The vertices in S ′ are ordered according to the way
they were ordered in S.

Clearly for all vertices ei in S, η(ei) is a k + 1 element subset of Γ(S). To check
the second required property for η note that at each step of the inductive process,
no vertex of ν(e) may be joined to any of the η(e′) from earlier steps, because η(e′)
consists of ν(e′) and v′, v′ 6∈ ν(e). The lemma follows.

We can now describe how the Prover constructs the set Y for Expansion Cor-
rection:

1. If C(z) is an (`i, k − 1 − 2ε)-expander, the Prover takes Y = {z} and sets
Si = ∅.
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2. Otherwise, let Si ⊆ C(z), |Si| ≤ `i, be a maximal subset of constraints with
expansion less than k −1−2ε in C(z). If |Si| ≥ `i −1, i.e., `i+1 ≤ 1, the game
ends, and we let the final x be the same as z except it is 0 on Γ(Si).

3. Otherwise we claim that for all subsets S ′ ⊆ Si of constraints in C(z), |Γ(S ′)| >
(k − 2)|S ′|: Either the Adversary chose some x(j,a) ∈ Tx where j is not in any
C(x)-equivalence class (in which case S ′ has expansion greater than k − 2 in
C(z)), or it chose x[j] where vj occurs in some arity k−1 constraint φ ∈ C(x).
Suppose φ shares t variables with Γ(S ′). By expansion of C(x),

|Γ(S ′)| = |Γ(S ′ ∪ {φ})| − k + 1 + t

≥ (k − 1 − 2ε)|S ′| + t − 2ε.

Since S ′ has exactly t fewer neighbours in C(z) than in C(x), the claim follows.

4. Let Si = (e1, . . . , et). By Lemma 3.13 there exists a mapping η : S → P(Γ(S))
such that (1) for all i ∈ [t], |η(ei)| = k − 1, and (2) for all i ∈ [t], |η(ei) \
⋃

j<i η(ej)| ≥ k − 2. We construct k − 1 assignments y1, . . . , yk−1 inductively

according to the ordering e1, . . . , et. At the beginning all the yj equal x outside
C(z) and are undefined on Γ(Si). Assume that at step t the values yj

i for all
j ∈ [k − 1] and for all i such that vi ∈ ⋃i′<t η(ei′) have been defined so that
the constructed partial assignments satisfy all ei′ , i′ < t, and the assigned
values y1

i , . . . , y
k−1
i contain exactly one 1 for each i. Consider et. Choose k −2

vertices vi1 , . . . , vik−2
∈ η(et) such that the values yj

i1
, . . . , yj

ik−2
are undefined

for all j ∈ [k−1] (these vertices exist by definition of η). Let vik−1
be the other

vertex in η(et+1). If the corresponding variables y1
ik−1

, . . . , yk−1
ik−1

are undefined
then set the last of these variables to one and the rest to zeros. Assume
without loss of generality that yk−1

ik−1
= 1. For all other vertices in η(et+1) we

set yj
ij

= 1 and the rest to zeros. We have extended our partial assignments
for η(et) in a way that satisfies the induction hypothesis. At the the end,
y1, . . . , yk−1 each satisfy Si and z is their average. Let Y = {y1, . . . , yk−1}.

3.3 Lowerbounds for MAX-3SAT

The arguments used to prove Theorem 3.4 can be adapted to prove integrality gaps
for max-3sat. Given a 3-CNF formula φ, we convert its clauses to inequalities
in the obvious way, i.e., x1 ∨ x2 ∨ ¬x3 becomes x1 + x2 + (1 − x3) ≥ 1. Let Cφ

be the set of such inequalities corresponding to φ. Note that the 0-1 solutions to
these inequalities correspond exactly to the satisfying assignments for φ. Relaxing
to xi ∈ [0, 1] yields a polytope SAT(φ) whose integral points are solutions for φ.
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Theorem 3.14. For any constant α > 0, there exist constants β, γ > 0 such that if
φ is a random βn clause 3-CNF formula on n variables, then with high probability
the integrality gap for N r

+(SAT(φ)) is at least 8
7

− α for all r ≤ γn.

Let w = (1
2
, . . . , 1

2
) and note that w ∈ SAT(φ) for any formula φ. The proof of

the above theorem will rely on the following lemma:

Lemma 3.15. Let 0 < ε < 1
2
, and suppose that Cφ(w) is a (δn, 2 − ε)-expander.

Then w ∈ N
εδn/2
+ (SAT(φ)).

of Theorem 3.14. It is well-known that for all α, ε > 0, there exist constants β, δ > 0
such that if we pick a random 3-CNF φ with βn clauses, then with high probability
(1) no boolean assignment satisfies more than a 7

8
+ α fraction of the clauses in φ

and (2) Cφ is a (δn, 2 − ε)-expander. On the other hand, Lemma 3.15 says that w,
which satisfies all clauses in φ, is in N r

+(SAT(φ)) where r = εδn/2.

The proof of Lemma 3.15 is identical to that of Lemma 3.12 with the only changes
being in (1) the “protection lemma” (Lemma 3.9) which must be altered to take
into account the negated variables now appearing in the constraints; and (2) in the
game, where the Prover’s Expansion Correction strategy also has to accommodate
negated variables. We finish this section therefore by stating and proving the new
protection lemma used in the proof of Lemma 3.15 and by sketching a proof of the
new Expansion Correction strategy used in the proof of Lemma 3.15.

Definition 3.16. Suppose x ∈ 1
2
Zn and let i ∈ R(x), a ∈ {0, 1}. Let x[i,a] ∈ 1

2
Zn be

identical to x except

1. x
[i,a]
i = a, and

2. if there exists an arity 2 constraint vεi
i + v

εj

j ≥ 1 in C(x), then x
[i,a]
j = 1 − a if

εi = εj and x
[i,a]
j = a if εi 6= εj .

The key observation is that if C(x) is (2, 2 − ε)-expanding, then for all i ∈ R(x)
and all a ∈ {0, 1}, each constraint in C(x[i,a]) has arity at least 2 and hence x[i,a] ∈
SAT(φ). Let Tx = {x[i,a] : i ∈ R(x), a ∈ {0, 1}}.

Lemma 3.17. (Protection Lemma for max-3sat)
Let ε > 0 be arbitrarily small and suppose C(x) is (2, 2−ε)-expanding where x ∈ 1

2
Zn.

Suppose moreover that Tx ⊆ Nm
+ (SAT(φ)). Then x ∈ Nm+1

+ (SAT(φ)).

Proof. Let y =
(

1
x

)

. The proof uses Lemma 2.1 and the following choice of an
(n + 1) × (n + 1) positive semidefinite matrix Y that is yyT + Diag(y − y2) except
that if xεi

i + x
εj

j ≥ 1 is a constraint in C(x), then Yij = 0 if εi = εj and Yij = 1
2

if εi 6= εj . Note that Y is symmetric and that Y e0 = diag(Y ) = y. Moreover, by
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Proposition 3.18 below it follows that Y is positive semidefinite. Finally, for all
i ∈ R(x), Y ei/xi =

(

1
x[i,1]

)

and Y (e0 − xi)/(1 − xi) =
(

1
x[i,0]

)

. In particular, these
vectors are in Nm

+ (SAT(φ)) since their projections along the hyperplane x0 = 1 are
in Tx.

Proposition 3.18. The matrix Y defined in the proof of Lemma 3.17 is positive
semidefinite.

Proof. Let I ⊆ {0, 1, . . . , n} be the set of indices not in any C(x)-equivalence. For
all i, j ∈ {1, . . . , n}, define (n + 1) × (n + 1) matrices A(i,j) and B(i,j) that are 0

everywhere except A
(i,j)
ii = A

(i,j)
jj = 1/4, A

(i,j)
ij = A

(i,j)
ji = −1/4, and B

(i,j)
ii = B

(i,j)
jj =

B
(i,j)
i,j = B

(i,j)
ji = 1/4. Note that A(i,j) and B(i,j) are both positive semidefinite.

Finally, let

C1 = {(i, j) : vεi
i + v

εj

j ≥ 1 ∈ C(x) and εi = εj},

C2 = {(i, j) : vεi
i + v

εj

j ≥ 1 ∈ C(x) and εi 6= εj}.

Since C(x)-equivalence classes are disjoint, it follows that each k ∈ {0, 1, . . . , n}
is either in I or appears in exactly one pair from C1 ∪ C2. Hence, by definition of
Y ,

Y = yyT + Diag(yI − y2
I) +

∑

(i,j)∈C1

A(i,j) +
∑

(i,j)∈C2

B(i,j).

(Here yI is the vector equal to y on the coordinates indexed by I but zero everywhere
else.) Each of the terms in the above sum is positive semidefinite and hence, so is
Y .

We now sketch how the Expansion Correction Strategy is altered. The overall
argument goes the same way using Lemma 3.13 with the only difference being that
for vi ∈ η(et), the yj

i , j ∈ {1, 2}, are set according to the signs the variables have in
clause et so as to satisfy et.

3.4 Lowerbounds for Set Cover

An instance of set cover consists of a tuple (S, C) where C is a collection of n
subsets of a finite set S of size m. The objective is to find a minimum size subset
C ′ ⊆ C such that each element of S is in some set in C ′. If for each set Si ∈ C we
have a variable xi indicating whether or not set Si is included in the set cover, then
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the set cover problem is expressed by the following integer program:

min

n
∑

i=1

xi

∑

i:j∈Si

xi ≥ 1, ∀j ∈ [m].

The relaxed set cover polytope MSC(S, C) is the polytope defined by the above
constraints but where we allow 0 ≤ xi ≤ 1. Note now that if G = (V, E) is a
k-uniform hypergraph, and we let S = E and C = {Sv}v∈V where Sv = {e ∈ E :
v ∈ e}, then MSC(S, C) is identical to HVC(G). Hence, integrality gaps for the
hypergraph vertex cover polytope yield integrality gaps for MSC.

Theorem 3.4 can therefore be used to obtain integrality gaps for LS+ tightenings
of the set cover polytope. However, stronger results can be obtained for set
cover by using an argument specifically tailored for hypergraphs with edges of
size Θ(log n)—this is what we show next.

Fix ε, δ, γ > 0 such that ε − δ > 0. By Lemma 3.22 in Section 3.6, there exists
an (ε − δ)n-uniform hypergraph G = (V, E) on n vertices with n edges such that
the minimum vertex cover is at least log1+ε n. Consider the hyperedge constraints
CG defining HVC(G). Let w be the all- 1+γ

(ε−δ)n
point and note that w is in HVC(G).

Moreover, at least bγ(ε−δ)n
1+γ

c coordinates of w can be changed to 0 or 1 with the
resulting point still satisfying all the constraints CG.

Let us recall the simple protection lemma proved by Lovász and Schrijver [43]
and described in section 3.1: For a relaxed polytope P , a point x is in N+(P ) if for
all i ∈ R(x) and all a ∈ {0, 1}, x(i,a) is in P . That is, x is in N+(P ) if whenever
we change exactly one coordinate of x to 0 or 1, the resulting point is in P . So by
induction, this simple protection lemma together with the observation about w in
the previous paragraph prove the following:

Lemma 3.19. The point w is in N r(HVC(G)) where r = bγ(ε−δ)n
1+γ

c.
Finally note that since the minimum vertex cover for G has size log1+ε n, the

integrality gap for w is (ε−δ) lnn
(1+γ) ln(1+ε)

which approaches ln n from below as ε, δ, γ → 0.
Thus we have proved the following gap for set cover:

Theorem 3.20. For all ε > 0, there exists δ > 0 and an instance (S, C), |S| = n,
of set cover for which the integrality gap of N r

+ MSC(S, C) is at least (1− ε) ln n
for all r ≤ δn.

3.5 Discussion

It seems important to extend our inapproximability results to a variety of problems,
or to prove that actually many important optimization problems do have good
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slightly subexponential time approximation algorithms via the LS+ procedure or
other lift-and-project procedures. As we noted above, reductions are problematic
in this regard.

Methods based on games over expanders do not seem to help against the no-
toriously difficult vertex cover problem: there are no expanders of degree 2.
This question seems related to proving k − ε integrality gap for k-hypergraphs (a
similar picture with these problems is observed in the PCP world). Moreover, the
non-existence of appropriate expanders means we are also unable to prove gaps for
other problems defined by two-variable constraints such as max-2sat.

Our result for set cover is interesting in a different respect: In [20] integrality
gaps of (1−ε) ln n are only ruled out under the assumption NP 6= DTIME(nlog log n).
Since we rule out (1−ε) ln n integrality gaps for Ω(n) rounds of LS+, this strengthens
the possibility that stronger PCP results are possible for this problem. In particular,
it further supports the conjecture that it should be possible to rule out (1 − ε) ln n
integrality gaps under the weaker assumption of NP 6= BPP or even NP 6= P.

3.6 Graph theory lemmas

For completeness, we include the proofs of the following two lemmas which use
standard arguments from the theory of random graphs.

Lemma 3.21. Let ∆(ε, k, β) =
(

eε−k

5β(k−1−ε)1+ε

)1/ε

. Then for all α, 0 < α < 1, and all

ε > 0, there exists µ(α) such that for all β ≥ µ(α)α−k and all δ, 0 < δ < ∆(ε, k, β),
the probability that a random k-uniform hypergraph G = (V, E) on n vertices with
βn hyperedges (1) has no vertex cover of size smaller than (1 − α)n and (2) HG is
a (δn, k − 1 − ε) expander is at least 1/2.

Proof. Let β = µ(α)α−k and suppose the hypergraph has βn randomly and uni-
formly chosen hyperedges where µ(α) is chosen below. The probability that there
exists a vertex cover of size (1 − α)n equals the probability that there exists a set
S ⊆ V , |S| = αn, such that no edge contains only elements from S. This probability
is bounded by

(

n

αn

)

(1 − αk)βn ≤
( e

α

)αn

(1 − αk)βn

=
( e

α

)αn
(

1

e

)µ(α)n

.

Let µ(α) > 0 be such that the above is less than 1/4.
Now consider the bipartite graph HG mapping E to V . Note that |E| = βn.

The probability that a subset of s = δn constraints of F does not have expansion
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more than c = k − 1 − ε is
(

βn

s

)(

n

cs

)

(cs

n

)ks

≤
(

eβn

s

)s
(en

cs

)cs (cs

n

)ks

=
[

δεβek−εc1+ε
]s

.

Let r = δεβek−εc1+ε. Then r < 1/5 when δ <
(

eε−k

5βc1+ε

)1/ε

. Hence, the probability

that some subset of E of size at most δn fails to have expansion greater than k−1−ε
is bounded by

δn
∑

s=1

rs ≤
∑

s≥1

rs =
r

1 − r
<

1

4
.

So with probability at least 1/2, both G has no vertex cover of size less than (1−α)n
and HG is a (δn, k − 1 − ε) expander.

Lemma 3.22. For any constant ε, δ ∈ (0, 1) for all n there exists an (ε−δ)n-regular
hypergraph with n vertices and n edges that has vertex cover greater than log(1+ε) n.

Proof. Let ε′ = ε − δ/2. Consider a random hypergraph G with n edges over n
vertices in which every vertex belongs to an edge independently with probability ε′.
Let k = log1+ε n. The probability that G contains a vertex cover of size k is less
than or equal

(

n

k

)

·
[

1 − (1 − ε′)k
]m ≤ nke−m·(1−ε′)k

= o(1).

Finally, with high probability every edge in G contains at least (ε′−δ/2)n = (ε−δ)n
elements. By removing vertices from each edge we can assume each edge contains
exactly (ε − δ)n elements.
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Chapter 4

Lower bounds using LP duality

In this chapter we prove tight integrality gaps for both graph and hypergraph ver-
tex cover in the LS hierarchy. In particular, we show that the integrality gap for
graph vertex cover remains 2 − o(1) even after Ω(log n) rounds of LS lift-and-
project (Theorem 4.1), and we show that the integrality gap for rank-k hypergraph
vertex cover remains k − o(1) even after Ω(log log n) rounds of LS lift-and-
project (Theorem 4.13). The latter result contrasts with our result for hypergraph
vertex cover in Chapter 3 showing that the integrality gap remains k − 1 − ε
after even Ω(n) rounds of the stronger LS+ procedure.

Our results in this Chapter are tight in the sense that even the trivial linear
relaxations achieve 2 − o(1) and k − o(1) approximations for graph and rank-k
hypergraph vertex cover, respectively.

In Chapter 3 we proved integrality gaps of size k − 1 − ε for rank-k hypergraph
vertex cover by taking advantage of certain expansion properties enjoyed by our
input graphs. The construction of our protection matrices in our lower bound proofs
crucially relied on the existence of k-regular graphs with expansion k − 1 − ε (for
k ≥ 3). Unfortunately, to prove integrality gaps of size k − ε using this technique
(and hence also prove integrality gaps for graph vertex cover) would require the
existence of k-regular graphs with expansion greater than k − 1, an impossibility.

Instead we will construct our protection matrices in this chapter using LP-
duality, in particular, Farkas’s lemma (Lemma 1.4). We discuss our approach in
detail in Section 4.1.1. LP-duality was first employed to prove LS hierarchy lower
bounds in Lovász and Schrijver’s original paper introducing the LS systems [43] and
also subsequently used by Arora et al. [3]. The latter paper showed that a 2 − o(1)
integrality gap for graph vertex cover remains after even Ω(

√
log n) LS rounds.

Our results in this section directly build upon their work.
The work in Section 4.1 is joint work with Sanjeev Arora, Béla Bollobás and

László Lovász and appeared in [4]. The work in Section 4.2 was published in [51].
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4.1 Lower bounds for graph Vertex Cover

Let VC(G) be the closed convex cone in Rn+1 that contains a vector (x0, x1, . . . , xn)
iff it satisfies 0 ≤ xi ≤ x0 for all i as well as the edge constraints xi + xj ≥ x0 for
each edge {i, j} ∈ G.

Our main theorem for this section is the following:

Theorem 4.1. For all ε > 0 there exists an integer n0 and a constant δ(ε) > 0 such
that for all n ≥ n0 there exists an n vertex graph G for which the integrality gap of
N r(VC(G)) for any r ≤ δ(ε) log n is at least 2 − ε.

