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Abstract

DDVERK90: A User-Friendly Implementation of an Effective DDE Solver

Hossein Zivaripiran
Master of Science
Graduate Department of Computer Science
University of Toronto

2005

Delay differential equations(DDESs) provide powerful and rich mathematical models that
have been proven to be useful in simulating some real life problems. The current publicly
available DDE solvers are either very formidable to use (especially for new users) or
designed to support only selected classes of problems.

In this thesis we have developed a new Fortran 90 DDE solver DDVERKO90 that
aims to combine the effectiveness of the Fortran 77 DDE solver DDVERK and the user-
friendliness of the MATLAB ODE solvers. We have added the capability of embedded
event location to facilitate many tasks that arise in applications. We have also introduced
a new approach for classifying DDE problems that helps users to write driver programs to
solve their problem very quickly. They do this by comparing their problem to other previ-
ously solved example problems in the same class and using the corresponding ‘template’

driver as a guide.
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Chapter 1

Introduction

1.1 Motivation

Interest in using delay differential equations (DDEs) to model real life problems has
increased significantly in recent years. Although there are many DDE solvers that can
effectively solve DDEs, the intrinsic difficulty of DDEs along with the weaknesses of
early programming languages make the use of these solvers formidable, especially for
new users. Furthermore special features such as event location has proved to be useful
in the investigation of many models that are described by DDEs. This motivated us to
use the capabilities of Fortran 90 to create a solver with a more user-friendly interface

and the capability of embedded event location.

1.2 Background

1.2.1 Assumptions and Definitions

A retarded delay differential equation (RDE) is a system of differential equations defined
by
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yl(t) = f(ta y(t)v y(t — 01 (ta y(t)))v y(t - UQ(t: y(t)))a

oyt = o, (t,y(2))), for to <t <tp, (1.1)

y(t) = o¢(t), for t <ty,

where y, f, and ¢ are N-vector functions and o;,7 = 1,2, ---, v are scalar functions. A

neutral delay differential equation (NDE) is a system of differential equations defined by

vt = fty),ylt— ot y®)), y(t — oa(t, y(1))),
oyt — o, (Y1), ¥ (E = opa (8, y(1))),
(= 0vau(t,y(t)) for to <t < tp, (1.2)

y(t) = o), y'(t) =¢'(t), for t <to,

where y, f, and ¢ are N -vector functions and 0;,7 = 1,2,---, v + w are scalar functions.
The term DDE refers to both an RDE and an NDE.

We call each of the functions o;(t, y(t)) a delay, each of the arguments ¢t — o;(¢, y(t))
a delay argument, a value of the solution delay term y(t — o;(¢, y(t))) the (solution) delay
value and a value of the derivative delay term /(¢ — o;(¢,y(¢))) the derivative delay
value. If a delay is a constant, it is called a constant delay. If it is a function of only
time, then it is called a time dependent delay. If a delay is a function of the solution y(t),
it is called a state dependent delay. A delay argument that passes the current time, i.e.
t —oi(t,y(t)) > t, is called an advanced delay. We call ¢(t) the history function.

We define a local solution of the RDE (1.1) (associated with the (n+ 1) step) as the

solution of

y;;(t) = f(ta yn(t)a yn(t — 01 (t’ yn(t)))a yn(t - UQ(ta yn(t))),
<yt — o, (tyn(2))), for t, <t <tp, (1.3)

yn(t) = 2(t), for t<t,, n=01,2,---

where z(t) is a known continuous approximation to y(¢) defined on (to, t,,], and z(t) = ¢(t)
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for t < ty. A local solution of the NDE (1.2) is defined similarly as the solution of

y;(t) = f(t, yn(t), yn(t - Ul(t, yn(t)))v yn(t - 02(t7 yn(t)))ﬂ
Yt = ou (b yn (1)), Y (t — oui1(t, yn(t))),
o Y (= Oyt yn (1)) for t, <t < tp, (1.4)

yn(t) = z(t), vy, (t)=272'(t), for t<t,, n=0,1,2,---

Let z(t) be a continuous approximation to y(t) on [to,tr| defined by z(t) = z;(t) for
ti <t <tiy (fori=0,1,---,n) and z(t) = ¢(t) ,2'(t) = ¢'(t) for t < t. The associated
defect is a measure of the amount by which this continuous approximation fails to satisfy

the differential equation. The defect for RDEs on the step [t,, t,.1] is defined by

5n(t) = Z;L(t)_f(tazn(t)az(t_Gl(tazn(t)))az(t_UZ(tazn(t))):

< 2(t—ou(t, 2a(t))- (1.5)

The defect for NDEs on the step [t, t, 1] is defined by

On(t) = 2p(t) = f(t, 2 (1), 2(t = 01(t, 20 (1)), 2(t = 02(t, 20 (1)),
s 2(t = oy (t 2n(1), 2/ (8 = vt 2 (1)),

2 (t = outu(t, 20 (1)) (1.6)

If 9,41 is the approximate solution of 1.3 or 1.4 at t,.; produced by a numerical

method, then

len = yn(tn+1) - gn—|—1 (17)

is called the local error at t,.;.

If the function f that defines the derivative in a differential equation depends on the
values of the function prior to the current time but cannot be formulated in the form of
1.1 or 1.2, then we call the problem a non-standard DDE. Such problems are part of a

wider class of problems sometimes referred to as functional differential equations.
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1.2.2 Numerical Difficulties

There are two major complications that can cause numerical difficulties in conventional
approaches for solving DDEs: First, discontinuities may occur in various derivatives of
the solution. Second, a delay may vanish, i.e. ¢ — 0. When a delay vanishes, we call it
a vanishing delay.

The first difficulty is due to the presence of the delay terms. In general at the initial
point, the right-hand derivative y'(ty)", evaluated using f, does not equal the left-hand
derivative ¢'(to)~. Furthermore ¢ may have discontinuities. A discontinuity can therefore
arise and propagate from both the initial time and the history function. In general, the
order of a derivative discontinuity(when it is propagated) increases with ¢ for RDEs, but
this is not the case for NDEs. This non-smoothness of derivatives of the solution for
NDEs causes a numerical difficulty especially when the delay vanishes in the integration
interval.

The second complication is important because it may cause a solver to fail by forcing

it to choose a sequence of very small steps.

1.3 A Review of Previous work

Almost all DDE solvers are written in one of the three programming languages : Fortran
77, MATLAB, or Fortran 90. There are translations to other programming languages,
for example C, but they are basically line for line translations of the original versions and
usually have the same interface and calling sequences.

DKLAG®6 [2](global order 5), ARCHI [16](global order 4),and DDVERK [14](global
order 6) are examples of DDE solvers written in Fortran 77. Although these solvers
have proved to be very effective, all of them suffer from the deficiencies of Fortran 77,
especially its lack of dynamic memory allocation. Therefore the casual or unaccustomed

user usually has trouble remembering the purpose of each argument and might spend
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a lot of time writing even a simple driver. None of these solvers has an event handling
facility.

DDE23 [20](global order 3) and DDESD [17](global order 4) are examples of DDE
solvers implemented in MATLAB. They both have very user-friendly interfaces. They
also have embedded event locators. DDE23 is restricted to RDEs with constant delays
and DDESD is restricted to RDEs.

RADARS [11](global order 4), and DDE_SOLVER |[21](global order 5) are examples
of DDE solvers implemented in Fortran 90. RADARS is designed to solve stiff DDEs.
Although it is written in Fortran 90, the user interface is much like Fortran 77 and is
therefore not as user-friendly as it could be. RADARS does not have an embedded event
locator. DDE_SOLVER combines the power of DKLAG6 with the user-friendly interface
of DDE23. It is a good example of a modern interface for a DDE solver and enables the

user to solve a standard problem by writing a very short driver program.