The proof of Theorem 4.1 relies on the following two theorems. The first is
essentially due to Erdős [17]; see Bollobás [9], Theorem 4, Ch VII. The second,
Theorem 4.3, will be proved in Section 4.1.2 with an overview of the argument first
given in Section 4.1.1.

Theorem 4.2. For any α > 0 there is an n0(α) such that for every n ≥ n0(α) there
are graphs on n vertices with girth at least log n/(3 log(1/α)) but no independent set
of size greater than αn.

Let yγ denote the vector (1, 1
2

+ γ, 1
2

+ γ, . . . , 1
2

+ γ) where 0 < γ < 1
2
.

Theorem 4.3. Let G = (V, E) have girth(G) ≥ 16r/γ. Then yγ ∈ N r(VC(G)).

Proof of Theorem 4.1. Let γ = ε/8 and α = ε/4, and let n0 be the constant from
Theorem 4.2 for this α. For n ≥ n0, let G be the n-vertex graph given by Theo-
rem 4.2. Finally, let δ(ε) = ε

384 log(4/ε)
. Then by Theorem 4.3, yγ is in N r(VC(G))

for all r ≤ δ(ε) log n, and hence, the integrality gaps for all these polytopes is at
least 2(1 − α)/(1 + 2γ) ≥ 2 − ε.

4.1.1 Intuition for Theorem 4.3

Lemma 2.1 (and Corollary 2.2) suggest using induction to prove Theorem 4.3. To do
that, we will first identify for each j some large set of vectors within each polytope
N j(VC(G)) called the “palette” for N j(VC(G)). In stage j of the induction we
will then show the following: For each vector x in the palette for N j(VC(G)), there
exists a protection matrix Y such that for all i ∈ [n] the vectors Y ei and Y (e0 − ei)
all lie in the palette for the previous polytope N j−1(VC(G)) (Figure 4.1). The
condition that such a protection matrix exists can be expressed as an LP. So, to
show that a protection matrix exists for each x in the palette for N j(VC(G)) we
show using Farkas’s lemma that the corresponding LP is feasible. The theorem will
then follow since our definition for the palette for N r(VC(G)) will ensure that it
contains yγ.
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“Palettes”

. . .

FR(G) N r−1(FR(G))N r−2(FR(G)) N r(FR(G))

yγ

Figure 4.1: Chain of dependencies for the induction in the proof of Theorem 4.3:
Each palette is contained in its respective polytope because some other palette is
contained in the previous polytope.

Since our protection matrices will be found using LP duality, we will pick the
simplest palettes possible in order to ensure that our LPs are also as simple as
possible (and hence easy to analyze). To understand what desirable properties
the palette vectors should have, let us look at the simpler problem of showing
that yγ ∈ N(VC(G)) (rather than showing yγ ∈ N r(VC(G))) and make some
observations about the constraints the conditions in Corollary 2.2 force upon a
protection matrix for yγ.

To that end, consider the projected “columns” Y ei/y
(i)
γ and Y (e0 − ei)/(1− y

(i)
γ )

of Y (from condition 2 of Corollary 2.2). These vectors must satisfy the edge
constraints. As will be shown in Section 4.1.4 (see equation (4.3)), the constraints
forcing this are given by the following constraint:

αi ≤ Yij + Yik ≤ αi + (αj + αk − 1) ∀i ∈ {1, . . . , n} , ∀{j, k} ∈ E. (4.1)

Fix i. If j1 is adjacent to i, then (4.1) implies 1
2
+γ ≤ Yii +Yij1 ≤ 1

2
+3γ. Since Y is

a protection matrix for yγ, it must satisfy Yii = y
(i)
γ = 1

2
+ γ. Hence, 0 ≤ Yij1 ≤ 2γ.

Now consider a node j2 at distance 2 from j1. Then (4.1), together with the fact
that 0 ≤ Yij1 ≤ 2γ for all j1 adjacent to i, imply that 1

2
− γ ≤ Yik ≤ 1

2
+ 3γ. In

turn, for a node j3 at distance 3 from i we must have 0 ≤ Yij3 ≤ 4γ; and for a node
j4 at distance 4 from i we have 1

2
− 3γ ≤ Yij4 ≤ 1

2
+ 3γ. So as j gets further and

further from i, the constraints on Yij implied by (4.1) get looser and looser so that
for nodes j sufficiently far from i (distance 2/γ more than suffices) no constraint on
Yij is implied. So intuitively, for such j we should be able to choose Yij such that

node j remains 1
2

+ γ in both Y ei/y
(i)
γ and Y (e0 − ei)/(1 − y

(i)
γ ). Note that the fact
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that the coordinates of yγ are 1
2
+γ instead of 1

2
is crucial in ensuring that the effects

of the edge constraints die out as we get further away from node i. Note also that
we have implicitly assumed that our graph has girth larger than 2/γ so that two
nodes cannot be connected by two paths of different lengths both less than 2/γ—
intuitively this is why Theorem 4.3 requires large girth. We should also mention that
we have simplified things by ignoring constraints required by Corollary 2.2 forcing
the projected “columns” to lie in [0, 1]n+1: these tighten the above constraints on
the Yij a bit but the intuition given above is mostly unchanged.

In any case, the above suggests that to prove yγ ∈ N(VC(G)) we could use a
palette consisting of those vectors in VC(G) which are 1

2
+ γ everywhere except

perhaps on some ball of radius 2/γ in G. As such, we can add “palette constraints”

to the LP defining Y forcing all nodes j distant from i to be 1
2
+γ in both Y ei/y

(i)
γ and

Y (e0 −ei)/(1−y
(i)
γ ). In fact, since Y must also be symmetric, the actual constraints

we will add will force the following: for all pairs of nodes i, j with distance at least
2/γ between them, the jth nodes in Y ei/y

(i)
γ and Y (e0 − ei)/(1 − y

(i)
γ ), and the ith

nodes Y ej/y
(j)
γ and Y (e0 − ej)/(1 − y

(j)
γ ) must all be 1

2
+ γ.

The proof of Theorem 4.3 will use generalized versions of the above palette: The
palettes for each polytope N j(VC(G)) will consist of vectors from VC(G) that are
1
2

+ γ except in a few neighbourhoods (see Definition 4.4 in Section 4.1.2 for the
precise statement). For a vector x in the palette for N j(VC(G)) the LP used to find
a protection matrix Y for x will have two types of constraints: constraints that force
Y to satisfy the conditions in Corollary 2.2 and constraints that force the “columns”
Y ei/xi and Y (e0 − ei)/(1 − xi) to belong to the “palette” for N j−1(VC(G)).

The palettes we will use will have the following property: The diameter of the
largest neighbourhood H in G such that H consists entirely of nodes with values
not equal to 1

2
+γ will grow linearly with the number of rounds. Hence, our method

is limited to proving integrality gaps for at most O(log n) rounds since only graphs
with girth O(logn) yield large integrality gaps.

We note that in [3], which the results in this section extend, the palettes were
picked such that the diameter of the largest neighbourhood grew quadratically in
the number of rounds, thereby yielding integrality gaps only for O(

√
log n) rounds.

To push the lower bound to Ω(log n) rounds we select our palettes in a more subtle
way than those in [3] and rely on a crucial structural result enjoyed by these new
palettes (Lemma 4.5 below).

4.1.2 Proof of Theorem 4.3

As mentioned in the previous section, the theorem will be proved by induction
where the inductive hypothesis will require a set of vectors other than just yγ to be
in Nm(VC(G)) for m ≤ r (the “palettes” from Section 4.1.1). These vectors will
be essentially all-(1

2
+ γ), except possibly for a few small neighborhoods where the
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vector can take arbitrary values in [0, 1] so long as the edge constraints are satisfied.
Let Ball(w, R) denote the set of vertices within distance R of w in G.

Definition 4.4. Let S ⊆ {1, . . . , n}, R be a positive integer and γ > 0. Then a
nonnegative vector (α0, α1, . . . , αn) ∈ [0, 1]n+1 with α0 = 1 is an (S, R, γ)-vector if
the entries satisfy the edge constraints and if for each w ∈ S there exists a positive
integer Rw such that

1.
∑

w∈S(Rw + 2
γ
) ≤ R

2. For distinct w, w′ ∈ S, Ball(w, Rw) ∩ Ball(w′, Rw′) = ∅

3. αj = 1
2

+ γ for each j 6∈ ∪w∈SBall(w, Rw)

We will say that the integers {Rw}w∈S witness that α is an (S, R, γ)-vector.

Let R(r) = 0 and let R(m) = R(m+1) + 4
γ

for 0 ≤ m < r. Note that 4R(m) ≤
girth(G) for 0 ≤ m ≤ r. To prove Theorem 4.3 we will prove the inductive claim
below. Since the set of (∅, R(r), γ)-vectors consists precisely of the vector yγ, the
theorem will then follow as a subcase of the case m = r.

Inductive Claim for Nm(VC(G)): For every set S of at most r − m vertices,
every (S, R(m), γ)-vector is in Nm(VC(G)).

Base case m = 0. Trivial since (S, R(0), γ)-vectors satisfy the edge constraints for
G.

Proof for m + 1 assuming truth for m. Let α be an (S, R(m+1), γ)-vector where
|S| ≤ r − m − 1. To show that α ∈ Nm(VC(G)) it suffices to find a protection
matrix Y for α satisfying the properties of Corollary 2.2. We exploit the structure
of (S, R, γ)-vectors and prove some important structural properties of these vectors
in Lemma 4.5, which then enables us to argue that such a protection matrix exists
thereby completing the induction step.

Note first that the (S, R(m+1), γ)-vector α is also trivially an (S ∪ i, R(m), γ)-
vector for any i ∈ G. Lemma 4.5, which we now state but prove in Section 4.1.3
below, says that for appropriate sets S ′, |S ′| ≤ r−m, α is also an (S ′, R(m), γ)-vector
enjoying crucial additional structural properties.

Lemma 4.5. Let i be such that αi 6∈ {0, 1}. Then there exists a set Si ⊆ {1, . . . n},
|Si| ≤ r − m, and positive integers {R

(m)
w }w∈Si

such that,

1. α is an (S ′, R(m), γ)-vector with witnesses {R
(m)
w }w∈Si

2. i ∈ ∪w∈Si
Ball(w, R

(m)
w )

3. For each ` 6∈ ∪w∈Si
Ball(w, R

(m)
w ), any path between i and ` in G contains at

least 2
γ

consecutive vertices ` such that α` = 1
2

+ γ
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By the induction hypothesis, for any S ′ ⊆ {1, . . . , n} such that |S ′| ≤ r−m, every
(S ′, R(m), γ)-vector is in Nm(VC(G)). Hence, to show that α ∈ Nm+1(VC(G)) it
suffices by Corollary 2.2 to exhibit an (n+1)× (n+1) symmetric protection matrix
Y that satisfies:

A. Y e0 = diag(Y ) = α,

B. For each i such that αi = 0, we have Y ei = 0; for each i such that α1 = 1, we
have Y e0 = Y ei; otherwise, Y ei/αi and Y (e0 − ei)/(1 − αi) are (Si, R

(m), γ)-

vectors, where Si as well as the integers {R
(m)
w }w∈Si

witnessing that these
vectors are (Si, R

(m), γ)-vectors are given by Lemma 4.5 for i.

We will complete the proof of the induction step (and hence of Theorem 4.3) by
showing in Section 4.1.4 below that a matrix Y exists satisfying conditions A and
B.

4.1.3 Proof of Lemma 4.5

Let {R
(m+1)
w }w∈S witness that α is an (S, R(m+1), γ)-vector and let

C = ∪w∈SBall(w, R(m+1)
w ).

There are two cases depending on whether Ball(i, 2
γ
) intersects C or not.

In the first (easy) case, Ball(i, 2
γ
) does not intersect C. Then let Si = S ∪ {i},

let R
(m)
i = 2

γ
, and let R

(m)
w = R

(m+1)
w for w ∈ S. It is easy to see that the conditions

of the lemma are satisfied by these choices.
So consider the second case where Ball(i, 2

γ
) does intersects C. Let

T1 =

{

w ∈ S : i ∈ Ball

(

w, R(m+1)
w +

2

γ

)}

.

That is, T1 consists of all points in S whose balls, slightly enlarged, contain i. Note
that it may be that i ∈ S, in which case i ∈ T1.

Now let

D =
⋃

w∈T1

Ball

(

w, R(m+1)
w +

2

γ

)

.

Since
∑

w∈S(R
(m+1)
w + 2

γ
) ≤ R(m+1) < 1

2
girth(G)− 2

γ
, it follows that D is a tree. Let

q be a longest path in D and let w1 be a node in the middle of this path. Then
certainly,

D ⊆ Ball

(

w1,
∑

w∈T1

(

R(m+1)
w +

2

γ

)

)

.
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We will now increase the size of this “big ball” around w1 (perhaps also moving its
centre in the process) until there are no points w ∈ S outside the “big ball” for

which Ball(w, R
(m+1)
w + 2

γ
) intersects the “big ball”. We do this as follows:

Suppose Ball(w1,
∑

w∈T1
(R

(m+1)
w + 2

γ
)) intersects Ball(w′, R(m+1)

w′ + 2
γ
) for some

w′ ∈ S\T1. Add w′ to T1 and call the new set T2. Reasoning as before, there exists
w2 ∈ G such that,

⋃

w∈T2

Ball

(

w, R(m+1)
w +

2

γ

)

⊆ Ball

(

w2,
∑

w∈T2

(

R(m+1)
w +

2

γ

)

)

.

In general, at stage j if Ball(wj ,
∑

w∈Tj
(R

(m+1)
w + 2

γ
)) intersects Ball(w′, R(m+1)

w′ + 2
γ
)

for some w′ ∈ S\Tj, then add w′ to Tj, call the new set Tj+1, and find a new
wj+1 ∈ G (using again the same arguments as before) such that,

⋃

w∈Tj+1

Ball

(

w, R(m+1)
w +

2

γ

)

⊆ Ball



wj+1,
∑

w∈Tj+1

(

R(m+1)
w +

2

γ

)



 .

Continue in this way until the first stage k for which there exists no point w′ in
S\Tk for which Ball(w′, R(m+1)

w′ + 2
γ
) intersects Ball(wk,

∑

w∈Tk
(R

(m+1)
w + 2

γ
)). Let

T = Tk and u = wk.
We can now define Si and {R

(m)
w }w∈Si

: Let Si = (S\T ) ∪ {u}. For w ∈ S\T , let

R
(m)
w = R

(m+1)
w ; let

R(m)
u =

2

γ
+
∑

w∈T

(

R(m+1)
w +

2

γ

)

.

To complete the proof of the lemma we need to show that α is an (Si, R
(m), γ)-vector

witnessed by these {R
(m)
w } and that the remaining two conditions in the statement

of the lemma are satisfied.
Note first that

∑

w∈Si

(

R(m)
w +

2

γ

)

=
∑

w∈S\T

(

R(m)
w +

2

γ

)

+

(

R(m)
u +

2

γ

)

=
∑

w∈S\T

(

R(m+1)
w +

2

γ

)

+

(

∑

w∈T

(

R(m+1)
w +

2

γ

)

+
4

γ

)

=
∑

w∈S

(

R(m+1)
w +

2

γ

)

+
4

γ
≤ R(m+1) +

4

γ
= R(m).

51



The inequality above follows from the fact that α is an (S, R(m+1), γ)-vector wit-

nessed by the integers {R
(m+1)
w }. Therefore, α satisfies condition (1) of being an

(Si, R
(m), γ)-vector witnessed by the integers {R

(m)
w }.

By construction, Ball(u, R
(m)
u ) does not intersect ∪w∈S\T Ball(w, R

(m)
w ). More-

over, since α is an (S, R(m+1), γ)-vector witnessed by the integers R
(m+1)
w , it follows

that
Ball(w, R(m)

w ) ∩ Ball(w′, R(m)
w′ ) = ∅

for distinct w, w′ ∈ S\T . Also, by construction we have that αj = 1
2

+ γ for

all j 6∈ ∪w∈Si
Ball(w, R

(m)
w ). Hence α satisfies conditions (2) and (3) of being an

(Si, R
(m), γ)-vector witnessed by the integers {R

(m)
w }.

Next note that by construction, we have on one hand that

⋃

w∈T

Ball

(

w, R(m+1)
w +

2

γ

)

⊆ Ball

(

u, R(m)
u − 2

γ

)

.

On the other hand, Ball(u, R
(m)
u ) does not intersect ∪w∈S\TBall(w, R

(m+1)
w ). Since α

is an (S, R(m+1), γ)-vector witnessed by the integers R
(m+1)
w , it thus follows from the

definition of such vectors that for all vertices k in Ball(u, R
(m)
u )\Ball(u, R

(m)
u − 2

γ
),

we have αk = 1
2

+ γ. Hence condition (3) of the lemma holds.

Finally, condition (2) holds since by construction i ∈ ⋃w∈T Ball(w, R
(m+1)
w + 2

γ
).

The lemma follows.

4.1.4 Existence of Y

We will show that Y exists by representing conditions A and B as a linear program
and then showing that the program is feasible. This approach was first used in [43]
and subsequently in [3].

Our notation will assume symmetry, namely, Yij will represent Y{i,j}. Condi-
tion A requires that:

Ykk = αk, ∀k ∈ {1, . . . , n}. (4.2)

Condition B requires that Y ei/αi and Y (e0 − ei)/(1 − αi) are (Si, R
(m), γ)-

vectors. In particular, we need constraints on the variables Yij forcing these vectors
to satisfy both the edge constraints as well as the extra structural properties enjoyed
by (Si, R

(m), γ)-vectors.
The following constraints imply that Y ei/αi and Y (e0 − ei)/(1 − αi) satisfy the

edge constraints: For all i ∈ {1, . . . , n} and all {j, k} ∈ E:

αi ≤ Yij + Yik ≤ αi + (αj + αk − 1), (4.3)
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To see that the above inequalities force Y ei/αi and Y (e0 −ei)/(1−αi) to satisfy the
edge constraints note first that Y ei/αi satisfies the edge constraint for some edge
{j, k} iff the jth and kth coordinates of Y ei/αi sum to at least 1. In equations,
this requires Yij/αi + Yik/αi ≥ 1, or equivalently αi ≤ Yij + Yik for the edge {j, k}.
Similarly, the equation Yij +Yik ≤ αi +(αj +αk −1) implies that Y (e0 −ei)/(1−αi)
satisfies the edge constraint for edge {j, k}.