1.4 Contributions of the Thesis

The main contribution of this thesis is the implementation of a user-friendly DDE solver.
The new solver DDVERK0 is essentially an improved version of DDVERK. In particular,
by exploiting the modern features of Fortran 90 we were able to design an interface that
is much easier to understand and use, and is consistent with the interface that has been
adopted by Shampine et al. in developing the ODE library provided in MATLAB (see
for example [18]).

We have embedded the ability of locating and handling of events in DDVERK90. Not
very many DDE solvers provide for event location. We have done this in DDVERKO90 in
a way that allows the solver to locate multiple events that occur at the same time and
perform a user-defined action in the case of the occurrence of an event.

Another important aspect of this thesis is that we have introduced a new approach



CHAPTER 1. INTRODUCTION 6

for classifying DDE problems. This classification helps users to write driver programs to
solve a new problem very quickly, by comparing it to similar previously solved example
problems in the same class.

We have added the ability of solving some non-standard DDEs to DDVERK90, by
providing a mechanism that enables the user to convert (or reduce) these problems to a
form that is appropriate for the solver.

We have also introduced a new form for returning the solution as an structure that
corresponds to the form adopted in the ODE methods of MATLAB. With this facility,
it is easier to do further generic investigations of the solution after the return from any
solver and these investigations can be performed in a different environment (for example

in MATLAB).

1.5 An Outline of the Thesis

In Chapter 2, first we describe the basic structure of DDVERK90 for solving simple RDE
problems, then we present a detailed description of the interface, optional arguments, and
how the user solves more general problems. After that we discuss how the user can handle
events and solve problems of neutral type. Finally we look at the mechanism of error
control in DDVERKO90. In Chapter 3, we introduce a new classification of DDE problems
with the description and solution of selected examples in each class. In Chapter 4, we
investigate the behaviour of DDVERK90 when applied to stiff problems. In Chapter 5,
we present numerical results. In Chapter 6, we summarize the thesis and discuss future

work.



Chapter 2

New Interface

2.1 Comparison of DDVERK90 with DDVERK from

the Viewpoint of Users

In addition to implementing an interface that is as close to the interface that has been
introduced for the MATLAB ODE library, one of our other goals was to make the inter-
face as consistent as possible with that of DDVERK. We have used the capabilities of
Fortran 90 to remove most unnecessary and distracting arguments, so that the arguments
that appear in the call to the solver DDVERK90 are fewer and more meaningful than
those of DDVERK.

The form of the functions that define equations for DDVERK and DDVERK90 are
the same. DDVERKO90 has special facilities for handling constant delays and constant
histories, so (unlike DDVERK) in these cases there is no need to define them as functions.
If delays are not constant, the form of the delay parameter function of DDVERKO0 is
also the same as that for DDVERK. For neutral problems in DDVERK there are two
different functions for computing the history function and the derivative of the history
function, but DDVERKO90 uses one single function that has an extra parameter to select

between the history function and its derivative.
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In DDVERK if users want to know the location of events or investigate a property
of the solution that may be of interest, they must do it by writing a special driver, but
in DDVERK90, with its embedded ability of event handling and interpolation, users do
not need to be as aware of details of the solver progress and are able to focus only on a
generic method-independent investigation.

Another important difference is in the error tolerance. DDVERK uses a single error
tolerance value, but DDVERKO90 supports both relative and absolute error tolerances

which is consistent with that provided in the MATLAB ODE methods.

2.2 Simple Calls for Simple Problems (Constant De-
lays, Constant History)

We tried to make solving simple problems as easy as possible. All one has to do is define
the mathematical problem. For example an RDE problem with constant history and
constant delays is solved with the call

SOL = DDVERK9O(NVAR,NLAGS,DDES,LAGS,HISTORY, TSPAN)

Here NVAR is an integer array of one entry and its only entry is NEQN, the dimension
of the problem. NLAGS is also an integer array of one entry and its only entry is the NU,
the number of delays in the problem. The reason that they are arrays instead of scalars
is for compatibility with corresponding MATLAB methods that will be clarified later.
DDES is the name of the subroutine for evaluating the right hand side of the equation
(1.1). It has the form

SUBROUTINE DDES(T,Y,Z,DY)

The input arguments are the independent variable T, a vector Y of NEQN components
approximating y(7"), and a dimension NEQNXNU array Z. Column j of this array is an
approximation to y(T" — ¢;(T,y(T")). The subroutine evaluates the right hand side of

the equation (1.1) with these arguments and returns y'(¢) as the vector DY of NEQN
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components. Returning to the description of the parameters of DDVERK90, LAGS is
a vector of NU entries. LAGS(¢) is the ith constant value of the delay. HISTORY is a
vector of NEQN components. HISTORY (i) is the the constant value for y; for ¢ < .
The last argument is the input vector TSPAN. The value returned by DDVERK90 is
the structure SOL. These parameters have the same meaning and name that they have
in the MATLAB ODE solvers. TSPAN is used to inform the solver of the interval of
integration and where approximate solutions are desired. TSPAN has at least two entries.
The first entry is the initial point of the integration, ¢y, and the last is the final point, tz.
If TSPAN has only two entries, approximate solutions are returned at all the mesh points
selected by the solver itself. If TSPAN has entries ty < t; < --- < tg, the solver returns
approximate solutions at (only) these points. The number and placement of these output
points has little effect on the cost of the integration. This is because the solver selects a
mesh that allows it to compute an accurate solution efficiently and evaluates a continuous
extension (a polynomial interpolant) to obtain approximate solutions at specified output
points. The polynomial interpolant is represented in a generic (method-independent)

way by the structure, SOL. Table 2.1 shows concisely the required input arguments to

DDVERK90.

2.3 General Problems

In general the initial history will not be constant and should be defined by a function.
In this case the function has the form
SUBROUTINE HISTORY(T,Y)
The input argument is a time T < t;. The output is a vector Y of NEQN components
that is the value of the history function ¢(7).
Similarly, the delays may be time dependent or time and state dependent. Therefore

they should be defined by a function. In DDVERKO90 the function must have the form
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NVAR Number of DDEs and event functions (vector)
NLAGS Number of delays(NU,OMEGA) (vector)
DDES Subroutine to evaluate DDEs

BETA(LAGS) Subroutine for delays (vector for constant lags)
HISTORY Subroutine for history (vector for constant history)

TSPAN Interval of integration and output points

Table 2.1: Required input arguments to DDVERKO90.

SUBROUTINE BETA(T,Y,BVAL)
The input arguments are the independent variable T, a vector Y of NEQN components
approximating y(7). The output variable BVAL is a vector of NU components. After the

return, the element ¢ of BVAL should be the value of the delay argument T —o; (7T, y(T)).

2.4 Optional Arguments

One of the difficulties that users have with DDVERK and other Fortran 77 DDE solvers
is that they must supply a large number of arguments. This is partly due to the static
storage nature of Fortran 77. For most users it is hard to remember the purpose of each
argument and to set them properly. Furthermore, since Fortran 77 does not have an easy
way for using global variables, mechanisms that DDE solvers provide for users to deal
with parameters can be very complicated and error-prone and they can vary considerably
for different methods.