Let (i, t) be a pair of vertices such that αi, αt 6∈ {0, 1}. Let Si ⊆ {1, . . . , n} be

the set, and {R
(m)
w }w∈Si

the witnesses given by Lemma 4.5 for i. Then i, t are called

a distant pair if t 6∈ ∪w∈Si
Ball(w, R

(m)
w ). (Note then that αt = 1

2
+ γ.) To ensure

that Y ei/αi and Y (e0−ei)/(1−αi) are (Si, R
(m), γ)-vectors witnessed by {R

(m)
w }w∈Si

(as required by condition B) it suffices to ensure that the tth coordinates of Y ei/αi

and Y (e0 − ei)/(1 − αi) are 1
2

+ γ for all distant pairs (i, t). In particular, for all
such pairs,

Yit = αiαt = αi(
1

2
+ γ). (4.4)

Remark 4.6. By Lemma 4.5, distant pairs have the property that every path in G
that connects them contains at least 2/γ consecutive vertices k such that αk = 1

2
+γ.

In particular, any such path contains 2/γ − 1 consecutive edges whose endpoints
are “oversatisfied” by α by 2γ.

Finally, (Si, R
(m), γ)-vectors must lie in [0, 1]n+1. The following constraints imply

that Y ei/αi and Y (e0 − ei)/(1 − αi) are in [0, 1]n+1:

0 ≤ Yij ≤ αi, ∀i, j ∈ {1, . . . , n} , i 6= j (4.5)

−Yij ≤ 1 − αi − αj, ∀i, j ∈ {1, . . . , n} , i 6= j (4.6)

Constraints (4.2)–(4.6) suffice to force Y to satisfy conditions A and B. However,
we will not directly analyze these constraints but instead analyze the following four
constraint families which imply constraints (4.2)–(4.6) but are in a cleaner form:

Yij ≤ β(i, j), ∀i, j ∈ {1, . . . , n} (4.7)

−Yij ≤ δ(i, j), ∀i, j ∈ {1, . . . , n} (4.8)

Yij + Yik ≤ a(i, j, k), ∀ {j, k} ∈ E (4.9)

−Yij − Yik ≤ b(i, j, k), ∀ {j, k} ∈ E (4.10)

Here (1) β(i, j) = αiαj if i, j is a distant pair and β(i, j) = min(αi, αj) otherwise; (2)
δ(i, j) = −αi if i = j, δ(i, j) = −αiαj if i, j is a distant pair, and δ(i, j) = 1−αi −αj

otherwise; (3) a(i, j, k) = αi + (αj + αk − 1); and (4) b(i, j, k) = −αi. Note that
since α ∈ [0, 1]n+1, β(i, j) + δ(i, j) ≥ 0.
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To prove the consistency of constraints (4.7)–(4.10), a special combinatorial
version of Farkas’s lemma (Lemma 1.4) will be used similar to that used in [43] and
in [3]. Before giving the exact combinatorial form we require some definitions.

Let H = (W, F ) be the graph where W = {Yij : i, j ∈ {1, . . . , n}} (i.e., there is a
vertex for each variable Yi,j) and the edges F consist of all pairs {Yij, Yik} such that
{j, k} ∈ E. Vertices in W labelled Yii are called diagonal. Given an edge {Yij, Yik}
in H , call i its bracing node and {j, k} ∈ E its bracing edge. An edge {i, j} in G
is called overloaded if αi = αj = 1

2
+ γ. An edge {Yij, Yik} in H is overloaded if its

bracing edge is overloaded.
Let p be a walk v0, v1, . . . , vr on H and let e1, . . . , er be the edges in H traversed

by this walk. An alternating sign assignment (P, N) for p assigns either all the odd
or all the even indexed edges of p to the set P with the remaining edges assigned
to N . Given an alternating sign assignment (P, N) for p, an endpoint of p is called
positive (negative, respectively) if it is incident to an edge in P (N , respectively).
We will be particularly concerned with the positive diagonal endpoints of a walk.

Given a path p in H with an alternating sign assignment (P, N), let

S
(p;P,N)
1 =

∑

{Yij ,Yik}∈P

a(i, j, k) +
∑

{Yij ,Yik}∈N

b(i, j, k). (4.11)

Suppose the endpoints of p are labelled by Yij , Yk`. Define S
(p;P,N)
2 to be D+E where

D is δ(i, j) if Yij is a positive endpoint and is β(i, j) otherwise; and E is δ(k, `) if

Yk` is a positive endpoint and is β(k, `) otherwise. Let S(p;P,N) = S
(p;P,N)
1 + S

(p;P,N)
2 .

Lemma 4.7 (Special case of Farkas’s Lemma). The constraints on the variables
Yij are unsatisfiable iff there exists a walk p on H and an alternating sign assignment
(P, N) for p such that S(p;P,N) is negative.

Proof. Note first that by Farkas’s lemma, constraints (4.7)–(4.10) are unsatisfiable
iff there exists a positive rational linear combination of them where the LHS is 0
and the RHS is negative.

Now suppose that there exists a path p in H and an alternating sign assignment
(P, N) such that S(p;P,N) < 0. Consider the following linear integer combination of
the constraints: (1) For each edge {Yij, Yik} ∈ p, if {Yij, Yik} ∈ P , add the constraint
Yij + Yik ≤ a(i, j, k); if {Yij, Yik} ∈ N , add the constraint −Yij − Yik ≤ b(i, j, k); (2)
For each endpoint Yij of p, if it is a negative endpoint add the constraint Yij ≤ β(i, j);
if it is a positive endpoint add the constraint −Yij ≤ δ(i, j). But then, for this
combination of constraints the LHS equals 0 while the RHS equals S(p;P,N) < 0. So
by Farkas’s lemma the constraints are unsatisfiable.

Now assume on the other hand that the constraints are unsatisfiable. So there
exists a positive rational linear combination of the constraints such that the LHS
is 0 and the RHS is negative. In fact, by clearing out denominators, we can as-
sume without loss of generality that this linear combination has integer coefficients.
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−Y12 ≤ −α1α2

Y12 + Y13 ≤ α1 + (α2 + α3 − 1)

−Y13 − Y34 ≤ −α3

Y34 + Y35 ≤ α3 + (α4 + α5 − 1)

−Y35 − Y56 ≤ −α5

Y56 ≤ α5α6

−Y77 ≤ −α7

Y77 + Y78 ≤ α7 + (α7 + α8 − 1)

−Y78 ≤ 1 − α7 − α8

Walk p1

∈ N1

∈ P1

∈ N1

∈ P1 Walk p2

∈ P2

Y78

Y77

Y56

Y35

Y34

Y13

Y12

Figure 4.2: A positive integer linear combination of the constraints where the LHS
is 0, and which corresponds to two walks p1 and p2 in H with alternating sign
assignments (P1, N1) and (P2, N2), respectively.

Hence, as β(i, j) + δ(i, j) ≥ 0 for all i, j, our combination must contain, without
loss of generality, constraints of type (4.9) and (4.10). Moreover, since the LHS is
0, for each Yij appearing in the integer combination there must be a corresponding
occurrence of −Yij . But then, it is easy to see that the constraints in the integer
linear combination can be grouped into a set of paths {pi} in H each with its own
alternating sign assignment such that the RHS of the linear combination equals
∑

S(pi;Pi,Ni) (for an example, see Figure 4.2). But then, since the RHS is negative,
it must be that at least one of the paths p in the set is such that S(p;P,N) < 0. The
lemma follows.

So to show that the constraints for the matrix Y are consistent, we will show
that S(p;P,N) ≥ 0 for any walk p on H and any alternating sign assignment (P, N)
for p.

To that end, fix a walk p on H and an alternating sign assignment (P, N) for

p. To simplify notation we drop the superscript (p; P, N) from S
(p;P,N)
1 , S

(p;P,N)
2 and

S(p;P,N). Let v0, v1, . . . , vr be the nodes visited by p in H (a node may be visited
multiple times) and let e1, . . . , er be the edges in H traversed by p. We divide our
analysis into three cases depending on whether none, one or both endpoints of p are
positive diagonal. We will show that in any of these cases S ≥ 0.

We first note three easy facts about p used below:

Proposition 4.8. Let C be the subgraph of G induced by the bracing edges for
e1, . . . , en. Then,

55



e5

e4

e3

e2

e1

Y12

Y13

Y14

Y45

Y46

Y67

1

1

4

4

6

p′ p′′

2

3

4

7

1

5

6

Continuation of p′ corresponding to e5

Bracing node

for edge

Corresponding bracing edges in G

Walk p in H

these edges

change at

Bracing nodes

Figure 4.3: A walk p in H and the corresponding pair of walks p′, p′′ in G formed
by the bracing edges in p. The walks p′, p′′ could meet, e.g., if p visits a diagonal
vertex in H .

1. Subgraph C consists of at most two connected components;

2. If p visits a diagonal node, then C is connected; Moreover, if v0 is diagonal
and vr = Yst, then C contains a path in G from s to t;

3. If p visits at least two diagonal nodes then C contain a cycle.

Proof. We sketch a proof of the first fact; the other two are similar.
Consider the edges e1, . . . , er in order. As long as the bracing node in successive

edges does not change, then the bracing edges of these successive edges form a path
p′ in G. If the bracing node changes, say at edge ei in p, the bracing edge for ei

now starts a new path p′′ in G. Moreover the last vertex w in G visited by p′ is the
bracing node for ei. The bracing edges of the edges following ei in p now extend p′′

in G until an edge ej is encountered with a new bracing node. But then, the bracing
edge for ej must contain w. Hence, the bracing edge for ej now extends path p′ in
G. Continuing this argument we see that each time the bracing node changes we
go back and forth from having the bracing edges contributing to the paths p′ and
p′′ in G. Fact (1) follows (also see Figure 4.3).

Case 1: No endpoint of p is positive diagonal

Suppose the endpoints v0, vr of p are labelled by Yab and Ycd, respectively, and
consider the following sum S ′

2: If v0 is a negative endpoint, then it contributes
αaαb to S ′

2; otherwise it contributes −αaαb. Similarly, if vr is negative, then it
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contributes αcαd to S ′
2 and otherwise it contributes −αcαd. Since α ∈ [0, 1]n+1 and

neither endpoint is positive diagonal, it follows that S2 ≥ S ′
2. So to prove that

S ≥ 0 in this case, it suffices to show S1 + S ′
2 ≥ 0.

To that end, consider the following sum:

∑

{Yij ,Yik}∈P

(−αiαj − αiαk) +
∑

{Yij ,Yik}∈N

(αiαj + αiαk). (4.12)

By definition of an alternating sign assignment it follows that (4.12) telescopes and
equals S ′

2. Hence,

S ≥ S1 + S ′
2

=
∑

{Yij ,Yik}∈P

(a(i, j, k) − (αiαj + αiαk)) +
∑

{Yij ,Yik}∈N

(b(i, j, k) + (αiαj + αiαk))

=
∑

{Yij ,Yik}∈P

(1 − αi)(αj + αk − 1) +
∑

{Yij ,Yik}∈N

αi(αj + αk − 1). (4.13)

Now the bracing edges for all edges in P and N are in G. Moreover, α satisfies
the vertex cover edge constraints (2.2) for G. Hence, αj + αk ≥ 1 for all edges
{Yij, Yik} ∈ P ∪ N . But then, since we always have 0 ≤ αi ≤ 1, it follows that all
summands in (4.13) are at least 0 and hence, S ≥ 0 as desired.

Case 2: One endpoint of p is positive diagonal

Assume without loss of generality that v0 is the positive endpoint and is labelled
Y11, and suppose the other endpoint vr is labelled Yst. There are two subcases:

Subcase 1: {s, t} is a distant pair: By Proposition 4.8, if C is the subgraph of G
induced by the bracing edges for e1, . . . , en, then there is a path p′ in C (and hence
in G) from s to t. So since s, t are distant, Remark 4.6 implies that p′ contains at
least 2/γ − 1 consecutive overloaded edges.

We first define some notation to refer to the summands appearing in (4.13) which
will also be important in this subcase: For an edge e = {Yij, Yik} in our path p,

ζ(e) =

{

(1 − αi)(αj + αk − 1), if {Yij , Yik} ∈ P
αi(αj + αk − 1), if {Yij , Yik} ∈ N

As noted in Case 1, ζ(e) ≥ 0 for all e ∈ p.
In Case 1 we showed that S ≥ 0 by first defining a sum S ′

2 such that S2 ≥ S ′
2 and

then noting that S1 + S ′
2 =

∑

e∈p ζ(e). Unfortunately, in the current subcase, since
p contains a positive diagonal endpoint, it is no longer true that S2 ≥ S ′

2. However,
it is easy to see that S2 ≥ S ′

2 − (α1 − α2
1). In particular, S ≥∑e∈p ζ(e) − (α1 − α2

1)
for the current subcase. So since ζ(e) ≥ 0 always, to show that S ≥ 0 in the current
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subcase, it suffices to show that for “many” edges e in p, ζ(e) is “sufficiently large”
so that

∑

e∈p ζ(e) ≥ α1 − α2
1. The existence of these edges in p will follow from the

existence of the 2/γ − 1 consecutive overloaded edges in p′.
Assume without loss of generality that 2/γ − 1 = 4q for some integer q and let

f1, . . . , f4q be, in order, the 4q consecutive overloaded edges in p′ (recall that p′ is the
path from s to t in G and defined by the bracing edges of p). Let U = {ei1, . . . , ei4q}
be the set of edges in p whose bracing edges correspond to f1, . . . , f4q (where eij

corresponds with fj). Note that the edges in U need not occur consecutively in p.
However, using arguments similar to those used in Proposition 4.8 we can prove the
following fact:

Fact 4.9. The edges of p′ can be divided into two consecutive walks p′
1 and p′

2 (i.e.,
all edges in p′

1 and p′
2 are consecutive and all edges in p′

2 either all occur before or
after all edges in p′

1) such that if Ui ⊆ U denotes the edges of p whose bracing edges
form the walk p′

i, then the order in p of the edges U1 is the same as the order of
the corresponding bracing edges in p′

1, while the order in p of the edges U2 is the
reverse of the order of the corresponding bracing edges in p′

2.

Example 4.10. Suppose p = Y11-Y12-Y13-Y16-Y46-Y56. The corresponding walk p′ is
5-4-1-2-3-6 and the division guaranteed by the above Fact has p′

1 = 1-2-3-6, p′
2 = 5-

4-1.

Let p′
1, p′

2 be the division of p′ and U1, U2 the corresponding subsets of U for
these paths, respectively, guaranteed by Fact 4.9 for p′. Without loss of generality,
assume that the length of p′

1 is at least 2q. In particular, assume without loss of
generality that i1 < · · · < i2q. (If instead p′

2 has length greater than 2q, then we
assume without loss of generality that i2q+1 > · · · > i4q and the arguments below
are modified accordingly.)

Let B = {1, 3, 5, . . . , 2q − 1}. Fix some j ∈ B and consider the pair eij , eij+1

of edges from U . Suppose eij = {Yab, Yac}, eij+1
= {Yuv, Yuw} where u 6= a. Since

the bracing edges for these two edges are consecutive in p′, all edges e` such that
ij < ` < ij+1 have the same bracing node (say x) and moreover, this bracing node is
different from the bracing nodes in eij or eij+1

. So we have x = c = v (Figure 4.4).
Let Zj =

∑

ζ(e), where the sum is over e ∈ {eij , eij+1, eij+2, . . . , eij+1−1, eij+1
}

(i.e., over the edges eij and eij+1
, and all edges between them in p).

Claim 4.11. Zj ≥ 2γ/3.

Since j ∈ B was arbitrary and |B| = q, the claim implies S1 + S ′
2 ≥ q(2γ/3) ≥

1/3 − γ/6. So since γ < 1/2 and α1 − α2
1 ≤ 1

4
for α1 ∈ [0, 1], it follows that

S1 + S ′
2 ≥ α1 − α2

1, completing the proof that S ≥ 0 in this subcase.
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Yab

Yac

Ycg2

Ycg3

Ycgd

Yuc

Yuw

eij+1

eij+1−1

eij+2

eij+1

eij

Corresponding

bracing edges in G

(b, c)

(g1, g2)

(g2, g3)

(gd, gd+1)

(c, w)

Path p′′ in G

g1 = a

g2

gd

gd+1 = u

Walk p

in H

Figure 4.4: A portion of a walk p in H in which the bracing node (in this case c)
does not change between edges eij , eij+1

, together with the path p′′ of bracing edges
in G for the portion of p with bracing node c.

Proof of Claim 4.11. Suppose d = ij+1 − ij − 1 is odd (the case where d is even is
similar). Moreover, assume that eij , eij+1

∈ P (the case where they are both in N
is similar). Let αa + αu = 1 + D. Since eij and eij+1

are overloaded,

ζ(eij) + ζ(eij+1
) = 2γ(2 − αu − αa) = 2γ(1 − D). (4.14)

If D ≤ 2
3
, then (4.14) is greater than 2γ/3, and hence so is Zj. So assume D > 2

3
.

Note that the bracing edges of eij+1, eij+2, . . . , eij+1−1 form a path p′′ from a to
u of length d in G. Let g1, . . . , gd+1 be the nodes on p′′ where g1 = a, gd+1 = u
(Figure 4.4). Since α satisfies the vertex cover edge constraints (2.2) for G,
∑d+1

k=1 αgk
≥ (d + 1)/2. In fact, we must have that

∑d+1
k=1 αgk

≥ (d + 1)/2 + D (this
just says that since the endpoints of p′′ sum to 1 + D then some edge(s) along p′′

must be oversatisfied by D). But then,

Zj ≥
(d+1)/2
∑

k=1

ζ(eij+2k−1) = αc

(

d+1
∑

k=1

αgk
− d + 1

2

)

≥
(

1

2
+ γ

)

D >
2γ

3
.