We used the capabilities of Fortran 90 to overcome these difficulties. To reduce
the number of arguments and make them more meaningful we exploited the optional
argument capability of Fortran 90. Fortran 90 allows optional arguments to functions

and subroutines that follow the required arguments in the call list. Though optional
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OPTIONS Options structure formed with DDVERK_SET
EVENT_FCN Subroutine to evaluate event functions
CHANGE_FCN Subroutine for action at an event

OUT_FCN Subroutine for output

Table 2.2: Optional input arguments to DDVERKO90.

arguments can be passed by position in the list, we assume that they will always be
identified with keywords, another new possibility in Fortran 90. Using keywords, we
can set just the options of interest and we can set them in any order. These optional
arguments are shown in Table 2.2. (We have done this in a way that is similar to what
Thompson and Shampine implemented DDE_SOLVER [21].)

We discuss how optional argument are specified using the parameter OPTIONS below

and will later discuss other uses of these parameters.

2.4.1 OPTIONS

We have defined a derived type DDVERK_OPTS with fields corresponding to various
options. The auxiliary function DDVERK SET is used to set the options. All arguments
of DDVERK_SET are optional, so if the user does not provide an options structure to
the solver, it will use OPTIONS=DDVERK_SET() to form an options structure with all
fields set to the default values. The user has to set only those options for which default
values are inappropriate for the problem at hand.

A typical call of DDVERK_SET is one that sets relative and absolute error tolerances.
DDVERK90 uses a scalar relative error tolerance and either a scalar or vector absolute
tolerance. If the scalar relative error tolerance RE is not specified, it is given a default
value of 1073. Absolute error tolerances are more complicated. The most common case
is the default, which is to set all NEQN components of the absolute error tolerance

vector to 1075, Corresponding to the scalar RE option there is a scalar AE option. In
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RE

AE

AE_VECTOR
ISTERMINAL
DIRECTION
INTERPOLATION
NEUTRAL

HINIT

HMAX

THIT EXACTLY
DEFECT _ESTIMATE _TYPE
SHOW_PROGRESS

Relative error tolerance

Absolute error tolerance

Vector of absolute error tolerances
Specify terminal events
Distinguish how event functions cross axis
Prepare to interpolate solution
Solve DDE of neutral type

Initial step size

Maximum step size

Times to be hit as mesh points
Type of the defect estimate

Show current ¢ after each 1000 steps

12

1073

10°¢

10~° for all
.FALSE.
0
.FALSE.
.FALSE.
no default
no default
no default
1

.FALSE.

Table 2.3: Options set with DDVERK_SET and their default values.

addition there is a vector option called AE_VECTOR. If no absolute error tolerance is

specified, the default is used. If the scalar option AE is set, the value input is assigned

to all NEQN components of an absolute error tolerance vector used by the solver. If

the vector option AE_VECTOR is set, the vector (of NEQN components) that is input

is used for the absolute error tolerance vector. If both options are set inadvertently,

the more detailed vector option is given precedence. Table 2.3 shows all the options set

with DDVERK_SET and their default values. Some of them will be explained in future

sections.
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2.5 Event Location

Along with the integration of the DDEs, we may be interested in locating where any one

of a collection of event functions,

gj(tv y(t)7 y,(t)a y(t — 01 (ta y(t)))v T y(t - Ju(ta y(t)))) (21)

vanishes. This is a generic type of an event that can arise in many applications. We have
implemented an approach for specifying and investigating events that is an extension
of that implemented in MATLAB and also in DDE_SOLVER. The places where these
event functions vanish are called events. Sometimes we just want the solver to report
the location of an event and the solution there. Other times we want to terminate the
integration or restart the integration after changing the problem. Not very many DDE
solvers provide for event location. Event location is optional, so the solver must be told
that it is to locate zeros of a collection of functions evaluated in a given procedure. In
DDVERKO0 the user provides the name of the subroutine (to evaluate the g;’s) as an op-
tional input argument of the solver itself that is specified with the keyword EVENT _FCN.
The function has the form
SUBROUTINE EF(T,Y,DY,Z,G).

The input arguments are the independent variable T, a vector Y of NEQN components
approximating y(7"), a vector DY of NEQN components approximating y'(7T"), and array
Z that has dimension NEQN xNU. Column j of this array is an approximation to y(7 —
0;(T,y(T)). The subroutine evaluates (2.1) with these arguments and returns g;(T) as
the element j of a vector G of size equal to the number of event functions(NEF). When
using events the user must define the vector NVAR with two components and the second
component should be set to NEF. Recall that the first component of NVAR is set to
NEQN.

It can be useful (even essential) to distinguish how an event function behaves near

the associated zeros. For example, this knowledge can be used to deal with problems in
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which events are defined to find maximums or minimums. We added this capability to
DDVERK90, with a vector DIRECTION that is set as an option using DDVERK_SET.
Component j of the vector DIRECTION is given the value -1 when event j is interesting
only if the event function decreases through 0, the value +1 when it is interesting only if

the function increases through 0, and the value 0 when it does not matter.

A very important distinction is made between terminal and non-terminal events. As
the name suggests, a terminal event causes the solver to halt and return control to the
user. In our solver a vector ISTERMINAL (of NEF components and type LOGICAL),
one of the optional arguments of DDVERK_SET, is used for this purpose.

When an event occurs the user may wish to make changes to the problem formulation
or any other parameters that together define the problem. This can be done in our solver,
with a user defined function that should be passed to the solver in the CHANGE_FCN
optional argument of DDVERK90. This function is of the form

SUBROUTINE CHANGE(HAVE_EVENT,T,Y,DY,HINIT,DIRECTION,

ISTERMINAL,QUIT,IS_CHANGED)
The solver calls this subroutine at every event. In this call HAVE_EVENT is an vector
of NEF components and type LOGICAL that identifies which event(s) occurred (there
may have been more than one event), T is the location of the event(s), and Y and DY
are the approximations to the solution and its first derivative, respectively, at the event.
In CHANGE the user can inspect this information and decide what, if any, action is
appropriate. Y and DY are also output variables that the user can reset. In effect he/she
can restart the integration with new initial values. The output variable HINIT allows a
user to specify a step size for the solver to try on return. The integer array DIRECTION
and the logical array ISTERMINAL can be changed so that the event functions will
be interpreted differently on return from CHANGE. The integration can be terminated
by changing QUIT from its input value of .FALSE. to .TRUE.. If the user makes any

major changes and wants the solver to pay special attention to them, then the LOGICAL
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variable IS_.CHANGED should be set to .TRUEL.. This causes the solver to include T as

a mesh point and treat it as a potential discontinuity point.

2.6 Form of the Solution

The default is to return the approximate solution at the mesh points selected by DDVERK90.
If the solution structure is called SOL, the number of mesh points NPTS is returned as
SOL%NPTS, the mesh points tg < t; < --- < tp chosen by the solver are returned
as entries of SOL%T, and the corresponding approximate solutions are returned in the
NPTS x NEQN array SOL%Y. When TSPAN has more than two entries then SOL%T

is the same as TSPAN.

A general purpose DDE solver must have an associated interpolation scheme that
allows the solution to be approximated accurately between mesh points. DDVERK90
can return, in the solution structure, the information needed to evaluate a continuous
extension which also serves as the interpolation scheme anywhere in the interval of in-
tegration. Since the capability requires a considerable amount of additional information
in SOL, we have made this an option called INTERPOLATION. By default it has the
value of .FALSE.. DDVERK _SET cans be used to set this option to .TRUE.. If SOL
contains the information needed for interpolation, then a call to the auxiliary function
DDVERK_VAL of the form

YINT = DDVERK_VAL(T,SOL)
evaluates approximations to y(7") for any vector of points T that all lie in [to, tz]. Similarly
approximations to y'(T") are also returned when an optional argument of DDVERK_VAL
with keyword DERIVATIVES is set to .TRUE.. Sometimes only selected components
are of interest. The optional argument with keyword COMPONENTS is a vector that
tells DDVERK_VAL which components of the solution are desired. For example, the

first and fourth components of the solution at the two arguments ¢ = 2.35,0.72 would be
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returned by

YINT = DDVERK_VAL((/ 2.35D0, 0.72D0 /),SOL,COMPONENTS=(/ 1, 4 /)).
The output argument is a derived type called DDVERK_INT, so YINT in this example
must be declared as

TYPE (DDVERK_INT) :: YINT.

Although the vector T is available in the calling program, it is convenient to return it as
the field YINT%TVALS in the interpolation structure. Similarly, if a vector is provided
for the keyword COMPONENTS, it is returned as the field YINT%COMPONENTS. If
this option is not set, the field is given the default value of all the components, namely
the vector with entries 1,...,.NEQN. The approximate solution is returned in the field
YINT%YT. More specifically, YINT%YT(I,J) is an approximation to component J of
the solution at T(I). Similarly, if DERIVATIVES=.TRUE., an approximation to compo-
nent J of the first derivative of the solution at T(I) is returned in YINT%DT(L,J).

If the standard output options are not exactly what the user wants, he/she can write
their own output function. For instance, if NEQN is large, the user might find that
returning of all components of the solution at all mesh points to be excessive. By means
of an output function the user could output only the components of particular interest.
An output function must have the form

SUBROUTINE SOL_QOUT(T,Y,DY,IS_EVENT,HAVE_EVENT)
The solver is informed of this using a keyword for this optional argument: OUT_FCN
= SOL_OUT. The solver will call SOL_OUT at every step and every event. In this call
T is the value of the independent variable and Y and DY are the NEQN components
of the solution and its first derivative, respectively, at T. If ISSEVENT is .FALSE., the
solver has stepped to the new meshpoint T. If IS EVENT is .TRUEL., there is at least
one event function for which the LOGICAL vector HAVE_EVENT is .TRUEL., indicating
which event function has vanished at T. The user can inspect this information and do

whatever is desired before returning control to the solver. For example, the user might
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write a particular solution component to a file.

2.7 Neutral Problems

Solving NDEs with DDVERK90 is very similar to solving RDEs. The option NEUTRAL
must be set to .TRUE.. NLAGS should be defined as a vector of two elements with
NU and OMEGA being its first and second elements. The definition of Z in the DDES
subroutine should be extended so that the array is of size NEQNX(NU+OMEGA). The
first NU columns correspond to usual y(t — o;(t,y(t))),j = 1,---,v and the remaining
OMEGA columns correspond to y'(t — o;(t,y(t))),j = v +1,---,w. The HISTORY
function should have an extra argument and should have the form
SUBROUTINE HISTORY(T,Y,IS_DERIVATIVE).

The extra input IS DERIVATIVE is a LOGICAL variable. If it is .FALSE. the routine
should set Y to ¢(T'), otherwise Y should be set to ¢'(T). If the history is constant and
supplied as a vector, the solver realizes that the derivative of the history is zero so that
it is not necessary to pass this value to the solver. The BVAL output of the subroutine
BETA that was described in Section 2.3 is extended to a vector of size NU+OMEGA. The
first NU elements correspond to the usual ¢t — 0;(t, y(t)),j = 1,-- -, v, delay arguments
and the remaining OMEGA elements correspond to the t — 0;(t,y(t)),j =v+1,---,w,

delay arguments. The form of the event function g; in (2.1) is extended to the form

g;(t, @),y (1), y(t — o1 (t, y(1))), - - -, y(t — 0u(t,y(2))),

yl(t - 0u+1(t’ yn(t)))’ Tt y;z(t - Uu-l—w(t’ y(t))) (22)

and hence the definition of Z in the EF subroutine described in Section 2.5 should be

extended so that the array is of size NEQN x (NU+OMEGA).
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2.8 Defect Control, Absolute Error, Relative Error

There are two types of error control strategies that we have considered for the numerical
solution of DDEs: controlling the local error and controlling the defect. In the local error
control strategy the solver attempts to ensure that the local error (1.7) satisfies a local

error per step inequality of the form,
|len| < absolute tolerance X hy,, (2.3)
or a mixed local error inequality of the form
llen| < |Yny1| X relative tolerance + absolute tolerance x h,,. (2.4)

Since it is not generally possible to compute the exact value of le,, solvers use an es-
timate of this value. ARCHI [16] uses (2.3). DKLAG6 [2], MATLAB DDE23 [20],
DDE_SOLVER [21] and RADARS [11] use (2.4). All of the solvers are also able to use
separate absolute tolerances for different components of the solution.

In the original defect control strategy for DDEs, evaluated and analysed in [6], a

solver tries to control the defect in the form

max |0, (t)| < absolute tolerance, (2.5)
tnStStn+1
or
On(t
max N"—() < relative tolerance. (2.6)
tn<t<tni1 | 7'(t)

Since it is impossible (or at least very expensive) to compute the exact value of

n(t)
7't

by sampling. This strategy has proven to be effective for controlling the step size and

MaxX;, <i<t,., |0n(t)| OF Maxy, <4<, . , solvers often use an estimate of these values
global error [14]. To use a measure that supports both relative and absolute error con-
trol, it is possible to modify this original strategy. For example Shampine [17] controls

hn % (maxy,<i<t,., |0n(t)|) at each step. He used this as a measure of local error and
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employed a strategy similar to 2.4. We adapted DDVERK defect control strategy in a
similar way. In DDVERKO90 the defect that is used inside the solver subroutines is based
on a sample (or samples) of |0,(¢)|. But when the solver comes to the final decision of

accepting or rejecting a step it uses,

a sample (or all samples) of |6,(t)] < |7, (t)| X relative tolerance

+absolute tolerance, (2.7)

After testing strategy (2.7) on several problems that were solved before by DDVERK
we deduced that this strategy does not have much affect on the efficiency of the solver,
but it helps to give the user a more generic method-independent error control (without
having to know anything about h,,).

The sampling options available in DDVERKO90 are same as DDVERK and are se-
lected by setting optional argument DEFECT_ESTIMATE _TYPE to values 1,2 and 3
corresponding to the one point, two point and asymptotically valid sampling strategies

of DDVERK (see [14] for more details). The default value is 1.



Chapter 3

Different Types of Problems and

Their Solutions

In this chapter, we describe various classes of problems that users can solve using
DDVERK90. We present the description of some problems in each class and show the
plots of numerical solution produced by DDVERK90. This classification helps users to
write driver programs to solve a new problem very quickly, by comparing it to similar
previously solved example problems in the same class. Although it is possible to solve
almost all of these examples by existing solvers, the driver program for some of them
would be very complicated and the users could spend a lot of time writing them. The

detailed numerical results are given in Chapter 5.

3.1 Standard RDE Problems

3.1.1 Example 1

Our first example is Example 5 of Wille & Baker [24], which involves a scalar equation
that exhibits chaotic behavior. It is also studied as Example 4.4.2 in reference [21]| and

Example 2 in reference [20]. The problem has a constant delay and a constant history,

20
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Figure 3.1: Phase plot of numerical solution to Example 1, computed using DDVERK90
with RE=AE=106.

and is defined by

I Qy(t B 2)
1 + y(t _ 2)9.65

Yy - Y,

for t in [0,100]. The history function is

y=0.5for ¢t <0.