Subcase 2: {s, t} is not a distant pair: Let Sst be the contribution of Yst to
S2 (i.e., Sst = δ(s, t) if vr is a positive endpoint and Sst = β(s, t) if vr is negative).
Since the contribution of Y11 to S2 is −α1, it follows that S2 = Sst − α1.
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For an edge e` = {Yij, Yik} ∈ p, let

T` =

{

a(i, j, k), if e` ∈ P
b(i, j, k), if e` ∈ N

Recall that v0, v1 . . . , vr are the nodes visited by the walk p and that ei denotes the
edge traversed between vi−1 and vi. Note then that S1 =

∑r
`=1 T`. Moreover, recall

that we have assumed without loss of generality that v0 = Y11 and vr = Yst. So
since e1 ∈ P , the following claim implies Sst +

∑r
`=1 T` ≥ α1, and hence that S ≥ 0

in this subcase.

Claim 4.12. Let 1 ≤ q ≤ r and suppose vq−1 = Yij, vq = Yik (i.e., eq = {Yij, Yik}).
Then Sst+

∑r
`=q T` is at least min(αi, αj) if eq ∈ P and is at least min(0, 1−αi−αj)

if eq ∈ N .

Proof. By “backward” induction on q. For the base case q = r, assume without loss
of generality that vq−1 = Ysj, so that eq = {Ysj, Yst}. If eq ∈ N , then T1 = −αs so
that T1 + Sst = −αs + min(αs, αt). Since α satisfies the edge constraints (2.2), it
follows that αj + αt ≥ 1 for the bracing edge {j, t}. Hence, T1 + Sst ≥ min(0, 1 −
αj − αs). If instead eq ∈ P , then T1 = αs + (αj + αt − 1) so that

T1 + Sst = [αs + (αj + αt − 1)] + (1 − αs − αt) = αj .

The base case q = r follows.
Assume the claim holds for eq and consider eq−1 = {Yij, Yik} where vq−2 = Yij

and vq−1 = Yik. If eq−1 ∈ N , then Tq−1 = −αi. Moreover, eq ∈ P and by induction,

Sst +

r
∑

`=q

T` ≥ min(αi, αk).

Since α satisfies the edge constraints (2.2), it follows that αj +αk ≥ 1 for the bracing
edge {j, k}. Hence,

Sst +
r
∑

`=q−1

T` ≥ min(0, 1 − αi − αj).

If instead eq−1 ∈ P , then Tq−1 = αi + (αj + αk − 1). Moreover, eq ∈ N and by
induction,

Sst +
r
∑

`=q

T` ≥ min(0, 1 − αi − αk).

So since αj + αk ≥ 1, it follows that

Sst +

r
∑

`=q−1

T` ≥ min(αi, αj).

The claim follows for eq−1.
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Case 3: Both endpoints of p are positive diagonal

Since p contains two diagonal vertices, Proposition 4.8 implies that there is a cycle
C in the subgraph of G induced by the bracing edges corresponding to the edges
in p. Since girth(G) ≥ 4R(m), it follows that C contains a distant pair. But then,
as there are two different paths between this pair along C, Remark 4.6 implies that
there are two subpaths p′

1 and p′
2 in C each consisting of 2/γ overloaded edges.

Recall that in subcase 1 of Case 2 where there was one positive diagonal vertex,
one such subpath was used to argue that S ≥ 0 in that subcase. In the current case
where there are two positive diagonals and the two subpaths p′

1 and p′
2, the same

argument then implies that S ≥ 0 for the current case also.

4.2 Lower bounds for hypergraph Vertex Cover

In this section we concentrate on proving integrality gaps of size k−ε for relaxations
obtained by the LS lift-and-project technique for vertex cover on k-uniform
hypergraphs. As mentioned above, there is a gap between the factors achieved
by known approximation algorithms and those ruled out by PCPs: While PCP-
based hardness results for k-uniform hypergraph vertex cover rule out k − 1 − ε
polynomial-time approximations [15], only k − o(1) approximation algorithms are
known. Our main result for this section (Theorem 4.13) is that for all ε > 0 and
all sufficiently large n there exist k-uniform hypergraphs on n vertices for which
Ω(log log n) rounds of LS are necessary to obtain a relaxation for vertex cover
with integrality gap less than k − ε.

4.2.1 Methodology

As with all our lower bounds for the Lovász-Schrijver hierarchies, we will use
Lemma 2.1 to prove our lower bound. As before, the key to proving our lower
bound will be coming up with appropriate protection matrices.

Recall from Section 3.2 the standard relaxation for vertex cover on a rank-k
hypergraph G = (V, E):

min
∑

i∈V

xi (4.15)

k
∑

j=1

xj ≥ 1, ∀(1, . . . , k) ∈ E (4.16)

0 ≤ xi ≤ 1, ∀i ∈ [V ]. (4.17)

As in Section 3.2, let HVC(G) denote the polytope corresponding to the feasible
reason of this relaxation. To prove gaps of k − ε for N r(HVC(G)) we will protect
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the point yγ = (1, 1
k
+γ, . . . , 1

k
+γ) where γ > 0 is an arbitrarily small constant. For

yγ, the vector Y (e0 −ei)/(1−xi) given by the protection matrices used in Chapter 3
to prove integrality gaps of size k − 1 − ε for hypergraph vertex cover in the
LS+ hierarchy is not guaranteed to be in HVC(G): if coordinate i is set to 0 in
yγ, we violate all edge constraints involving the ith vertex. So a more sophisticated
protection matrix is needed to get an integrality gap of size k − ε.

For our integrality gap of 2−o(1) for graph vertex cover in Section 4.1 above
we used a special combinatorial form of Farkas’s lemma specifically applicable to the
constraints involved in defining protection matrices for graphs. To prove integrality
gaps of size k − o(1) for N r(HVC(G)), we will also reduce the existence of our
protection matrices exists to the feasibility of linear programs; however, we will
need a much more complicated form of Farkas’s lemma than in the graph case. As
such, we will only be able to carry out our arguments for r ∈ O(log log n) rounds
instead of Ω(log n) rounds as we did for graph vertex cover.

4.2.2 The lower bound

Theorem 4.13. For all k ≥ 2, ε > 0 there exist constants n0(k, ε), δ(k, ε) > 0
s.t. for every n ≥ n0(k, ε) there exists a k-uniform hypergraph G on n vertices for
which the integrality gap of N r(HVC(G)) is at least k−ε for all r ≤ δ(k, ε) log log n.

Theorem 4.13 will follow from the following two theorems.

Theorem 4.14. For all k ≥ 2 and any ε > 0 there exists an n0(k, ε) such that
for every n ≥ n0(k, ε) there exist k-uniform hypergraphs with n vertices and O(n)
hyperedges having Ω(log n) girth but no independent set of size greater than εn.

Theorem 4.15. Fix γ > 0 and let yγ = (1, 1
k

+ γ, 1
k

+ γ, . . . , 1
k

+ γ). Let G be a
k-uniform hypergraph such that girth(G) ≥ 20

γ
r5r. Then yγ ∈ N r(HVC(G)).

Theorem 4.14 is an easy extension of Theorem 4.2 (Erdős [17]) to hypergraphs.
The remainder of this section will be devoted to proving Theorem 4.15.

4.2.3 Proof of Theorem 4.15

The proof is by induction where the inductive hypothesis will require some set
of vectors to be in Nm(HVC(G)) for m ≤ r. These vectors will be essentially
all-( 1

k
+ γ) except possibly for a few small neighbourhoods where they can take

arbitrary nonnegative values so long as the edge constraints for G are satisfied. The
exact characterization is given by the following definition similar to an analogous
definition in [3] as well as to Definition 4.4:
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Definition 4.16. Let S ⊆ [n], R be a positive integer, and γ > 0. A nonnegative
vector (α0, α1, . . . , αn) with α0 = 1 is an (S, R, γ)-vector if the entries satisfy the
edge constraints and if αj = 1

k
+ γ for each j 6∈ ∪w∈SBall(w, R). Here Ball(w, R)

denotes the set of vertices within distance R of w in the graph.

Let Rr = 0 and let Rm = 5Rm+1 + 1/γ for 0 ≤ m < r. Note Rm ≤ girth(G)/20.
To prove Theorem 4.15 we prove the following inductive claim. The theorem is

a subcase of m = r:

Inductive Claim for Nm(HVC(G)): For every set S of r − m vertices, every
(S, Rm, γ)-vector is in Nm(HVC(G)).

The base case m = 0 is trivial since (S, Rm, γ)-vectors satisfy the edge constraints
for G. In the remainder of this section we prove the Inductive Claim for m + 1
assuming truth for m.

To that end, let α be an (S, Rm+1, γ)-vector where |S| = r − m − 1. By
induction, every (S ∪ {i}, Rm, γ)-vector is in Nm(HVC(G)). So to prove that
α ∈ Nm+1(HVC(G)) it suffices by Lemma 2.1 to exhibit an (n + 1) × (n + 1)
symmetric matrix Y such that:

A. Y e0 = diag(Y ) = α,

B. For each i such that αi = 0, Y ei = 0; for each i such that α1 = 1, Y e0 = Y ei;
otherwise, Y ei/αi and Y (e0 − ei)/(1 − αi) are (S ∪ {i}, Rm, γ)-vectors.

As was done in [3] and [43], we will write these conditions as a linear program and
show that the program is feasible, proving the existence of Y . Our notation will
assume symmetry, namely Yij represents Y{i,j}.

Condition A requires:

Ykk = αk ∀k ∈ {1, . . . , n} . (4.18)

Condition B requires first of all that Y ej/αj and Y (e0 − ej)/(1 −αj) satisfy the
edge constaints: For all i ∈ {1, . . . , n} and all {j1, . . . , jk} ∈ E:

αi ≤ Yij1 + . . . + Yij`
≤ αi + (αj1 + . . . + αjk

− 1). (4.19)

Vertices i, t are called a distant pair if t 6∈ ∪w∈S∪{i}Ball(w, 5Rm+1 +1/γ). (Note
then that αt = 1

k
+γ.) Condition B requires that for such a pair, the tth coordinates

of Y ei/αi and Y (e0 − ei)/(1 − αi) are 1
k

+ γ. In particular,

Yit = αiαt = αi

(

1

k
+ γ

)

. (4.20)
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Note that distant pairs have the property that every path in G that connects them
contains at least 4Rm +1/γ −1 hyperedges each of which α oversatisfies by kγ, and
at most Rm hyperedges which α does not oversatisfy by kγ.

Finally, condition B requires that Y ei/αi, Y (e0 − ei)/(1 − αi) are in [0, 1]n+1:

0 ≤ Yij ≤ αi, ∀i, j ∈ {1, . . . , n} , i 6= j (4.21)

−Yij ≤ 1 − αi − αj, ∀i, j ∈ {1, . . . , n} , i 6= j (4.22)

The above constraints suffice to force Y to satisfy conditions A and B. However,
we will not directly analyze these constraints but instead analyze the following four
constraint families which imply the above constraints but are in a cleaner form:

Yij ≤ β(i, j), ∀i, j ∈ {1, . . . , n} (4.23)

−Yij ≤ δ(i, j), ∀i, j ∈ {1, . . . , n} (4.24)

Yij1 + . . . + Yijk
≤ a(i, j1, . . . , jk), ∀ {j1, . . . , jk} ∈ E (4.25)

−Yij1 − . . . − Yijk
≤ b(i, j1, . . . , jk), ∀ {j1, . . . , jk} ∈ E (4.26)

Here (1) β(i, j) = αiαj if i, j is a distant pair and β(i, j) = min(αi, αj) otherwise; (2)
δ(i, j) = −αi if i = j; δ(i, j) = −αiαj if i, j is a distant pair; and δ(i, j) = 1−αi−αj

otherwise; (3) a(i, j1, . . . , jk) = αi+(αj1+. . .+αjk
−1); and (4) b(i, j1, . . . , jk) = −αi.

Note that β(i, j) + δ(i, j) ≥ 0 always, since α ∈ [0, 1]n+1,
To prove the consistency of constraints (4.23)–(4.26), we will use a special com-

binatorial version of Farkas’s Lemma similar in spirit to that used in [43] and [3],
as well as in Section 4.1 above. Before giving the exact form, we require some
definitions.

Definition 4.17. A tiling (W, P, N) for G is a connected k-uniform hypergraph
H = (W, P, N) on vertices W and two disjoint k-edge sets P and N such that:

1. Each vertex in W is labelled by Yij , i, j ∈ {1, . . . , n}. Note that distinct
vertices need not have different labels.

2. Each vertex belongs to at most one edge in P and at most one edge in N (in
particular, all edges in P are mutually disjoint, as are all edges in N).

3. All edges in P ∪ N are of the form {Yij1, . . . , Yijk
} where {j1, . . . , jk} ∈ E.

The edges of a tiling are called tiles. Vertices in W not incident to any tile in P are
called unmatched negative vertices; vertices in W not incident to any tile in N are
called unmatched positive vertices. Let UN and UP denote the sets of unmatched
negative and unmatched positive vertices, respectively. A vertex labelled Yii is called
diagonal. Denote the set of unmatched positive diagonal vertices in W by UPD. A
vertex labelled Yij is called a distant pair if {i, j} are a distant pair. Given a tile
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{Yij1, . . . , Yijk
} in P or N , call {j1, . . . , jk} ∈ E its bracing edge and i its bracing

node. An edge {j1, . . . , jk} in G is called overloaded if αj1 = . . . = αjk
= 1

k
+γ. A tile

{Yij1, . . . , Yijk
} in H is overloaded if its bracing edge is overloaded. (See Figure 4.5

for an example of a simple tiling.)

Given a tiling H = (W, P, N) for G, define the following sums:

SH
1 =

∑

{Yij1
,...,Yijk}∈P

a(i, j1, . . . , jk) +
∑

{Yij1
,...,Yijk}∈N

b(i, j1, . . . , jk), (4.27)

SH
2 =

∑

Yij∈UP

δ(i, j) +
∑

Yij∈UN

β(i, j). (4.28)

Finally, let SH = SH
1 + SH

2 .

Lemma 4.18 (Special case of Farkas’s Lemma). Constraints (4.23)–(4.26) are
unsatisfiable iff there exists a tiling H = (W, P, N) for G such that SH < 0.

Proof. Note first that by the general form of Farkas’s lemma constraints (4.23)–
(4.26) are unsatisfiable iff there exists a positive rational linear combination of them
where the LHS is 0 and the RHS is negative.

Now suppose that there exists a tiling H = (W, P, N) such that SH < 0. Con-
sider the following linear integer combination of the constraints: (1) For each tile
e = {Yij1, . . . , Yijk

} ∈ H , if e ∈ P , add the constraint Yij1+. . .+Yijk
≤ a(i, j1, . . . , jk);

if e ∈ N , add the constraint −Yij1 − . . .−Yijk
≤ b(i, j1, . . . , jk); (2) For each v ∈ UN

labelled Yij, add the constraint Yij ≤ β(i, j); (3) For each v ∈ UP labelled Yij, add
the constraint −Yij ≤ δ(i, j). But then, for this combination of constraints the LHS
equals 0 while the RHS equals SH < 0. So by Farkas’s lemma the constraints are
unsatisfiable.

Now assume on the other hand that the constraints are unsatisfiable. So there
exists a positive rational linear combination of the constraints such that the LHS is
0 and the RHS is negative. By clearing out denominators, we can assume that the
linear combination has integer coefficients. Hence, as β(i, j) + δ(i, j) ≥ 0 always,
our combination must contain constraints of type (4.25) and (4.26). Moreover, since
the LHS is 0, for each Yij appearing in the integer combination there must be a cor-
responding occurrence of −Yij . But then, it is easy to see that the constraints in the
integer linear combination can be grouped into a set of tilings {Hi = (Wi, Pi, Ni)}
such that the RHS of the linear combination equals

∑

i S
Hi (for an example, see

Figure 4.5). Since the RHS is negative, it must be that at least one of the tilings
H in the set is such that SH < 0. The lemma follows.

So to show that the constraints for the matrix Y are consistent and thus complete
the proof of the Inductive Claim for m+1 (and complete the proof of Theorem 4.15),
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Y12 + Y13 + Y14 ≤ α1 + (α2 + α3 + α4 − 1)

−Y12 − Y12 − Y15 ≤ −α1

−Y14 − Y45 − Y46 ≤ −α4

Y44 + Y46 + Y47 ≤ α4 + (α4 + α6 + α7 − 1)

Y15 ≤ α1

Y45 ≤ α4

−Y47 ≤ 1 − α4 − α7

−Y44 ≤ −α4

Y46

Y13

Y47 Y44

Y14

Y45

Y15 Y12

Tiles in P

Tiles in N

Figure 4.5: A positive integer linear combination of hypergraph vertex cover
constraints where the LHS is 0, together with its corresponding tiling. Note
Y15, Y45 ∈ UN , and Y47 ∈ UP , Y44 ∈ UPD.

we will show that SH ≥ 0 for any tiling H = (W, P, N) for G. To that end, fix a
tiling H = (W, P, N) for G. Our analysis divides into three cases depending on the
size of UPD, the set of unmatched positive diagonal vertices in H . In the first (and
easiest) case, |UPD| = 0; in the second, |UPD| ≥ 2; and in the final, |UPD| = 1. We
will show that SH ≥ 0 in all these cases . To reduce clutter, we drop the superscript
H from SH

1 , SH
2 and SH . In what follows, let C be the subgraph of G induced by

the bracing edges of all tiles in H .
We first note two easy facts about H used below:

Proposition 4.19. 1. Suppose H contains a diagonal vertex. Then C is con-
nected. Moreover, for any vertex labelled Yij in H, there exists a path p in H
such that the bracing edges corresponding to the tiles in p form a path p′ from
i to j in C.

2. The distance between any two diagonal vertices in H is at least girth(G)/2.

Proof. We leave part (1) as an easy exercise and sketch a proof of part (2).
Since H is connected, there exists a path between any two diagonal vertices in

H . We will show that the subgraph of G induced by the bracing edges of the tiles
in such path must contain a cycle. Part (2) will then follow.