After running a DDVERK90-based program and writing the approximate solution to an
output file, we use a MATLAB program to plot the phase plane y(t—2) versus y(t), which
is a common way of visualizing solutions in nonlinear dynamics. The exact solution of

this problem is unknown. See Figure (3.1) for an accurate approximate solution.
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3.1.2 Example 2

This example is called Example 3 in reference [5]. The problem has a time dependent de-
lay and a time dependent history with an asymptotically vanishing delay (as ¢ increases),

and is defined by

—t

y'=Q0+eYylt—eexple ),
for ¢ in [1,30]. The history function is
y=¢e"" fort<l1.

The exact solution to this problem (see Figure (3.2)) is,

3.1.3 Example 3

This example is called Example 1 in reference [2]. The problem has a state dependent

delay and a constant history, and is defined by

) = y(t)y(In(y(t)))

= ; ,

for ¢ in [1,10]. The history function is
y=1fort <1.

The exact solution to this problem (see Figure (3.3)) is

,

t if1 <t<e,
exp(t/e) ife<t<eé?

(5m) fe<t<es,

not known ifes <t,

\

where e3 = exp(3 — exp(1 — e)).

Derivative jump discontinuities occur at t = e , t = €2 and e;.
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Figure 3.2: Plot of numerical solution to Example 2, computed using DDVERK90 with
RE=AE=10-.
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Figure 3.3: Plot of numerical solution to Example 3, computed using DDVERK90 with
RE=AE=107°.
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3.1.4 Example 4

This example is the SEIR epidemic model of Genik & van den Driessche [9]. This is a
transformed version of an integro-differential equation system. The problem has constant

delays and a constant history, and is defined by

S'=A—dS(t) - N +yI(t —7)e e,

E/ — AS(t)Igt) _ )\S(t—w)l(t—w) efdw _ dE(t)’

N(t N(t—w)
' = NG oo — (y 4 e + d) (8),

R =~I(t) —vI(t—T7)e % —dR(t),

where

N(t)=S8(t)+ E(t) + I(t) + R(¢t),

and A =0.33,d=0.006, \=0.308,v=0.04, e=0.06, 7 =42, w = 0.15,

for t in [0, 350]. The history function is,

Il
—_
o

Il
DO

=
|
=

I
@

for t <0.
The exact solution of this problem is unknown. See Figure (3.4) for an accurate approx-

imate solution.

3.2 Neutral Problems

3.2.1 Example 5

This example is called Example 8 in reference [14]. The problem is a state dependent

neutral problem with vanishing delays, and is defined by
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Figure 3.4: Plot of numerical solution to Example 4, computed using DDVERK90 with
RE=1075.
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y'(t) = cos(t)(1+y(ty’ (1) + Lay(t)y'(ty* (1))

+(1 — L3) sin(t) cos(tsin®(t)) — sin(t + tsin*(t)),

for ¢ in [0, 7] with Lz = 0.1,0.3,0.5". The initial condition is

The exact solution to this problem is y(t) = sin(t) (see Figure (3.5)).

27

There is no history or discontinuities associated with this problem but there are vanishing

delays at t =0, ¢t = n/2, and t = 7.

The vanishing delay at ¢t = 7/2 is challenging since it must be detected in the interior of

the integration interval.

3.3 Problems with Associated Events

3.3.1 Example 6

This example is a Kermack-McKendrick model of an infectious disease with periodic

outbreak and is called Problem 17.14 in reference [12]. It is also studied in reference [3]

and is called Example 1 in reference [19] and Example 4 in reference [20]. The problem

is defined by

v = —n(@)ye(z — 1) + ya(z — 10),
Yo = yi(v)ya(r —1) — ya(),
vy = ya(z) — y2(z — 10),

for ¢ in [0, 55]. The history function is

Y1 :57
Y2 :Ol,
Ys = 17

L3 is a Lipschitz constant with respect to y' at /2.
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Figure 3.5: Plot of numerical solution to Example 5, computed using DDVERK90 with
RE=AE=10"1,
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Figure 3.6: Plot of numerical solution to Example 6, computed using DDVERK90 with
RE=AE=10°.

for t <0.
The exact solution of this problem is unknown. See Figure (3.6) for an accurate approx-

imate solution.

For this problem, one may be interested in investigating the local extrema of some
of the populations. We can do this by defining events to correspond to points where the
first derivative of the specific component is zero. We are also able to distinguish a local

maximum from a local minimum by setting the DIRECTION argument appropriately.
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3.4 Problems that Change after Events (Real Events,

User-Made Events)

3.4.1 Example 7

This example is a two-wheeled suitcase model of Suherman, et al and is called Example
8 in reference [20] and Example 3 in reference [19]. It illustrates the use of events and
a CHANGE routine to solve a sequence of problems corresponding to the rocking of the

suitcase. The problem is defined by

yi = Y2,
ys = sin(y1) — sign(y1)y cos(y1) — By1(t — 7) + Asin(Q + n),
where v =248, 5 =1,7=0.1, A =0.75, Q = 1.37, n = arcsin(y/A),

for ¢ in [0,12]. The history function is

for t <0.
The exact solution of this problem is unknown. See Figure (3.7) for an accurate approx-
imate solution.

Due to the sign(y;) term, the problem definition changes each time y; crosses 0. This
is important because the solution is discontinuous at these points. We can detect this
event and then change the problem formulation by changing a variable that reflects the

status of y;.

3.4.2 Example 8

This example is the Marchuk immunology model and is called Example 17.19 in reference

[12] and Example 2 in reference [19] and Exercise 7 in reference [20]. The problem is
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Figure 3.7: Phase plot of numerical solution to Example 7, computed using DDVERK90
with RE=10"8.



CHAPTER 3. DIFFERENT TYPES OF PROBLEMS AND THEIR SOLUTIONS 32

defined by
V'=(hy — hao )V,
C'=¢m)hsF(t—1)V(t—7) — hs(C — 1),
F'=hy(C - F) — hgFV,
m' = hgV — hym,

where

£(m) 1 if m < 0.1,
m) =
1-m)¥ ifo1<t<1,

9
and 7 = 05, hl = 2, h/2 = 08, h3 = 104, h4 = 017, h5 = 05, h7 = 012, hg = 8, and for
different values of hg (hg = 10 or hg = 300).

It is solved for ¢ in [0,60]. The history function is

V =max(0,10 % +¢),

C=1,
F=1,
m =0,

for ¢t <0.

Due to the £(m) term, the problem definition changes each time m crosses 0.1. We
can detect this event and then change the problem formulation by changing a variable
that reflects the value of m. This example also has special history for V' (¢), and hence
can be classified under 3.5 as well.

The exact solution of this problem is unknown. See Figure (3.8) for an accurate approx-

imate solution.

3.4.3 Example 9

This example simulates an HIV long-term partnership model and is called Example 3 in
reference [2]. It illustrates the reduction of a Volterra-Integro-Differential equation to a

system of DDEs. It further illustrates the use of events to switch between a system of
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Figure 3.8: Plot of numerical solution to Example 8, computed using DDVERK90 with
RE=10"5, AE=10"8.
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ODEs and a system of DDEs. The problem is defined by
fort<D:

#'(t) = =A(t)z(t) + Gy(t)

y'(t) = —2'(t)

XN(t) = 2 {g' (O 1a(t) + g() 11 (1) + ¢' (1) I3() + g(£) [3(2)}
1(t) = f(t),

I(t) = fa(t),

I3(t) = f3(t),

L(t) = L) L(1),

a'(t) = =A(t)z(t) + Gy(t)

y'(t) = —2'(t)

XN(t) = 29" () 1a(t) + g () 13(t) + 9" () s(t) + 9() I5(1)}
Ii(t) = /() — f1(t — D),

Iy(t) = f2(t) — fo(t — D),

I3(t) = f5(t) — fs(t — D),

I(t) = fo()1L(t) — fi(t — D)L(2)

where

and

c=05,n=100, G=1,and D =5

34
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for ¢ in [0,4D]. The initial conditions are,

(
(
(
14(0) =
In our tests we use a dimension 6 equivalent formulation since I;(¢) can be computed ana-
lytically. This problem is solved by defining an event when ¢ crosses D and then changing
the problem formulation by changing a variable that reflects whether ¢ > D. The ex-

act solution of this problem is unknown. See Figure (3.9) for an accurate approximate

solution.

3.5 Problems that have Special Histories

3.5.1 Example 10

This example is a model of hematopoiesis and is called Example C3 in reference [7]. The
problem is defined by

v (1) = 3oyt = Th) —vn(t) — @,

Yo(t) = f(y: (1) — kya(t),

. Qerya(t)
u(t) =1~ o)

for ¢ in [0,300]. The history function is
¢1(0) = 3.325,
10 for —T3 <t<0,
Po(t) =
9.5 for t < =1y,

¢3(0) = 120,
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Figure 3.9: Plot of numerical solution to Example 9, computed using DDVERK90 with
RE=10"1°, AE=10"°.
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Figure 3.10: Plot of numerical solution to Example 10, computed using DDVERK90 with

RE=AE=10"°%.

where f(y) = Tricg> S0 = 00031, T} =6, v = 0.001, @ = 0.0275, k = 2.8, a =

6570, K = 0.0382, r = 6.96.

The history has a discontinuity at —77. Since DDVERK90 uses automatic detection

of discontinuities, users do not need to do anything special to deal with this. The exact

solution of this problem is unknown. See Figure (3.10) for an accurate approximate

solution.
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3.6 Non-Standard Problems

3.6.1 Example 11

This example shows how to solve a state dependent Volterra integral equation by embed-
ding a quadrature component in an extended DDE. The problem is studied in references

[21] and [16], and is defined by

2

LD y(s)y (s)ds — 1
_ )

y'(t) :
for ¢ in [1,2]. The history function is
y(t)=1 for t =1.
The exact solution (see Figure (3.11)) is
1
Y= :

A conventional method can solve this problem by introducing an extra component of
the ODE to correspond to the integral that appears in the problem definition and then

viewing this extended system to be an equivalent system of DDEs.
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Volterra Integral Equation
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Figure 3.11: Plot of numerical solution to Example 11, computed using DDVERK90 with
RE=AE=10"%.
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3.6.2 Example 12

This example is an epidemic model that is studied in references [15] and [22]. The problem
is defined by

)11
o) = | weoea for to <t

0 for t <ty,

where t; is the point where y3(¢) = m, and

Iy(t) for —o <t <ty
I(t) = Io(t) + Sy — S(r(t)) for to<t<ty+o,
S(r(t—o0)) —S(o(t)) for to+o <t,

m=0.1, c =1, Sy = 10,

04(1+1¢) for —1<t<0,
Lit)=4 04(1—1t) for 0<t<1,
0 otherwise,
p(t) =1, r(t) = ro, for example 12a;

p(t) = e, r(t) = ro(1 + sin(5t)), for example 12b.

For both cases the history function is

T(t) =0,
S(t) = SO;
ys(t) = 0,

for t <0.

It is solved for ¢ in [0, 8].

Each version of the problem (12a and 12b) is solved for the four cases 7o = 0.2,0.3, 0.4, 0.5.
Due to the special definitions of 7/(t) and I(t), this problem is also a problem that

changes after events. Here the events are y3(t) = m and t =t + 0.
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To evaluate the derivatives, approximations are required for the quantities S(7(t—0)),
S(7(t)), S(r(r(t) — o)), and S(7(7(t))). The Z array supplied to subroutine DDES by
DDVERK90 and the interpolation subroutine DDVERK_USER, are used to generate
these approximations when they are needed.

The exact solution of this problem is unknown. See Figures (3.12), (3.13), (3.14), (3.15)

for an accurate approximate solution.
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Hoppensteadt—-Jackiewicz Problem
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Figure 3.12: Plot of numerical solution to S(t) of Example 12a, computed using

DDVERK90 with RE=AE=10"%.

Hoppensteadt—-Jackiewicz Problem
10 T T T
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Figure 3.13: Plot of numerical solution to I(t) of Example 12a, computed using

DDVERK90 with RE=AE=10"%.
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Hoppensteadt—-Jackiewicz Problem
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Figure 3.14: Plot of numerical solution to S(t) of Example 12b,

DDVERK90 with RE=AE=10"%.
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Hoppensteadt—-Jackiewicz Problem

computed using

It

Figure 3.15: Plot of numerical solution to I(t) of Example 12b,

DDVERK90 with RE=AE=10"%.

computed using



Chapter 4

More Examples and Some

Difficulties

DDVERKA90 is an extension and improved version of DDVERK, which is based on an
underlying explicit Runge-Kutta formula. Therefore it is not suitable for stiff problems.
It is accepted practice that for solving stiff DDEs, DDE methods based on formulas
that are suitable for stiff IVPs should be used (for example RADARS5 [11]). It may
nevertheless be useful to know how a nonstiff DDE solver such as DDVERKO90 performs
on stiff problems. This is because it is sometimes hard to identify whether a problem is
stiff without a comprehensive investigation. In this chapter we try to show the behaviour

of DDVERK90 when it tries to solve a stiff problem by presenting four examples.

44
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4.1 Stiff Problems That Can Be Solved

4.1.1 Example 13

This example is studied in reference [8] and is called example (d) in reference [10]. The

problem is defined by

y1(t) = kM1 Ayo(t) — kM2y,(t)ya(t — 7) + kM3 By (t) — 2k M4y, (2)?,
Yo(t) = —kM1 Ayo(t) — kM2y: (t)ya(t — 7) + fr kM3yi(t),

where,

kM1 = 1.34,
kM2 =1.6-10°,
EM3 =8.0-103,
kM4 =4.0-107,
kM5 = 1.0,
fr=1.0,
A=6.0-1072,
B=6.0-1072,
7 = 0.15,

for ¢ in [0,100.5]. The history functions are y;(t) = 107'% and y(¢) = 1075 for ¢ < 0.

With error tolerances set to RE=10"? and AE=10""® it takes 118,136 steps to solve
the problem with DDVERK90. The plot of the solution (see Figure (4.1)) shows the
source of the stiffness of the problem. As the graph shows, both solution components (y;
and y,) have transient regions which arise periodically. This forces the solver to require
very small step sizes to ensure numerical stability. RADARS solves this problem in 9072

steps.
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Figure 4.1: Plot of numerical solution to Example 13, computed using DDVERKO90.
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4.1.2 Example 14

This example is a threshold model for antibody production that first studied in reference

[23] and is used as an example in reference [11]. The problem is defined by,

y1(t) = —ry1(Q)y2(t) — sy1(t)ya(t),

ya(t) = —ry1(t)ya(t) + aryi (ys(t))y2(ys (1) H (t — to),

ys(t) = ry1(t)y2(2),

ya(t) = —sy1 (Q)ya(t) — vya(t) + Bry: (ys(t))y2(ys (1)) H (¢ — t1),

ys(t) = H(t — to) f1(y1(2), y2(t), ys(£))/ fr(yr (ys(2)), y2(ys(2)), ya(ys (1)),
Ys(t) = H(t — t1) fo(y2(t), y3(2))/ f2(y2(y6 (1)), y3(vs (1)),

where o = 1.8, 8 = 20, v = 0.002, r = 5-10%, s = 10°, ty = 35, t; = 197. H(x) is the
Heavyside function (H(z) =0ifz < 0 and H(z) = 1if x > 0); fi(z,y,w) = vy +w and
faly, w) =107 +y + w,
for ¢ in [0,300]. The history functions are y;(t) = 5- 1075, yo(t) = 10715, and y3(t) =
ya(t) = ys(t) = ye(t) = 0 for t < 0.