To that end, let q be an arbitrary path in H comprised, in order, of tiles e1, . . . , er.
Consider these tiles in order beginning with e1. As long as the bracing node in
successive tiles does not change, then the bracing edges of these tiles form a path q′

in G. If the bracing node changes at some tile, say ei, then the bracing edge for ei

starts a new path q′′ in G. Moreover, some vertex w ∈ G from the last edge visited
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in q′ becomes the (new) bracing node for ei. The bracing edges of the tiles following
ei now extend q′′ until an edge ej is encountered with yet a different bracing node.
But then, the bracing edge for ej must contain w. Hence the bracing edge for ej

must extend q′. Continuing this argument, we see that each time the bracing node
switches, the tiles switch back and forth from contributing to q′ or q′′.

Each time the current tile e` contains some diagonal vertex labelled Yii, the
bracing node i for e` is also contained in the bracing edge for e`. But then, since
the bracing node belongs to, say, q′ while the bracing edge belongs to q′′, it follows
that q′ and q′′ must intersect at vertex i in G. Hence, if a tile path q contains two
diagonal vertices, q′ and q′′ must intersect twice. That is, the subgraph in G induced
by the bracing edges of tiles in q must contain a cycle. Part (2) follows.

Case 1: No unmatched positive diagonal vertices

Consider the following sum:

S ′
2 =

∑

Yij∈UN

αiαj −
∑

Yij∈UP

αiαj . (4.29)

Note that since α ∈ [0, 1]n+1, it follows that −αiαj ≤ 1−αi −αj and αiαj ≤ αi. So
since there are no unmatched positive diagonal vertices in the tiling, αiαj ≤ β(i, j)
and −αiαj ≤ δ(i, j) for all unmatched vertices labelled Yij in the tiling, and hence,
S2 ≥ S ′

2. So to show S ≥ 0 in this case, it suffices to show S1 + S ′
2 ≥ 0.

To that end, consider the following sum:

∑

{Yij1
,...,Yijk}∈P

(−αiαj1 − . . . − αiαjk
) +

∑

{Yij1
,...,Yijk}∈N

(αiαj1 + . . . + αiαjk
). (4.30)

By properties (2) and (3) of a tiling, it follows that (4.30) telescopes and equals
S ′

2. But then, to show that S ≥ 0 in this case it suffices to show that for each
{Yij1, . . . , Yijk

} ∈ P ,

a(i, j1, . . . , jk) − [αi(αj1 + . . . + αjk
)] = (1 − αi)(αj1 + . . . + αjk

− 1), (4.31)

is nonnegative (the first term comes from the term in S1 for the tile, and the second
from the term for the tile in (4.30)), and for each {Yij1, . . . , Yijk

} ∈ N ,

b(i, j1, . . . , jk) + [αi(αj1 + . . . + αjk
)] = αi(αj1 + . . . + αjk

− 1), (4.32)

is nonnegative (again, the first term comes from S1 and the second from (4.30)).
But (4.31) and (4.32) are both nonnegative since the bracing edges for all tiles are
in G and α satisfies the edge constraints for G. Hence, S ≥ 0 in this case.
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Case 2: At least 2 unmatched positive diagonal vertices

We first define some notation to refer to quantities (4.31) and (4.32) which will
be used again in this case: For a tile {Yij1, . . . , Yijk

}, define ζ(i, j1, . . . , jk) to be
(1 − αi)(αj1 + . . . + αjk

− 1) if {Yij1, . . . , Yijk
} ∈ P and to be αi(αj1 + . . . + αjk

− 1)
if {Yij1, . . . , Yijk

} ∈ N . We will sometimes abuse notation and write ζ(e) instead of
ζ(i, j1, . . . , jk) for a tile e = {Yij1, . . . , Yijk

}.
In Case 1 we showed that S ≥ 0 by (1) defining a sum S ′

2 such that S ≥ S1 +S ′
2,

then (2) noting that S1 + S ′
2 =

∑

e∈H ζ(e), and finally (3) showing that ζ(e) ≥ 0
for all tiles e in H . Unfortunately, in the current case, since H contains unmatched
positive diagonal vertices, it is no longer true that S ≥ S1 + S ′

2. However, it is easy
to see that S ≥ (S1 + S ′

2) −∑Yii∈UPD
(αi − α2

i ). In particular, S ≥ ∑

e∈H ζ(e) −
∑

Yii∈UPD
(αi −α2

i ). So since ζ(e) ≥ 0 for all tiles, to show that S ≥ 0 for the current
case, it suffices to show that for “many” tiles e in H , ζ(e) is sufficiently large so
that

∑

e∈H ζ(e) ≥∑Yii∈UPD
(αi − α2

i ).
We require the following lemma:

Lemma 4.20. If there are ` ≥ 2 diagonal vertices in H, then there exist ` disjoint
paths of length girth(G)/4 − 2 in H which do not involve any diagonal vertices.

Proof. Let Q be a tree in H that spans all the diagonal vertices in H (such a tree
exists since H is connected). For each diagonal vertex u ∈ H let B(u) be the tiles
in Q with distance at most girth(G)/4 − 1 from u. Then for all diagonal vertices
u, v ∈ H , the balls B(u) and B(v) must be disjoint: otherwise, the distance between
u and v would be less than girth(G)/2, contradicting part (2) of Proposition 4.19.
Since Q is a spanning tree, for each diagonal vertex u ∈ H , there exists a path of
length at least girth(G)/4 − 2 in B(u).

By the lemma, for each vertex v ∈ UPD there exists a path pv in H of length
girth(G)/4 − 2 such that for distinct u, v ∈ UPD the paths pu and pv share no
tiles. We will show (provided that n is sufficiently large) that for each v ∈ UPD,
∑

e∈pv
ζ(e) ≥ 1. Since αi − α2

i ≤ 1
4
, it will follow that S ≥ 0, completing the proof

for this case.
So fix v ∈ UPD. Since Rm ≤ girth(G)/20, pv contains at least girth(G)/20

disjoint pairs of adjacent overloaded tiles (i.e., αj = 1
k

+ γ for all vertices j in
the bracing edges of the two tiles in the pair). Let e1 = {Yqr1, . . . , Yqrk

} ∈ P
and e2 = {Yst1 , . . . , Ystk} ∈ N be such a pair. Note that ζ(e1) = (1 − αi)kγ and
ζ(e2) = αskγ. Now, either s = r` for some ` ∈ [k], or s = q. If s = r`, then αs = 1

k
+γ

and ζ(e1) + ζ(e2) ≥ kγ( 1
k

+ γ). If instead s = q, then ζ(e1) + ζ(e2) ≥ kγ. In either
case, ζ(e1) + ζ(e2) ≥ kγ( 1

k
+ γ). Hence, summing over all girth(G)/20 disjoint pairs

of adjacent overloaded tiles, it follows that
∑

e∈pv
ζ(e) ≥ kγ( 1

k
+ γ) girth(G)/20. As

desired, the latter is indeed greater than 1 for large n since girth(G) = Ω(log n).
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Case 3: Exactly 1 unmatched positive diagonal vertex

The argument in Case 2 actually rules out the possibility that the tiling contains
two or more diagonal vertices, unmatched or not. Hence, we will assume that our
tiling contains exactly one diagonal vertex labelled without loss of generality by Y11.
We consider two subcases.

Subcase 1: At least one of the unmatched vertices is a distant pair:
Arguing as in Case 2, we have in this subcase that S = [

∑

e∈H ζ(e)] − (α1 − α2
1)

where, moreover, ζ(e) ≥ 0 for all tiles e ∈ H . Hence, to show that S ≥ 0 in this
subcase, it suffices to show that there exists a subset H ′ ⊆ H such that

∑

e∈H′ ζ(e) ≥
1
4

≥ α1 − α2
1.

To that end, let v be an unmatched vertex in H labelled Yij where {i, j} is
a distant pair. By part (1) of Proposition 4.19 there is a path p in H such that
the bracing edges corresponding to the tiles in p form a path q in C connecting
vertices i and j. Since i, j are distant, q must contain, by definition, at least
4Rm+1 + 1/γ overloaded edges. Moreover, it is not hard to see that there exists a
sub-path p′ of p of length at most 5Rm+1 + 1/γ such that the bracing edges of the
tiles in p′ include all these overloaded edges. Hence p′ must contain at least 1/γ
disjoint pairs of overloaded tiles. But then, arguing as in Case 2, it follows that
∑

e∈p ζ(p) ≥ (1/γ)(kγ( 1
k

+ γ)) ≥ 1
4
, and hence that S ≥ 0 in this subcase.

Subcase 2: None of the unmatched vertices is a distant pair:
Note first that we can assume that H contains no cycles: If it does, then it is

easy to see that C must also contain a cycle, and hence, we can use the ideas from
Case 2 to show that S ≥ 0.

So assume H has no cycles and define a tree T as follows: There is a node in T
for each tile in H . The root root(T ) corresponds to the tile containing Y11. There
is an edge between two nodes in T iff the tiles corresponding to the nodes share
a vertex. Note that T is a tree since H is acyclic. For a node v ∈ T , let T ile(v)
denote its corresponding tile in H . Finally, for a node v ∈ T we abuse notation and
say v ∈ P (resp., v ∈ N) if T ile(v) ∈ P (resp., T ile(v) ∈ N).

Recursively define a function t on the nodes of T as follows: Let v be a node in
T and suppose T ile(v) = {Yij1, . . . , Yijk

}. If v ∈ P , then

t(v) = a(i, j1, . . . , jk) +
∑

v′∈Child(v)

t(v′) +
∑

unmatched Yij`
in T ile(v)

δ(i, j`). (4.33)

If instead v ∈ N , then

t(v) = b(i, j1, . . . , jk) +
∑

v′∈Child(v)

t(v′) +
∑

unmatched Yij`
in T ile(v)

β(i, j`). (4.34)
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A simple induction now shows that t(root(T )) = S (recall that root(T ) corresponds
to the tile containing Y11). Hence, to show that S ≥ 0 in this subcase it suffices to
show that t(root(T )) ≥ 0. This will follow from the following lemma:

Lemma 4.21. Given v ∈ T , let e = T ile(v) = {Yij1, . . . , Yijk
}. Assume, without

loss of generality, that Yij1, . . . , Yij`
(where 0 ≤ ` ≤ k) are the labels of the vertices

in e shared with the tile corresponding to v’s parent (where ` = 0 iff v = root(T )).
Then,

1. If v = root(T ), then t(v) = t(root(T )) ≥ 0; otherwise,

2. If v ∈ P , then t(v) ≥ min(αi,
∑`

r=1 αjr);

3. If instead v ∈ N , then t(v) ≥ min(0, 1 − αi −∑`
r=1 αjr).

Proof. The proof is by induction on the size of the subtree at v. For the base case,
let v be a leaf. Hence, the vertices labelled by Yij`+1

, . . . , Yijk
in e are all unmatched

non-distant pair vertices (since H contains no unmatched distant pair vertices).
Suppose v ∈ P . By equation (4.33),

t(v) = αi +

k
∑

r=1

αr − 1 +

k
∑

r=`+1

δ(i, jr). (4.35)

There are two subcases to consider. In the first subcase, jr 6= i for all r = `+1, . . . , k.
Then δ(i, jr) = 1 − αi − αr for all r = ` + 1, . . . , k and it follows that t(v) =
∑`

r=1 αr + (k − ` − 1)(1 − αi) ≥ ∑`
r=1 αr. In the second subcase, jr = i for some

r, say r = k. This can only happen for one r since H only contains one diagonal
vertex, namely Y11. In particular, v must be root(T ). Then δ(i, jk) = −αi and
δ(i, jr) = 1 − αi − αr for all r = ` + 1, . . . , k − 1. Since α satisfies the edge
constraints for G, it follows that t(v) = t(root(T )) ≥ 0.

Suppose instead that v ∈ N . By equation (4.34), t(v) = −αi +
∑k

r=`+1 β(i, jr).
Now, β(i, jr) ≥ min(αi, αjr) for all r = ` + 1, . . . , k. If β(i, jr) = αi for some jr,
then t(v) ≥ 0 as desired. So assume β(i, jr) = αjr for all r = ` + 1, . . . , k. Since α

satisfies the edge constraints for G,
∑k

r=1 αjr ≥ 1. But then, t(v) ≥ 1−αi−
∑`

r=1 αjr ,
completing the proof for the base case.

For the inductive step, let v be any node in T and assume the lemma holds for
all children of v. Assume first that v ∈ P and hence, all children of v are in N (by
definition of a tiling). By the induction hypothesis, there are two possibilities: either
(a) t(v′) ≥ 0 for all children v′ of v, and there are no unmatched vertices in T ile(v),
or (b) there exists some unmatched vertex in T ile(v) or t(v′) ≥ 1−αi−

∑t
s=1 αjrs

for
some child v′ of v. In case (a), it follows from (4.33) and from from the fact that α
satisfies the edge constraints for G that t(v) ≥ αi. In case (b), using the arguments
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from the base case, it follows that t(v) ≥ 0 when v = root(T ), and t(v) ≥∑`
r=1 αjr

when v 6= root(T ).
Now assume that v ∈ N . The arguments from the above case when v ∈ P ,

as well as the arguments from the base case, can now be adapted to show that
t(v) ≥ min(0, 1 − αi − ∑`

r=1 αjr). Note that in in this case v 6= root(T ) since
root(T ) ∈ P . The inductive step, and hence the lemma, now follow.

So S ≥ 0 in Case 3 also, and the Inductive Claim now follows for m + 1.

4.3 Discussion

The integrality gap of 2 − ε for graph vertex cover holds for Ω(log n) rounds.
We conjecture that our integrality gaps in the hypergraph case should also hold for
at least Ω(log n) rounds. Indeed, examining the proof of Theorem 4.15, it can be
shown that by redefining the recursive definition of Rm to be Rm = Rm+1 + c/γ
(for some constant c > 0), then all cases considered in the proof except Subcase 1
of Case 3 can be argued for Ω(log n) rounds. While it can be argued that S ≥ 0
for Ω(

√
log n) rounds for graphs in this subcase (and in fact for Ω(log n) rounds we

define (S, R, γ)-vectors as in Definition 4.4 in Section 4.1.2), a proof for hypergraphs
eludes us.

The integrality gaps of k − 1 − ε given in Chapter 3 for k-uniform hypergraph
vertex cover held not only for LS but also for LS+ liftings, the stronger semidefi-
nite version of Lovász-Schrijver liftings. Obtaining optimal integrality gaps for both
graph and hypergraph vertex cover for LS+ remains a difficult open question.

Finally, can our techniques be applied to other problems? For instance, could our
techniques be used to show that, say, even after log log n rounds of LS the integrality
gap of the linear relaxation for max-cut remains larger than the approximation
factor attained by the celebrated SDP-based Goemans-Williamson algorithm [27]?
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Chapter 5

The “Fence” method

As discussed in Chapter 4, proving lower bounds even in the weaker LS0 and LS
hierarchies for problems defined by 2-variable constraints (such as vertex cover)
has proved very difficult. This contrasts with problems defined by 3 (or more)
variable constraints (e.g., max-3sat, hypergraph vertex cover) where we were
able in Chapter 3 to prove strong inapproximability results (in terms of the number
of rounds for which the lower bounds hold) for even Ω(n) rounds of LS+.

The techniques used in Chapter 4 for obtaining lower bounds showed that the in-
tegrality gap of relaxations for vertex cover produced after even Ω(log n) rounds
of LS tightenings is 2 − o(1). Unfortunately, these techniques can only prove lower
bounds when the number of LS rounds is at most the girth of the input graph,
which is O(log n) for graphs with large integrality gaps.

In this chapter, we show how to break through this “girth barrier” and obtain
integrality gaps for vertex cover after even Ω(g2) LS rounds for graphs of girth
g. Consequently we show that vertex cover relaxations produced after Ω(log2 n)
rounds of LS have integrality gaps of size 1.5 − ε for any ε > 0 (Theorem 5.3).
While less than 2 − o(1), our integrality gap is still larger than the approximability
factor of 1.36 ruled out using PCP-based techniques [16]. As we discuss further in
Section 5.4, we conjecture that our techniques may yet yield integrality gaps after
even linear rounds of LS. The work in this chapter was published in [52].

5.0.1 Comparison with related work

While the results in Chapter 4 are those most easily comparable to our main result,
the techniques used in Buresh-Oppenheim et al. [11] and in Chapter 3 are somewhat
more related to those used here (this will be discussed further in the next section).
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5.1 Methodology

Given a protection matrix Y , call the set V (Y ) = {Y ei, Y (e0 − ei) : 1 ≤ i ≤ n} the
set of protection vectors corresponding to Y . The points x we protect will always
have x0 = 1. For such points, the set of projected protection vectors corresponding
to Y is

PV (Y ) = {Y ei/xi, Y (e0 − ei)/(1 − xi) : 1 ≤ i ≤ n, 0 < xi < 1} .

Note that these are simply the vectors from Corollary 2.2. Note moreover that
y0 = 1 for all vectors y in PV (Y ).

Lemma 2.1 (and Corollary 2.2) suggests using inductive arguments to show that
some vector w is in N r(P ). As was done in Chapter 3 (and first suggested in [11])
such an argument can be phrased as a Prover-Adversary game: The game maintains
a vector x, initially w, and proceeds in rounds. Each round the following moves are
made:

1. Given the current value for x, the Prover produces a candidate protection
matrix Yx supposedly showing that x ∈ N(P ).

2. The Adversary picks one vector y from PV (Yx) and sets x to y.

The game ends when x is no longer in P , i.e., when the Adversary forces the
Prover into constructing an invalid candidate protection matrix. The following
lemma which is similar to Lemma 3.11 follows immediately from Lemma 2.1 and
the definition of the Prover-Adversary game, and was proved in [11]:

Lemma 5.1. If there exists a strategy for the Prover such that the game lasts r
rounds no matter what the Adversary does, then w ∈ N r(P ).

If x ∈ conv(S) and S ⊆ N r(P ), it follows also that x ∈ N r(P ). We can use this
observation to modify the game rules as follows:

1. Given the current point x, the Prover produces a candidate protection matrix
Yx. The Prover then produces a set Sx of points such that PV (Yx) ⊆ conv(Sx).