This problem has several features that cause difficulties for the solver: First the delay
becomes very small and vanishes asymptotically. Ans Second, the solution components

9o and yy4, yg exhibit transient behaviour near the values t = 35 and ¢t = 197, respectively.

With RE< 10~* DDVERK90 fails to solve the problem. The solver cannot proceed
after a few steps, because it cannot satisfy the error tolerance.

With RE=10"% and AE_-VECTOR=[10""*,10"",107'*,107"*,1077, 1077}, DDVERK90
takes 324 steps to solve the problem.

After comparing the solution (see Figures (4.2), (4.3) for DDVERKO0 results) with
the solution of a stiff DDE solver(for example RADARS) we saw that the two solutions
have the same behaviour, even though our solution is not reliable if the user needs an
accurate solution. In this problem the equations change after events. RADARS solves

this problem in 465 steps.
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0 50 100 150 200 250 300

Figure 4.2: Plot of numerical solution to y1(t), y2(t), y3(t), y4(t) of Example 14, computed
using DDVERK90.
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Figure 4.3: Plot of numerical solution to ys(t),ys(t) of Example 14, computed using
DDVERK90.
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4.2 Very Stiff Problems

4.2.1 Example 15

This example is called Example 7.11 in reference [1] and example (c) in reference [10].
It corresponds to a mathematical model of antiviral immune response quantitatively
describing (with the parameters of Table 4.1) the dynamics of hepatitis B virus infection

over a 130 days interval. The problem is defined by

Y = ¥ + @e0syayr — auyryio — asy1 — aeyi(ar — Y2 — y3),

Yo = oagyi(ar — Y2 — Y3) — QzYeyr — QgYa,

ys = asipyr + gy — aioys, E(ys) =1—ys/ar,

Yy = 011012Y1 — Q13Ys,

ys = aw[€(ys)aisya(t — m)ys(t — 1) — yays] — cueyaysyr + cur(eis — ys),
Yo = a1 [(ys)anoya(t — T2)ys(t — T2) — Yays] — 21Yaysys + 22(23 — Ye),
yr = oo [E(ys)aasya(t — 73)ys(t — 73)yr(t — 73) — yaysy7]

—QaglYoly7 + oz (Qrog — y7),

Ys = o [§(ys)asoya(t — Ta)ys(t — Ta)ys(t — Ta) — Yaysys| + as1(as2 — Ys),
vo = 33&(ys)asaya(t — 75)ye(t — 75)ys(t — 75) + ass(s6 — yo),
Zlio = 037Y9 — 038Y10Y1 — (39Y10,

with history y;(t) = 2.9 - 107, yo(t) = 0, y3(t) = 0, y4(t) = 0, y5(t) = s, Ys(t) = s,
yr(t) = s, ys(t) = as2, Yo(t) = ase, yr0(t) = 20, for ¢t < 0. The exact solution of this
problem is unknown.

A challenging feature of the solution of this problem is the considerable variation in
solution magnitude over the 130 days interval. The stiffness of the problem increases
sharply when the time passes from 110 to 120 days.

If we run DDVERK90 with RE=10"*! and AE=10"3! we see that the code runs from
t =0 to t = 97 very quickly, then goes from ¢t = 97 to ¢t = 114 very slowly. After ¢t = 114,

the stepsize is so small that we need about 100,000 steps for every unit of time. This
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(675} 83 [6%) 5 a3 6.6 - 1014 (6 7] 3- 1011 (673 0.4
ag  2.5-107 a;  05-107"2 g 23-10° a9 0.052 ap  0.15

o 94-10° iy 10710 oy 1.2 s 2.7-10"% o5 2
a1 5310 aq7 1.0 ag 10718 a9 2.7-10% gy 2
s 8-10%8 Qe 1.0 gy 10719 oy 5.3-10% s 16
az 1.6-10"% a9y 04 g 10718 g9 8-10%2 gy 16
as; 0.1 sy 10718 ass 1.7-10% a3 3 as; 0.4

36 4.3 - 10722 Q37 0.85 - 107 Q38 8.6 1011 Q39 0.043
T1 0.6 T2 0.6 T3 2.0 T4 2.0 Ts 3.0

Table 4.1: Parameters for problem 15 corresponding to acute hepatitis B virus infection

makes the problem unsolvable using a reasonable amount of time and memory.

One of the features of DDVERKO0 is that users are able to monitor the progress of the
solver (the simplest way is to monitor the progress of ¢ by setting SHOW_PROGRESS
optional argument to .TRUE.) and see the behaviour of the solution. If a problem behaves
like this example then it is probably stiff and this suggests that the user try a stiff DDE
solver to find the solution. We include here the solution plots for ¢y = 114.5 (see Figure

(4.4)). RADARSH solves this problem in 2208 steps.

4.2.2 Example 16

This example is the Robertson problem [13, Section IV.10]. This problem is one of the
most widely used test problems for stiff IVP methods. We consider here the following

modified version of the problem:

yi(t) = —0.04y, (t) + 10%y2(t — 7)ys(2),
Yy (t) = 0.04y1(t) — 10%ya(t — 7)ys(t) — 3 - 107y,(2)?,

y3(t) =3 - 107ys(2)?,
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Figure 4.4: Semilogarithmic plot of numerical solution to y;(t),---,y10(¢t) (from top to

bottom) of Example 15
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Figure 4.5: Plot of numerical solution to Example 16 with 7 = 0.01, computed using

DDVERK90. The oscillation and explosion are the artifacts of stiffness.

for ¢ in [0,10°]. With history y;(t) = 1, y2(t) = 0, y3(t) = 0, for ¢t < 0.
The exact solution of this problem is unknown. We set RE=10"? and AE=10"1%.

With 7 = 0.01 and 7 = 0.03 the solver almost stops at ¢t = 8.16 and ¢ = 9.24, respec-
tively. This appears to be due to the severe stepsize restriction imposed in DDVERK90
by numerical stability.

We include here the solution plots for 7 = 0.01, tx = 8.16 and 7 = 0.03, tp = 9.24 (see
Figures (4.5), (4.6)). RADARSD solves this problem in 702 steps.



CHAPTER 4. MORE EXAMPLES AND SOME DIFFICULTIES

o4

0.9

0.7F

y,®

— 10%,09

Y5

0.6

0.4

0.3fF

0.2

Figure 4.6: Plot of numerical solution to Example 16 with 7 = 0.03, computed

DDVERK90. The oscillation and explosion are the artifacts of stiffness.
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Chapter 5

Numerical Results

In this chapter we present the detailed numerical results of DDVERK90 for the problems

that are described in Chapter 3. We have also included the results from DDE_SOLVER

for the comparison.

5.1 A description of Computations

We used DDVERK90 with the default one point sampling defect estimate and DDE_SOLVER
with tracking discontinuities except for Example 12. We have used AE=RE=TOL with
TOL=10"3,10"5,10"" for both solvers. For a problem where the exact solution is un-
known we have used the numerical solution computed with AE=RE=10"? as the exact

solution in global error calculations. The error overrun is defined by

|Error in Computed Solutionl|
|Exact Solution|| x RE + AE

and the expected value of the error overrun is the condition number of the problem (see

reference [4] for more details). The norm that is used is the infinity norm.
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5.2 Numerical Results

The statistics we report in tables are as follows :

FCN: The number of derivative evaluations.