2. The Adversary picks one vector y from Sx and sets x to y.

By Lemma 5.1, if there exists a strategy for the Prover in this new game such that
the game lasts r rounds no matter what the Adversary does, then w ∈ N r(P ).
The intuition for introducing the rules of the revised game is that the vectors in
Sx may have nicer structural properties than the vectors in PV (Yx) facilitating the
Prover’s strategy in future rounds of the game. Indeed, expressing the vectors in
PV (Yx) using convex combination will be crucial for our “fence” method sketched
in Section 5.1.1 below and described formally in Section 5.3.2.3.
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In practice, when trying to show w ∈ N r(P ), we will pick w so that it enjoys
some nice structural properties. Hence, in our lower bound, the Prover will always
construct Sx so that the difference between any vector in Sx and the current x is
both minimal and predictable.

Remark 5.2. If a coordinate is set to 0 or 1 in the game, then that coordinate will
remain 0 or 1, respectively, for the remainder of the game: This follows from the
definition of PV (Yx) and from the fact that the PV (Yx) ⊆ conv(Sx).

We would like to mention now one way in which our approach will more re-
semble that taken in Chapter 3 (and also in [11]) rather than that in Chapter 4.
In Chapter 4 LP-duality was used to prove the existence of appropriate protection
matrices needed for their lower bound; no explicit description for their protection
matrices was obtained. While our protection matrices will be completely different
than those used in Chapter 3 (and by [11]), as in the results in that chapter we
will nevertheless always give explicit descriptions for them. This is crucial since our
arguments will require explicit descriptions for the sets PV (Yx).

5.1.1 The “Fence” trick

The key to our new lower bound is what we call the “Fence” method which we now
roughly sketch. A more technical description will be given in Section 5.3.2.3.

As in the results in Chapter 4, our lower bound will be proved for a graph G with
girth Θ(log n). To prove that a large integrality gap remains after Ω(log2 n) rounds
of LS tightenings we start the Prover-Adversary game with a “bad” fractional
solution vector w (i.e., the value of the objective function at w is far from the true
integral optimum) and show that there is an Ω(log2 n) round strategy for the Prover
against any Adversary. The vector w will be chosen so that it satisfies some “nice”
structural properties.

In each round of the game, given the current vector x the Prover’s strategy will
be to design Sx (the set of vectors from which the Adversary chooses x for the next
round) such that the difference between x and any vector in Sx is minimal. For
technical reasons, vectors in Sx will always differ in at least a few coordinates from
x. Hence, as more and more rounds of the game are played, the current vector x
will differ more and more from the initial vector w.

Let Cx be the induced subgraph of G on those vertices (i.e., coordinates) that x
differs from w. For technical reasons, our Prover strategy will always be successful
against the Adversary provided that Cx has no component with diameter greater
than half the girth of G.

Now, it is not too hard to tailor the Prover’s strategy so that in the ith round
of the game the sum of the diameters of all components in Cx is at most O(i) (for
instance, by adapting the arguments in Chapter 4). So since G has girth Θ(log n),
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the Prover can use such a strategy to play Ω(log n) rounds of the game against any
Adversary. However, this strategy will fail beyond Ω(log n) rounds since Cx may
then contain a component with diameter greater than half the girth.

To continue the game, the Prover then uses the “fence trick”: If some vector
y in Sx (the set from which the Adversary chooses x for the next round of the
game) is such that Cy has a component A with diameter nearly half the girth,
then the Prover will put a “fence” around this component to stop it from growing
any larger and becoming “dangerous”. The Prover does this by taking advantage
of Remark 5.2 which implies that during the game we can ignore all nodes in G
(i.e., remove the respective coordinates from x) that are set to 1 by x (this is made
formal in Section 5.3.1). To put a “fence” around A, the Prover expresses y as a
convex combination of vectors each of which sets some nodes surrounding A to 1,
disconnecting it from the rest of G.

5.2 The main theorem

We prove our main result in this section. Given a graph G, let VC(G) ⊆ Rn+1

denote the convex cone of feasible solutions to the homogenized (relaxed) vertex
cover constraints for G.

Theorem 5.3. For all ε > 0 there exists a constant δ > 0 and an integer n0 such
that for all n ≥ n0 there exists an n-vertex graph G for which N r(VC(G)) has an
integrality gap of at least 1.5 − ε for all r ≤ δ log2 n.

The graphs used to prove Theorem 5.3 are high-girth sparse graphs with degree
bounded by some constant d ≥ 3. With non-zero probability, such graphs have a
maximum independent set of size O(n log d

d
). In particular, we have the following the-

orem from standard graph theory (it is proved along similar lines to Theorem 4.2):

Theorem 5.4. There exist constants α, β > 0 and integers n0, d0 such that for all
n ≥ n0 and all d ≥ d0, there exists a graph G(n, d) with n vertices, degree at most
d, girth at least β log n, and maximum independent set size at most αn log d

d
.

The graphs given by the above theorem will be used to prove the following
theorem from which Theorem 5.3 will follow.

Theorem 5.5. Let w = (1, 2
3
, 2

3
, . . . , 2

3
) ∈ Rn+1. Let n0, d0 be the constants given by

Theorem 5.4. Then for all n ≥ n0 and all d ≥ d0, the point w is in N r(VC(G(n, d)))
for r = Ω(log2 n).

Section 5.3 is devoted to proving Theorem 5.5.

Proof of Theorem 5.3. Theorem 5.5 shows that for large n and d there exist graphs
G for which the integrality gap of N r(VC(G)) for r = Ω(log2 n) is 3

2
(1− α log d

d
). The

latter quantity can be made arbitrarily close to 1.5 by taking d sufficiently large.
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5.3 Proof of Theorem 5.5

Fix d ≥ d0 and n ≥ n0, and let G = G(n, d). Let g denote the girth of G. Note
that g ≥ β log n. For the proof we will first make some important definitions. Then
we will describe the Prover’s strategy for the vector w and graph G. Concurrently,
we will show that the described strategy works for r rounds against any adversary,
where r = (g/28)2/2.

5.3.1 Round invariants and components

We will define three properties/invariants that the Prover will ensure the current
vector x for the game satisfies at the beginning of each round. The first is the
following:

Property 1: x ∈ VC(G) and x ∈
{

0, 1, 1
3
, 2

3

}n+1
(of course, x0 = 1 always).

This invariant allows us to make several crucial definitions. First we make some
observations.

Note that the constraints for any edge in G incident to a vertex i where xi = 1
are trivially satisfied. Moreover, since x ∈ VC(G), if xi = 0 then xj must be 1 for all
vertices j adjacent to i. Hence, since vertices that are 0/1 valued will never change
their values in subsequent rounds (see Remark 5.2), when analyzing the effect of
one round of N it will suffice to only consider the subgraph Gx of G induced by
those vertices with value in

{

1
3
, 2

3

}

under x. We will say that a vertex j has value a
in Gx if xj = a.

Next we define the concept of a simple component in Gx. Intuitively, a simple
component in Gx is any connected component in Gx such that all edges with both
vertices in the component have one vertex with value 1

3
and the other with value 2

3
.

We now make this precise.
Given x ∈ VC(G), let G′

x be the subgraph of Gx induced by all edges (i, j) in
Gx such that one of xi or xj is 1

3
(note that since x ∈ VC(G), at most one vertex in

each edge has value 1
3
).

Definition 5.6. A (vertex induced) subgraph C of Gx is called a simple component
if it is a maximal connected component of G′

x (i.e., adding any vertex of G′
x to C

results in an unconnected (vertex induced) subgraph of G′
x).

We will ensure (see Property 2 below) throughout the Prover-Adversary game
that all simple components in Gx have diameter much smaller than half the girth
of G. Hence, adjacent vertices in a given simple component cannot both have value
2
3

under x. In particular, this ensures that the following definition is consistent:
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Definition 5.7. A node i belongs to the boundary of a simple component C in Gx

if (a) i ∈ C, (b) xi = 2
3
, and (c) there exists j such that xj = 2

3
and (i, j) ∈ E.

(Note that since C has diameter less than g/2, j cannot be in C.)
The edge distance dE(C, C ′) in Gx between two simple components C and C ′

is the length (i.e., number of edges) of the shortest path in Gx connecting some
boundary node of C with some boundary node of C ′. The distance d(C, C ′) between
the two simple components is equal to dE(C, C ′)−1. If no paths exists between the
components, then dE(C, C ′) and d(C, C ′) are defined to be infinite.

Consider the following procedure: Let D be a set whose items will be simple
components of Gx, and suppose D initially contains only one simple component C.
Repeat the following procedure until D no longer grows in size: For every simple
component C ′ in D, add to D all simple components C ′′ that are within distance 2
of C ′ in Gx. The final set from this procedure is called the closure of C.

Definition 5.8. A vertex induced subgraph C of Gx is a complete component if
there exists a simple component C ′ in Gx such that the vertices of C are precisely
the vertices of all simple components in the closure of C ′.

Intuitively, a complete component is formed by adding to a simple component
all simple components that are “near” it, and then adding all simple components
that are “near” the resulting component, and so on.

Definition 5.9. A node in Gx is untouched if it belongs to no complete component.
Otherwise, the node is touched. Note that untouched nodes always have value 2

3
.

Distance between two complete components is defined in the same way it was
defined for simple components. Note that by definition the distance between two
components is at least 3. This fact is important, so we make special note of it:

Observation 1: The distance between two complete components is at least
3. Hence, along any path connecting two complete components in Gx there
are at least 3 consecutive untouched nodes.

The second invariant the Prover will ensure is that at the beginning of each round
all complete (and hence all simple) components in Gx have diameter substantially
smaller than g. In particular, it will ensure that the following property holds for x
at the beginning of each round:

Property 2: No complete component in Gx has diameter greater than γ,
where γ = g/28.

If at some point in the game some complete component’s diameter gets too large,
then the Prover will “remove” the complete component from Gx. Intuitively, this
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will be done by altering x so that the values of nodes immediately around the too-
large component are 0/1. Hence the complete component will be “fenced off” from
the rest of the graph and can be ignored for the rest of the game. The details of
how this is done are in Section 5.3.2.3.

Finally, the following Property will also be ensured:

Property 3: At the beginning of round i the sum of the diameters of all
complete components in Gx is at most 7i.

In the next section we describe the Prover’s strategy in round i ≤ r = γ2/2 =
Ω(log2 n). While describing the strategy we will prove that if i < r, then the
Prover’s strategy will guarantee that Properties 1–3 will hold at the start of the
following round. Hence, Theorem 5.3 will follow.

5.3.2 The Prover’s strategy for x in round i

“High-level” description

The Prover’s strategy can be described as follows: By induction, the Prover can
assume that the Properties 1–3 hold for x at the start of the round; they of course
hold for the base case vector x = w. The Prover will then construct the “obvi-
ous” protection matrix Yx for x where “obvious” will be made precise below; the
Round Invariants will be crucial for this (Section 5.3.2.1). The set PV (Yx) may not

be contained in x ∈
{

0, 1, 1
3
, 2

3

}n+1
(in particular, some vectors may have entries

that are 1
2
), i.e., these vectors may not satisfy Property 1. The Prover will then

construct a new set S ′
x ⊆

{

0, 1, 1
3
, 2

3

}n+1
of vectors such that PV (Yx) ⊆ conv(S ′

x)
(Section 5.3.2.2). The vectors in S ′

x may not satisfy Property 2. The “fence” trick
will be used by the prover to construct a new set Sx satisfying all the invariants and
such that S ′

x ⊆ conv(Sx) (Section 5.3.2.3). The details now follow.

5.3.2.1 The “obvious” protection matrix Yx for x

To simplify notation, we will write Y for Yx. Since Y is supposed to be symmetric,
we will often use the notation Yij instead of Yi,j or Yj,i.

The protection matrix Y for x will depend on the structure and properties en-
joyed by complete components in Gx. In particular, we will use the fact that Prop-
erty 2 implies all complete (and simple) components are trees. Moreover, we will
also use Observation 1 which says that there is a “buffer” between complete com-
ponents. This “buffer” will ensure that entries of Y corresponding to one complete
component are independent of those for other complete components. In particular,
whenever two vertices i and j are not in the same complete component this will
generally allow us to set Yij = xixj . Only for i, j in the same complete component
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(and some isolated other cases), will there be a “non-trivial” value for Yij. The
formal definition for Y now follows.

We will define Y by defining Y ei for all i, 1 ≤ i ≤ n, and then arguing that our
definition is symmetrical. Fix a node i in G. If xi = 0, then Y ei is simply ~0. If
xi = 1, then Y ei = x. So assume 0 < xi < 1. As required by the definition of a
protection matrix, we have that Yii = xi. There are now two cases depending on
whether i is contained in a complete component or not.

Case 1: i is not in a complete component

Consider i’s neighbours. These may or may not belong to complete components (in
particular, they may or may not lie on the boundary of some simple component).
Note that it follows from Observation 1 that at most one neighbour of i belongs to
a complete component.

We define Y ei as follows: for each neighbour ij of i let Yij ,i = 1
3
. For all remaining

vertices ` ∈ G, we set Y`,i = x`xi. If there is a neighbour, say i1, that belongs to a
complete component, we must make some adjustments to Y ei: Let C ′ be the simple
component in which ij belongs, and set Yk,i = 1

3
for all k ∈ C ′.

Case 2: i is in some complete component C

There are two subcases depending on whether vertex i is in a simple component or
not.

First consider the case that i is in some simple component C ′. Either xi = 1
3
, or

xi = 2
3
. Suppose xi = 1

3
. Then for all vertices k ∈ C ′, Yk,i = 1

3
if xk = 1

3
(i.e., since

C ′ is a tree, k has even distance from i in C ′), while Yk,i = 0 otherwise (i.e., if the
distance is odd). For all simple components D in C distance 0 from C ′ in Gx, and
for all nodes k ∈ D, let Yk,i = 1

3
if xk = 2

3
, and let Yk,i = 0 otherwise. For all nodes

k ∈ Gx that do not belong to any complete component and such that k is adjacent
to a boundary node of C ′, let Yk,i = 1

3
. Finally, for all remaining nodes ` ∈ G, set

Y`,i = x`xi.
Now suppose instead that xi = 2

3
. Then for all vertices k ∈ C ′, Yk,i = 2

3
if

xk = 2
3
, while Yk,i = 0 otherwise. For all simple components D in C distance 0 from

C ′ in Gx, Yk,i = 1
3

for all nodes k ∈ D. For all nodes k ∈ G that do not belong to
any component and such that k is adjacent to a boundary node of C ′, we have that
Yk,i = 1

3
. Finally, for all remaining nodes ` ∈ G, we set Y`,i = x`xi.

Now we consider the case that i is not in any simple component. We must then
have xi = 2

3
. Moreover, every vertex adjacent to i must also have value 2

3
in Gx.

We define Y ei as follows. For each vertex k adjacent to i we set Yk,i = frac13. In
addition, for each simple component D in C adjacent to i (note that there must be
at least one such simple component), we set Yk,i = 1

3
for all vertices k ∈ D. Finally,

for all remaining nodes ` ∈ G, we set Y`,i = x`xi.

It remains now to argue (1) that the definition of Y is indeed symmetric, and
(2) that the protection vectors defined by Y are in VC(G).
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Symmetry follows straightforwardly from the definition and a complete proof
will not be given here. We will only note as an illustrative example how when i, j
are both in the same simple component, then the definition of Yij always depends
only on whether the distance between i and j is odd or even. Moreover, this is
well-defined since all simple components are trees.

Now let us argue that the vectors in PV (Y ) are in VC(G). Fix i such that
0 < i < 1 and consider y = Y ei/xi. Note that y is identical to x in all coordinates
except:

1. Coordinate i which has yi = 1,

2. If i was not in a simple component of Gx, then all (non 0/1) neighbours of i
in G are now 1

2
, and all nodes in simple components of Gx that touched i are

also 1
2
.

3. If i was in a simple component C ′, then all nodes at odd distance from i in
C ′ are now 0 under y; and all nodes at even distance from i in C ′ are now
1 under y. Moreover, if xi = 2

3
, then all nodes in those simple components

(in Gx) that touched C ′ are now 1
2
. Free nodes touching C ′ are also set to

1
2

under y. Finally, if instead xi = 1
3
, then all nodes in a simple components

D (in Gx) that touched C ′ are 1 under y if the node’s distance (through D)
to C ′ is even, and 0 under y if the distance to C ′ is odd. Again, in this case
(xi = 1

3
), free nodes touching C ′ are now set to 1 under y.

Since x ∈ VC(G) it follows that the vertex cover constraints are satisfied by all
edges whose nodes have the same value under y as under x. So let’s concentrate
on those nodes which changed as described above. Clearly all edges in those simple
components whose values are affected as described in (2) and (3) above still satisfy
the vertex cover constraints under y. Moreover, using the fact there is a “buffer”
between complete components (Observation 1), it follows from the definition of Y
that the edges between affected components and unaffected nodes also satisfy the
vertex cover constraints. So y satisfies the vertex cover constraints.

To show that Y (e0 − ei)/(1 − xi) is in VC(G) uses similar arguments.

5.3.2.2 Constructing S ′
x ⊆

{

0, 1, 1
3
, 2

3

}n+1
such that PV (Yx) ⊆ conv(S ′

x)

The vectors PV (Yx) arising from Yx may not be in
{

0, 1, 1
3
, 2

3

}n+1
. Indeed they

may contain 1
2
’s. However, since PV (Yx) ⊆ VC(G), it follows that for any vector

y ∈ PV (Yx), the following is true: In the graph Gy, all nodes j with yj = 1
2

are
adjacent to nodes whose values are either 1

2
or 2

3
. Hence it is easy to see then that

for each vector y ∈ PV (Yx) there exist vectors y1 and y2 such that y is the average
of y1 and y2, and such that y1 and y2 are equal to y everywhere with the exception
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that for every node k such that yk = 1
2
, then k is 1

3
in one of y1 or y2, and 2

3
in the

other.
We then define S ′

x to be the set containing precisely the vectors y1 and y2

corresponding to each vector y ∈ PV (Yx).

5.3.2.3 The “Fence” trick: Constructing Sx

The vectors in S ′
x may not satisfy Property 2. To fix this, for each vector y ∈ S ′

x

that does not satisfy Property 2, the Prover will construct a set By of vectors that
will satisfy all three properties in the next round and moreover, y ∈ conv(By). Es-
sentially, the vectors in By will isolate all components that do not satisfy Property 2
by ensuring such vectors have a “fence” of 1’s around such components. The set Sx

will then be ∪y∈S′

x
By (where By = {y} if y does satisfy Property 2).

Before we describe how the Prover finds these “fences”, let us consider how the
graph Gy for some y ∈ S ′

x compares to Gx. Essentially, the only possible differences
are:

1. Some free node is set to 0/1 which results in (a) either a new simple compo-
nent of diameter 3 being created, or (b) in some previously existing simple
component having its diameter increased by at most 3.

2. Some free node is set to 0/1 which results in at most d complete compo-
nents being “merged”. The resulting complete component will have diameter
bounded by at most 3 + γ1 + γ2 where γ1 and γ2 are the diameters of the two
largest component involved in the merge.

3. Some node in a simple component C ′ is set to 0/1 which results in each
adjacent simple components having its vertices either (a) set to 0/1 or (b)
the pattern of 1

3
-2
3

for the values of the nodes in the component is reversed
(i.e., nodes that were 1

3
are now 2

3
and vice versa). In addition, free nodes

adjacent to the affected simple components may be altered. Let C be the
complete component containing C ′. In both cases (a) and (b), C may have
some formerly untouched nodes added to it. In either case, the diameter of C
increases by at most 2. This may result in C being closer than distance 3 to
other complete components in which case these components merge to form a
new complete component. Again, it is not hard to see that this new complete
component will have diameter bounded by at most 6 + γ + γ1 + γ2 where γ is
the diameter of the complete component containing C ′ and γ1 and γ2 are the
diameter of the two largest other component involved in the merge.

Note that in all cases, the sum of the diameters of all complete components in Gy

increases by at most 6. Moreover, note that any complete component in Gy with
diameter greater than γ will still have diameter bounded by 3γ.
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We can now give a high-level description of the algorithm the Prover will use
when putting up “fences” for a vector y ∈ S ′

x that violates Property 2. First
the Prover will “group” all complete components that are “near” to each other
in an effort to divide all complete components into sets of “super-components” of
diameter at least γ/2 and at most 7γ. Note that any super-components that cannot
be “grown” to a super-component of this diameter must be “far” from all other
super-components; the Prover will ignore them. Super-components of diameter at
least γ/2 are called full-size. The set of full-size components will be denoted by C.

The Prover will then “isolate” all super-components by defining a set A of vectors
such that for each super-component C (a) every path in Gy of length 2 adjacent to
a boundary node of C has at least one vertex with value 1 in all vectors in S1 and
(b) y ∈ conv(A). Hence, for all z ∈ A, in the graph Gz (a) each super-component
is disconnected from the rest of the graph and (b) no complete component has
diameter greater than γ/2. This isolation step is where the “fences” are put up.

Finally we will argue that this means that there exists yet another set By of
vectors that are 0/1 on all super-components, will satisfy Properties 1–3 in the next
round, and such that A ⊆ conv(By). Thus the Prover effectively “removes” all
super-components from the graph, and in particular, removes all complete compo-
nents of diameter greater than γ from the graph.

We now describe formally how the Prover does “grouping”, “isolating”, and
“removing”. The arguments showing that these procedures produce a final set By

whose vectors all satisfy Properties 1–3—and hence allow the Prover to successfully
play at least one more round against the Adversary—will crucially rely on the fact
that i < r = γ2/2.

Grouping:
The two rules for grouping complete components into super-components are as

follows: (1) Two complete components can be put in the same super-component if
the distance between them is at most 8; and (2) The diameter of a super-component
cannot exceed 7γ. Note that all complete components in Gy have diameter at most
3γ. Moreover, by definition all complete components not in C have diameter at
most γ.

Do an initial grouping of all components as follows: Let the first group g1 initially
contain some complete component C of Gy. Now keep adding to g1 any complete
component that is within distance 8 of some complete component already in g1. Do
this until no more such complete components can be found. For the second group
g2, let it initially contain some complete component C ′ not in g1. Again add to g2

all components that are within distance 8 of all components already in g2. Groups
g3, g4, and so on, are then formed in the same way until all complete components
are in some group.

Note that the distance between two groups is at least 9. Assume there are `
groups, and assume without loss of generality that the first k groups have diameter
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less than γ/2. These super-components will be called small. Focus attention on
groups gk+1, . . . , g`. Note that some of these groups may have diameter greater
than 7γ. However, since no complete component has diameter greater than 3γ,
there is a partition of these groups into new groups g′

1, . . . , g
′
k′ such that each of

these groups has diameter between γ/2 and 6γ.
Groups g1, . . . , gk and g′

1, . . . , g
′
k′ define the super-components the Prover will

use. Note that the small super-components given by g1, . . . , gk each have distance
at least 9 from any other super-component. The super-components g′

1, . . . , g
′
k′ are

the full-size components. Note that by Property 3, there can be at most r/(γ/2) ≤ γ
full-size components. Note also that this is the only part of the proof that will use
the fact that r ≤ γ2/2.

It is not hard to see that when the partitioning is done to form the full-size
components, it can be done so that the following property holds: For each g′

i, there
exists a spanning tree for the super-component g′

i (where a spanning trees for a
super-components is defined in the obvious way) such that the distance between
any two of these spanning trees is at least 3 (this can be argued by appealing to
Observation 1). Fix such a spanning tree for each full-size component.

Isolating: We will show how to handle the case where no two full-size components
have distance exactly 4 (i.e., distance is either 3 or at least 5); we leave out the case
where some full-size components have distance 4 which involves similar reasoning
but requires a somewhat more technical case-by-case analysis.

Define a node to be on the boundary of a full-size component if it is a boundary
node of a simple component contained in the full-size component. We will now define
two fractional vertex covers y1 and y2 such that y = 1

3
y1 + 2

3
y2. For every point i

that is a boundary node of some simple component C ′ in a full-size component C
we do the following: For every path (i, j1, j2) of length 2 (i.e., 2 edges) starting from
i such that neither of j1 or j2 are in the spanning tree for C (such a path is called
a 2-path coming out of a boundary node) we will have the following assignments in
y1 and y2: Either (a) the values of j1 and j2 are 1 and 0, respectively, in y1 and 1

2

and 1, respectively in y2, or (b) the values of j1 and j2 are 2
3

and 1, respectively, in
y1 and 2

3
and 1

2
, respectively in y2. Thus every path of length 2 out of a boundary

node has two possible assignments in y1 and y2. For all remaining coordinates, have
y1 and y2 be identical to y.

Lemma 5.10. There exists a consistent way to decide what type of assignment to
give to all 2-paths coming out of boundary nodes in full-sized components.

Proof. We make the following observation that will be crucial below: Since the di-
ameter of a super-component is less than 7γ, no two 2-paths from a single component
are adjacent.

Suppose no such consistent assignment existed. In particular, suppose that for
every possible assignment there exists some boundary node i in a full-size component
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C and two 2-paths p1 = (i, j1, j2) and p2 = (i, j1, j3) coming out of i such that the
following holds: If p1 has an assignment of type (a), then p2 must have an assignment
of type (b), and vice versa.

For this causal relationship to hold, the following must be the case: If p1 has an
assignment of type (a), it forces the assignment of some adjacent 2-path (i′, j′

1, j
′
2)

where i′ is a boundary node in some other full-size component (Note: it cannot be
from C by the above observation). In turn this forces the assignment of some 2-
path adjacent to the previous 2-path coming out of yet another full-size component
(it must be different by girth considerations). In turn this forces the assignment
of some 2-path adjacent to the previous 2-path coming out of yet another full-
size component, different from all full-size components involved so far. This chain
of dependencies continues in this way. However, this chain can only continue for
k′ ≤ γ = g/28 more steps (where k′ is the number of full-size components) since
after that there are no more full-size components to continue the chain. But then,
this causal chain cannot reach p2, contradicting the fact that p1’s assignment type
influences p2’s assignment.

It follows that y1 and y2 can be consistently defined.
Note that each full-size components has no edge to the rest of the graph in Gy1 ;

hence all full-size components are isolated in Gy1 . However, this is not necessarily
true in Gy2 . To fix this we will define four vectors y3, y4, y5 and y6 such that y2 is in
the convex hull of these vectors and such that the full-size components are isolated
the corresponding graphs for these vectors. These vectors are defined as follows: For
every 2-path (i, j1, j2) with assignment of type (a), j1 and j2 are 1

3
and 1, resp., in

y3, and are 1 and 1, resp., in y4; for every 2-path (i, j1, j2) with assignment of type
(a), j1 and j2 are 1

3
and 1, resp., in y5, and are 1 and 0, resp., in y6. It can be verified

that these vectors have the required properties and moreover, satisfy the vertex
cover constraints. Let A = {y1, y3, y4, y5, y6}. By construction, y ∈ conv(A).

It is straightforward to verify that the vectors in A satisfy Properties 1 and 3
for the next round.

Removing: As noted above, all components with diameter larger than γ/2 are
disconnected in the graphs corresponding to the vectors in A. Fix a vector z ∈ A
and consider the subgraph GC of Gz induced by some isolated component C. Since
this isolated component has diameter less than the the girth g of G, it follows that
C is a tree. In particular, C has an independent set of size |C|/2. It follows that
zC (i.e., z restricted to those coordinates indexed by nodes in C) is in the integral
hull of the vertex cover polytope for GC . Indeed, this is true for all vectors in
A and all isolated components.

But then, there exists a set Z of vectors which are (a) 0-1 on the subgraphs of the
isolated components, (b) identical to some vector in A outside those components,
and (c) A ⊆ conv(Z). The Prover then lets By = Z.
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5.4 Discussion

We feel that our methods should extend to proving that the integrality gap for ver-
tex cover relaxations is in fact 2 − o(1) after Ω(log2 n) rounds of LS tightening.
Indeed, the use of the all-2

3
vector to prove our integrality gap of 1.5− o(1) was mo-

tivated by our desire to keep our protection matrices and hence our girth correction
strategies as simple as possible. An analogous proof using the all-(1

2
+ γ) vector for

some small γ > 0 (and hence yielding an integrality gap of 2/(1 + 2γ) − o(1)) may
also be possible; however, coming up with a strategy for putting up “fences” will
become much more complicated and likely be very difficult to analyze.

We also conjecture that a variation of our “fence” method might be able to yield
integrality gaps for up to Ω(n1−δ) rounds of LS for some δ > 0. The current proof
fails after O(log2 n) rounds since Lemma 5.10 only works if there are Ω(log n) super-
components; this is not true after log2 n rounds using the current Prover strategy. A
different argument may be able to get around this deficiency. Note that under Khot’s
Unique Games conjecture [36], vertex cover has no 2−o(1) approximations [39].
In particular, Khot’s conjecture implies that there must remain a large integrality
gap even after nδ rounds of LS tightenings for some δ > 0 (see Section 7.4 for more
about Khot’s Unique Games conjecture).

Our lower bound argument does not yield any integrality gaps for LS+ tighten-
ings for vertex cover. As already mentioned in Chapter 4, proving such lower
bounds for vertex cover remains a difficult open problem. Moreover, such lower
bounds would arguably provide much stronger evidence about the true inapprox-
imability of vertex cover (see the discussion in Section 7.1.1).

It would be interesting to see if our techniques can be used to prove integrality
gaps for unique label cover in the LS or LS+ hierarchies. Such results could
further support Khot’s Unique Games conjecture, in turn providing further evidence
about the true inapproximability of vertex cover.
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Chapter 6

An integrality gap for
Independent Set

6.1 Local vs. global properties

In this chapter we prove integrality gaps for linear programs for independent
set in the variables {x1, x2, . . . , xn} where the programs allow any constraint of
the form aT x ≤ b such that the coefficient vector a is nonzero for at most nε(1−γ)

coordinates. In other words, each constraint involves at most nε(1−γ) variables.
Such linear programs may have exponential size and may not have a polynomial-
time separation oracle. We only require that all 0/1 independent sets in the graph
are feasible for the independent set relaxations. We will prove the following
result for such relaxations:

Theorem 6.7. Fix ε, γ > 0. Then there exists a constant n0 = n0(ε, γ) such that
for every n ≥ n0 there exists a graph G with n vertices for which the integrality
gap of any linear relaxation for independent set in which each constraint uses
at most nε(1−γ) variables is at least n1−ε.

To prove this theorem, we will use a graph family whose members have a sharp
distinction between their global and local properties. Intuitively, the natural candi-
date graph for exhibiting integrality gaps for such relaxations would be one where
the largest independent set is very small, but every induced subgraph on εn vertices
has an independent set of size nearly εn/2. The intuition is that in the relaxations
we are considering each constraint can only “view” a small part of the graph and
hence can only “reason” about the graph’s local properties.

In fact, graph families whose members have a sharp distinction between their
global and local properties can also be viewed as lying at the heart of the results
in Chapters 4 and 5. The intuition is that the linear programming relaxations pro-
duced by Ω(log n) or even nδ (for some δ < 0) rounds of the LS method are still not
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strong enough to see beyond the “misleading” local properties of our input graphs.
However, while we can take advantage of these “local versus global” properties to
prove integrality gaps for linear relaxations, there is evidence that such properties
(or, at least the graphs considered in Chapters 4 and 5) may not be useful for prov-
ing strong integrality gaps for semidefinite programming relaxations. We discuss
this evidence in Section 7.1.1. The intuition here is that positive semidefinitess
constraints are global constraints unlike linear constraints.

In any case, to return to the relaxations being considered in this chapter, it turns
out that the local property our graphs should have to prove Theorem 6.7 is somewhat
stronger than having all induced subgraphs on εn vertices have independent sets of
size nearly εn/2: instead we will need that all small induced subgraphs must have
small fractional chromatic number. After defining this concept in the next section
we will then proceed to prove Theorem 6.7.

6.2 Integrality gaps for Independent Set

Definition 6.1. Let G be a graph. A fractional γ-colouring of G is a multiset
C = {U1, . . . , UN} of independent sets of vertices (for some N) such that every
vertex is in at least N/γ members of C. The fractional chromatic number of G is

χf (G) = inf {γ : G has a fractional γ-colouring} .

Note that if G has a k-colouring with colour classes U1, . . . , Uk then C = {U1, . . . , Uk}
is also a fractional k-colouring of G. Consequently, χf(G) ≤ χ(G).

Remark 6.2. If χf(G) = γ and {U1, . . . , UN} is a fractional γ-colouring for G, we
will usually assume without loss of generality that each vertex of G (by deleting it
from a few of the Ui if necessary) is in exactly N/γ sets.

Note that strictly speaking, having χf (G) = γ does not guarantee that there ex-
ists a fractional γ-colouring for G; it only guarantees a fractional (γ+ε)-colouring for
all ε > 0. Nevertheless, in the interest of keeping our notation clean, we will always
assume that a fractional γ-colouring does exist (in particular, we will only consider
rational γ). This slight inaccuracy will not affect the validity of our arguments.

The graphs we will use are given by the following theorem which was first proved
by Arora et al. [3] (see also the journal version [4] of the latter paper for a more
complete proof). The proof uses the probabilistic method and fall in a line of results
starting with Erdős [18] showing that the chromatic number of a graph cannot be
deduced from “local considerations” (see also Alon and Spencer [2], p.130).

Theorem 6.3. Let 0 < α, δ < 1/2 be constants. Then there exist constants β =
β(α, δ) > 0 and n0 = n0(α, β, δ) such that for every n ≥ n0 there is a graph with n
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vertices and independence number at most αn such that every subgraph induced by
a subset of at most βn vertices has fractional chromatic number at most 2 + δ.

Using the graph H constructed in Theorem 6.3 with α, δ arbitrarily close to 0
and β as given by the theorem, Arora et al. [4] proved the following “local vs. global”
result. We include the proof for completeness.

Theorem 6.4. The vector with all coordinates 1+δ
2+δ

is feasible for any linear relax-
ation for H in which each constraint involves at most βn variables. Consequently,
since any independent set is the complement of a vertex cover, and vice versa, the
integrality gap is at least (1 − α) · 2+δ

1+δ
.

Proof. It suffices to show that the all-1+δ
2+δ

vector is feasible for any set of constraints
AI · x ≤ bI where I ⊆ {1, . . . , n} has size at most βn.

So fix any subset I of at most βn vertices and let {U1, . . . , UN} be a fractional
(2+ δ)-colouring for I such that each vertex in I is in exactly a 1/(2+ δ) fraction of
the Ui’s (see Remark 6.2). Note that each I \ Ui is a vertex cover in the subgraph
induced by I and hence can be extended to a vertex cover of the entire graph.
By definition, the characteristic vector of any such vertex cover extension obeys
AI · x ≤ bI . So since these constraints only involve variables from I, it follows that
any vector in Rn that has 1I\Ui

(the characteristic vector of I \Ui) in the coordinates
corresponding to I is also feasible for AI · x ≤ bI .

Consider the vectors v1, v2, . . . , vN ∈ Rn where vi is equal to 1I\Ui
in those

coordinates corresponding to I and is (1 + δ)/(2 + δ) otherwise. Each such vector
satisfies AI · x ≤ bI , so convexity implies that the same is also true for the average
vector 1

N
(v1 + v2 + · · ·+ vN ). Since each vertex in I lies in exactly a 1− 1/(2+ δ) =

(1+ δ)/(2+ δ) fraction of the vertex covers, this average is the all-1+δ
2+δ

vector. Thus
this vector satisfies AI · x ≤ bI , as desired.

This construction can also be used to prove integrality gaps for linear relaxations
for independent set:

Corollary 6.5. Every independent set linear relaxation for H (where H is
the same graph as above) where each constraint in the relaxation has at most βn
variables has integrality gap at least 1

α(2+δ)
.

Proof. Let I be any subset of at most βn vertices and let {U1, . . . , UN} be a frac-
tional (2 + δ)-colouring for I such that each vertex in I is in exactly a 1/(2 + δ)
fraction of the Ui’s (see Remark 6.2). Now define vectors v1, v2, . . . , vN ∈ Rn as
follows: Let vi equal 1Ui

in those coordinates corresponding to I but have vi equal
1/(2 + δ) outside I. Then each vi is feasible for all constraints involving variables
only from I. But then, the average of the vi’s, i.e., the vector with all coordinates
1/(2 + δ), is also feasible for these constraints.
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Denote the size of the maximum independent set in a graph G by α(G). The
above argument in fact yields the following more general theorem.

Theorem 6.6. Let G be a graph on n vertices such that every subgraph induced by a
set of at most β(n) vertices has fractional chromatic number ≤ C. Then the vector
with all coordinates 1

C
is feasible for any linear relaxation of the independent set

constraints for G in which each relaxed constraint involves at most β(n) variables.
Consequently, the integrality gap for the relaxation is at least n

α(G)C
.

This suggests we can obtain larger integrality gaps for independent set if we
further limit the number of variables in each constraint. We prove the following
theorem in Section 6.2.1 which shows that this is indeed the case.

Theorem 6.7. Fix ε, γ > 0. Then there exists a constant n0 = n0(ε, γ) such that
for every n ≥ n0 there exists a graph G with n vertices for which the integrality
gap of any linear relaxation for independent set in which each constraint uses
at most nε(1−γ) variables is at least n1−ε.

6.2.1 Proof of Theorem 6.7

Throughout this proof, log will denote base-2 logarithms.
By Theorem 6.6, to obtain a large integrality gap we need to construct graphs

where the independence and local fractional chromatic numbers are as small as
possible. One way to do this is using graph products.

Definition 6.8. The inclusive graph product G × H of two graphs G and H is
the graph on V (G × H) = V (G) × V (H) where {(x, y), (x′, y′)} ∈ E(G × H) iff
(x, x′) ∈ E(G) or (y, y′) ∈ E(H). The notation Gk indicates the graph resulting by
taking the k-fold inclusive graph product of G with itself.

The key observation is that α(G × H) = α(G) × α(H) and χf(G × H) =
χf(G)χf (H) (the former fact is easy; for the latter see [19] for a proof). Moreover,
if all sets of size at most βn have fractional chromatic number C in G, then all sets of
size at most βn in Gk have fractional chromatic number Ck. So taking products of
a graph with itself drives down the relative sizes of both the independence and local
fractional chromatic numbers. However, since the resulting graph is much larger,
the fractional chromatic number is small only for negligibly sized subgraphs. To get
around this we instead consider an appropriately chosen (small) random subgraph
of Gk. The particular construction we use is due to Feige [19]. By choosing each
vertex of Gk independently at random with probability α(G)−k and analyzing the
resulting induced subgraph, Feige proves the following theorem (we sketch a proof
below for completeness; see [19] for details):
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Theorem 6.9 (Feige [19]). There exists an integer n0 such that for every graph
G on n ≥ n0 vertices and any integer k, there exists a graph Gk such that:

1. Gk is a vertex induced subgraph of Gk.

2. 1
2

(

n
α(G)

)k ≤ |V (Gk)| ≤ 2
(

n
α(G)

)k
.

3. α(Gk) ≤ kα(G) ln n
ln(kα(G) lnn)

.

Proof. (Sketch) Select each vertex of Gk independently and at random with proba-
bility α(G)−k. Let Ĝ be the induced subgraph of Gk obtained by this process. We
show that Ĝ satisfies the above three properties with high probability.

By construction, Ĝ is an induced subgraph of Gk. Moreover, the probability
that |V (Ĝ)| deviates by more than a factor of 2 from its expectation is negligible.
For the last property, fix a maximal independent set I in Gk. The expected number
of vertices from I in Ĝ is at most 1. Chernoff bounds sharply bound the probability
that more than kα(G) ln n

ln(kα(G) ln n)
vertices of I survive in Ĝ. The last property can now

be seen to hold with high probability by observing that G contains at most nα(G)

maximal independent sets and by observing that all maximal independent sets in
Gk are the direct product of k maximal independent sets in G. In particular, the
probability that more than kα(G) ln n

ln(kα(G) lnn)
vertices of any maximal independent set of

Gk survive in Ĝ can be shown to go to 0 as n grows.

Our strategy for proving Theorem 6.7 will now be as follows: We will start with
a graph G where both the independence number and local fractional chromatic
number are already small (such a graph will exist by Theorem 6.3) and then apply
Feige’s randomized graph product to it.

Now the details. Fix arbitrarily small constants α, δ > 0 and n > 0 such that
n ≥ n0 where n0 is from Theorem 6.9. Provided that n is chosen sufficiently large,
Theorem 6.3 implies that there exists a graph G on n vertices such that α(G) ≤ αn
and such that for some constant β > 0, all induced subgraphs of G with at most
βn vertices have chromatic number ≤ 2 + δ.

Fix an arbitrarily small constant d > 0 and let Gk be the graph given by Theo-
rem 6.9 for k = d log n. Let N = |V (Gk)|. Note that N = Θ(α−k) = Θ(nd log(1/α)).
On the other hand, all subsets of Gk of size at most

βn = Θ
(

N
1/d

log(1/α)

)

(6.1)

have fractional chromatic number ≤ (2 + δ)k.
By Theorem 6.6 it follows that any linear relaxation of the independent set

constraints for Gk where the relaxed constraints contain at most βn variables has
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integrality gap (the Θ̃ notation indicates asymptotic order up to logarithmic factors):

Θ

(

α−k

(2 + δ)k kαn lnn
ln(kαn ln n)

)

= Θ̃
(

nd(log(1/α)−log(2+δ))−1
)

= Θ̃
(

N1− 1/d+log(2+δ)
log(1/α)

)

. (6.2)

Since we can take α and δ to be arbitrarily small in Theorem 6.3 (provided n is
large enough), and since d > 0 can also be chosen arbitrarily small, it follows that
we can simultaneously make (6.1) more than N ε(1−γ) and (6.2) more than N1−ε.
The theorem follows.
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Chapter 7

Discussion

7.1 Integrality gaps for Vertex Cover SDPs

7.1.1 Limitations to our approach

The integrality gaps for vertex cover in the LS hierarchy from Chapters 4 and 5
were proved using sparse graphs. The gaps were obtained by arguing that while
these graphs have no large independent set, the LS hierarchy relaxations neverthe-
less admit a large (fractional) independent set. However, Feige [22] has observed that
algorithms based on semidefinite programming can be used for almost all graphs
from our graph families to certify that they do not contain large independent sets.
This suggests that we will not be able to use sparse graphs to prove integrality gaps
for vertex cover in the LS+ hierarchy.

We now outline Feige’s observation. Consider G ∼ G(n, p). We show that for
almost all such G, one can use the Goemans-Williamson SDP-based approximation
algorithm for max-cut to certify that G does not have an independent set of size
(1

2
− ε)n. Let γ = 0.878 . . . be the approximation guarantee for the GW algorithm.

The expected size of a maximum cut in G is half the expected number of edges in
G, namely, 1

2

(

n
2

)

d
n

= d(n+1)
4

. Hence, with high probability the GW algorithm will

output at most d(n+1)
4γ

.

On the other hand, suppose that G has an independent set I of size (1
2

− ε)n.
Then with high probability, there are d(1

2
−ε)n edges coming out of I. In particular,

G has a cut of this size and the GW algorithm will output at least this value.
Hence, we can use the GW algorithm to rule out if G has an independent set of

size (1
2
− ε)n as follows: Run the algorithm on G; if it outputs at most d(n+1)

4γ
, then

output that G does not have an independent set of size (1
2
− ε)n; otherwise, answer

arbitrarily. By the above discussion, this algorithm with correctly certify that G
does not have an independent set of size (1

2
− ε)n for almost all G ∼ G(n, p).

The graph families used in the results of Chapters 4 and 5 are not exactly G(n, p)

92



since the families used in those chapters have all small cycles removed and, in the
case of Chapter 5, all high-degree nodes removed. However, these families can be
derived by taking the graph drawn from G(n, p) and removing a sublinear number of
edges. In particular, these are not enough alterations to render Feige’s test invalid.

7.1.2 An integrality gap for Vertex Cover in the LS+ hier-
archy

We end this section by giving Kale’s proof that a different graph family than those
used in Chapters 4 and 5 can be used to prove that the integrality gap of the standard
linear relaxation for vertex cover remains 2 − o(1) even after one round of LS+

tightening. The graph construction is due to Kleinberg and Goemans [41] where
they used it to show that the standard SDP relaxation (1.6) for vertex cover
has an integrality gap of 2 − ε. Recall that in section 2.2.1 we showed that the
relaxation resulting from tightening the trivial linear relaxation for vertex cover
with one round of LS+ is at least as tight the standard SDP relaxation.

Let K ⊆ Rn+1 be the homogenization of the polytope defined by the trivial
vertex cover constraints (2.2) and (2.3) for an n-vertex graph G.

Theorem 7.1 (Kale [34]). For all α, ε > 0 and all sufficiently large integers
n there exists an n-vertex graph Gε whose maximum independent set has size at
most αn and for which the value of (2.1) over N+(K)|x0=1 is at most (1

2
+ ε)n.

Consequently, for all ε > 0 the integrality gap for vertex cover after one round
of LS+ lift-and-project is at least 2 − ε.

Proof. We use the same graph family used by Kleinberg and Goemans [41] for their
integrality gap for (1.6). The vertices of a graph G in this family are the set n = 2m

of all m-bit binary strings for some sufficiently large m. Two vertices are adjacent iff
their Hamming distance is (1−γ)m where γ is any constant satisfying 0 < γ ≤ 2ε

1+2ε
.

As Kleinberg and Goemans note, provided m is large enough, G has no independent
set of size greater than αn.

On the other hand, we will show that y = (1, 1
2

+ ε, . . . , 1
2

+ ε) ∈ Rn+1 is in
N+(K) and hence, the value of (2.1) over N+(K)|x0=1 is at most (1

2
+ ε)n.

To that end, we must find vectors v0, v1, . . . , vn such that the PSD matrix Y de-
fined by Yij = vi ·vj satisfies the conditions of Lemma 2.1. As shown in Section 4.1.4,
these conditions are equivalent to the following:

Yi0 = Yii = yi ∀i = 1, . . . , n

0 ≤ Yij ≤ yi ∀i, j = 1, . . . , n

yi ≤ Yij + Yik ≤ yi + yj + yk − 1 ∀i = 1, . . . , n, ∀ {j, k} ∈ E
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So the vi must satisfy:

v0 · vi = vi · vi =
1

2
+ ε ∀i = 1, . . . , n (7.1)

0 ≤ vi · vj ≤ 1

2
+ ε ∀i, j = 1, . . . , n (7.2)

1

2
+ ε ≤ vi · (vj + vk) ≤ 1

2
+ 3ε ∀i = 1, . . . , n, ∀ {j, k} ∈ E (7.3)

We will choose vi from Rm+1. Let δ = 1
2

+ ε and β =
√

1/4 − ε2. Let v0 = e0. For

all i ∈ V let v
(p)
i = β/

√
m if the pth bit of i is 1 and v

(p)
i = −β/

√
m if the pth bit

of i is 0. Finally, let v
(0)
i = δ.

We show now that these vi satisfy (7.1)–(7.3). Condition (7.1) holds since v0·vi =
δ = 1

2
+ ε and vi · vi = δ2 + β2 = 1

2
+ ε. Next note that δ2 − β2 ≤ vi · vj ≤ δ2 + β2.

So condition (7.2) holds.
Finally, since vertices are adjacent in Gε iff the Hamming distance between them

is exactly (1 − γ)m, it follows that for all {j, k} ∈ E,

2δ2 − 2γβ2 ≤ vi · (vj + vk) ≤ 2δ2 + 2γβ2.

Our bounds on γ now imply that (7.3) holds.

Open Problem 1. What happens to the integrality gap for vertex cover after
more than 1 round of LS+ tightening?

Charikar [12] subsequently showed that the integrality gap remains 2 − ε even if
we add the following “triangle inequalities” to SDP (1.6):

(vi − vj) · (vi − vk) ≥ 0 ∀i, j, k.

Indeed, Charikar uses the same graph family as Kleinberg and Goemans did, but em-
ploys a different feasible solution. Subsequently, Hatami, Magen and Markakis [31]
show that even adding the so-called pentagonal inequalities to this SDP does not
decrease the integrality gap. They also use the Kleinberg and Goemans graph fam-
ily.

Open Problem 2. Where do the relaxations considered by Charikar [12] and by
Hatami, Magen and Markakis [31] lie in the LS+ hierarchy for vertex cover?

7.2 The proof complexity angle

Our results can also be viewed from the propositional complexity point of view.
In particular, we explain the relation between proving integrality gaps and proving
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lowerbounds on the rank of LS+ proof systems. In general a propositional proof
system is a polynomial time verifier V (P, φ) that checks whether P is a certificate
of the universal statement ∀x¬φ(x), i.e., φ is unsatisfiable. Many (approximation)
algorithms as a byproduct of their computation provide (explicitly or implicitly) a
certificate that the output value lies within a certain factor to the optimum; this
certificate may be considered a propositional proof that the given NP-optimization
problem has no solution that achieves a certain optimization value. In the case of
LS+ cuts, the inequalities that describe the polytope N r

+(P ) resulting after r rounds
may be inferred from the set of initial inequalities in the Lovász-Schrijver proof
system. Thus, every proof of the integrality gap for a sequence of LS+ cuts may be
considered as a lower bound on the refutation rank in an LS+ proof system of the
tautology encoding that there exists no good solution, and vice versa. So since the
propositional and computational complexity are similar for LS round lower bounds,
we have presented our results in the context of the latter in this thesis. (Note that
the classical propositional complexity measure would be the number of lines needed
to do LS-style reasoning. However, no lower bounds are known for this measure.)

Looking at our results then from the proof complexity angle it follows that there
exist unsatisfiable random 3sat instances for which an LS+ proof system requires a
linear number of rounds to refute, solving a problem left open in [11]. Similarly, our
results for hypergraph vertex cover and set cover show that the constraints
defined by certain instances of these problems also require a linear number of rounds
to refute.

One curious difference between the our inapproximability results in the LS and
LS+ hierarchies and PCP-based inapproximability results. In the PCP world, once
we have proved an inapproximability results for “canonical” problems such max-
3sat, we can use reductions to prove inapproximability results for many other
problems. Proving integrality gaps via reductions in the “Lovász-Schrijver” world
seems much harder if not impossible. In general this should not be surprising, since
reductions use arbitrary polynomial-time computations, which may be outside the
purview of the limited “reasoning” available in the LS+ system when viewed as
a proof system. What is more surprising is that even the simple gadget-based
reductions typically encountered in NP-hardness proofs seem outside the purview
of LS+ reasoning. To give an example, approximating max-3sat within a factor
better than 7/8 is reducible via a textbook reduction (carried out entirely with
local gadgets) to approximating vertex cover in graphs within a factor better
than 17/16. Nevertheless, we are unable to rule out 17/16 − ε (or even weaker)
approximations to vertex cover in graphs, even though we have ruled out 7/8−ε
approximations to max-3sat.

The proof complexity angle can be used to shed some intuition on the difficul-
ties in proving integrality gaps in the “Lovász-Schrijver” world via reductions as
mentioned in the introduction to Chapter 3. Consider the standard reduction from

95



3sat to vertex cover where each clause is replaced by a triangle of vertices. We
could now add new auxiliary variables for each triangle where each new variable is
a function of the three variables from the triangle’s corresponding clause. However,
in general, when one introduces such auxiliary variables the proof complexity may
change drastically. For example, weak resolution turns into the powerful Extended
Frege proof system. On the other hand, in our case all auxiliary variables are locally
specified so adding them should intuitively not make a big difference. Nevertheless,
our arguments using Lemma 2.1 seem to break down and a newer lower bound idea
seems necessary.

This raises the possibility that the familiar interrelationships among approxima-
tion problems break down when one considers subexponential time approximation
algorithms.

7.3 Lower bounds in the Sherali-Adams hierarchy

While there exist results separating the Sherali-Adams hierarchy and the LS hier-
archy, as well as lower bounds on the number of rounds required to derive certain
inequalities in the SA hierarchy (see Laurent [42] for examples), as far as we know,
there are no non-trivial integrality gaps are known for any optimization problem
beyond the first level of the SA hierarchy (recall that the first level of the SA hi-
erarchy is equal to the first level of the LS hierarchy). Indeed, proving integrality
gaps for the SA and SA+ hierarchy seems substantially more difficult than proving
such gaps for the LS and LS+ hierarchies.

The results in Buresh-Oppenheim et al. [11] may be a good candidate to extend
to the SA hierarchy since the protection matrices they use are particularly simple.

Open Problem 3. Prove inapproximability results for some optimization problem
in the SA or SA+ hierarchies.

7.4 The unique games conjecture

As mentioned in the introduction, a central motivation for the lower bounds proved
in this thesis is the existence of several problems for which there are gaps between
the approximation ratios ruled out by PCPs and those ratios achievable by known
algorithms.

Another approach for making progress on such problems was suggested by
Khot [36]: Instead of tackling each problem for which there remains a gap indi-
vidually, Khot exhibited a single optimization problem, the unique label cover
problem, for which proving strong inapproximability implies optimal inapproxima-
bility results for a variety of problems. The conjecture that unique label cover
is indeed hard to approximate is called Khot’s Unique Games conjecture.
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Amongst other results, Khot’s Unique Games conjecture implies that vertex
cover has no 2 − o(1) approximations [39], the Goemans-Williamson algorithm
for max-cut is optimal [38, 44], and implies also a super-constant inapproxima-
bility hardness result for sparsest-cut [40]. For more details, see Khot’s survey
article [37].

While approximation algorithms for the unique label cover problem are
known [54, 13], they fall short of disproving Khot’s conjecture. On the other hand,
perhaps methods used in this thesis can prove lower bounds for unique label
cover in the LS and LS+ hierarchies lending support for Khot’s conjecture.

Open Problem 4. Can known techniques prove strong inapproximability results
for unique label cover in the LS+ (or less ambitiously, in the LS) hierarchy?
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