STEPS: The number of successful time steps.

GE_END: The global error overrun at the endpoint ¢p.

GE_MESH: The maximum of the global error overrun at mesh points.

GE_CONT: The maximum of the global error overrun across the range of integration,

computed using 1000 equally spaced points.
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PROB TOL FCN STEPS GE_END GE.MESH GE_CONT
1073 2237 147 8.7021e + 01 1.6982¢ + 02 1.6982¢ + 02
1 10~% 4331 304  1.9470e + 03 2.7003e + 03 2.7003e + 03
1077 8885 640  8.5296e + 02 1.2316e + 03 1.2316¢e + 03
1073 1253 22 8.5358¢ — 02 8.5358¢ — 02 8.5358¢ — 02
2 10°° 1336 24 6.6731e + 00 6.6731e +00 6.6731e + 00
1077 2731 47 1.1220e + 01 1.1220e + 01 1.1220e + 01
10~% 151 10 9.0137e — 02 9.0137e — 02 9.4694e — 02
3 10°% 217 14 1.9170e — 01 2.2374e — 01 3.0492¢ — 01
1077 326 21 1.1146e + 00 1.1146e + 00 1.1146e + 00
103 5209 237  2.3109¢ — 03 4.9000e — 02 4.9000e — 02
4 107° 5309 240  6.8651e — 03 4.3023e — 02 4.3507e — 02
107 5641 247  1.6968¢ — 02 3.0524e — 01 3.0524e — 01
1072 105 5 2.8125¢ — 01 2.8125¢ — 01 2.8125¢ — 01
5 107> 253 9 4.8225¢ — 03 2.9300e — 02 4.1786e — 02
10°7 308 15 1.0027e — 01 2.4917e — 01 2.5027e — 01
1073 1022 55 2.3043e — 01 3.8237e+ 00 4.0793e + 00
6 10~% 1607 99 2.7379¢ + 00 5.0906e + 01 5.0932¢ + 01
10°7 2519 194  3.6339¢ + 00 6.4556e + 01 6.4616e + 01

Table 5.1: Summary Statistics for DDVERK90 (Problems 1 to 6)
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PROB TOL FCN STEPS GE_END GE_-MESH GE_CONT
1073 505 16 9.9031e — 01 2.3315e + 00 4.4905e + 01
7 107° 790 30 4.6285e — 01  2.1985e + 02 3.5443e + 03
1077 1424 28 2.3008e — 01 3.2682e 4+ 03 5.1837e + 04
1073 1462 74 5.0307e + 02 3.1554e 403 3.1607e + 03
8 107° 1923 101 3.2223e 4+ 03 2.3349e + 04 2.4190e + 04
1077 2567 168 5.0869¢e + 03 4.5083e 4+ 04 4.5319e + 04
1073 420 38 3.4723e — 02 3.9068e — 01 4.1287e — 01
9 1075 794 73 3.4780e — 02 4.2059¢ — 01 4.2762e — 01
1077 1692 149 4.4000e — 02 4.2819e¢ — 01 4.3467e — 01
1073 2568 219 1.2759e — 03  2.4334e — 02 2.4334e — 02
10 1075 2989 254 2.2988e — 02 3.3531e — 02 3.3531e — 02
1077 4030 343 8.2691e — 03 3.8427e — 02 3.8427e — 02
1073 253 12 1.8627e + 00 1.8627e¢ + 00 1.8627e+ 00
11 107° 299 14 3.4241e 4+ 00 3.4241e+ 00 3.4241e + 00
1077 437 20 2.0367e +00 2.0367e+ 00 2.0367e+ 00
107* 525 22 2.1566e — 01 2.3438e — 01 1.3474e + 00
12 107° 750 44 1.7685e — 02 4.3645e — 01  2.0475e + 00
1077 1161 78 6.6851le — 02 8.3924e — 01 9.9328e — 01

Table 5.2: Summary Statistics for DDVERK90 (Problems 7 to 12)
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PROB TOL FCN STEPS GE_END GE.MESH GE_CONT
1073 2214 174 2.4604e + 02 2.6014e + 02 2.6905e + 02
1 107® 4365 367  2.0829¢ + 02 3.0197e + 02 3.0197e + 02
1077 9144 796  1.8431e +02 2.6615e 4+ 02 2.6615¢e + 02
1073 1215 46 5.6367¢ — 01 5.6367e — 01 6.0363e — 01
2 107° 1899 68 4.2568¢ — 01 4.2568¢ — 01 4.4718e — 01
1077 3690 118  1.5908¢ — 01 1.6226e — 01 1.8592¢ — 01
1073 189 19 2.1370e — 03 2.1370e — 03 2.1990e — 03
3 107 297 23 7.3329¢ — 02 7.3329¢ — 02 1.2491e — 01
1077 558 43 1.2088¢ — 01 1.2088¢ — 01 1.7330e — 01
1073 3051 140  3.1211e — 02 3.9570e — 02 8.4170e — 02
4 107° 4041 175 3.1626e — 02 4.3086e — 02 1.0654e — 01
1077 6210 271 1.0238¢ — 02 3.1123e — 02 9.2676e — 02
1073 153 10 2.5084e — 04 5.8956e — 04 7.0918¢ — 04
5 107 189 11 2.3493¢ — 02 3.8028¢ — 02 5.4940e — 02
1077 405 17 3.6536e — 03 5.1999¢ — 02 1.1898¢ — 01
10~% 1575 121 1.1072e — 02 2.1434e — 01 2.1434e — 01
6 107° 1890 172 2.2801e — 02 3.9704e — 01 4.0210e — 01
1077 2943 308  3.1036e — 02 6.5388¢ — 01 6.6070e — 01

Table 5.3: Summary Statistics for DDE_SOLVER (Problems 1 to 6)
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PROB TOL FCN STEPS GE_END GE_.MESH GE_CONT

1073 819 42 5.7175e — 02 1.0769¢ — 01 1.0769¢ — 01

7 107° 1494 64  5.3207e — 01 2.2847e+ 00 2.2847e + 00
1077 1845 98  1.1128¢ +00 3.4620e+ 00 3.5531e + 00
1073 - - - - -

8 107 3771 299  8.1477e+02 7.5433e+ 03 7.5537e + 03
1077 4545 404  3.0163e+02 2.674le+ 03 2.6776e + 03
1073 387 43 9.4164e — 03 4.4483e — 02 5.4647e — 02

9 107° 765 84  1.2840e — 02 8.7952e — 02 8.8917e — (2
1077 1521 169  1.2000e — 02 1.3200e — 01 1.3582e — 01
1073 10467 968  3.9280e — 03 3.7049¢ — 02 4.1426e — 02

10 107 11106 1013  5.5091e — 03 4.1209e — 02 4.6787¢ — 02
1077 14247 1360  4.1345¢ — 02 5.2034e — 02 5.2034e — 02
1072 180 10 8.5227e — 04 8.5227¢ — 04 8.5227e — 04

11 10°° 180 10 8.4980e — 02 8.4980e¢ — 02 8.4980e — 02
1077 198 11 6.9867e 400 6.9867¢+ 00 6.9867¢ + 00
1073 567 29  4.836le — 03 1.2273e — 01 2.0365¢ + 00

12 107° 972 54  6.9282¢ — 03 3.3708¢ — 01 6.8098e — 01
1077 1512 104  7.9006e — 02 2.1262e — 01 4.9217e + 00

Table 5.4: Summary Statistics for DDE_SOLVER (Problems 7 to 12)
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5.3 Discussion

From the FCN values, we observe that DDVERK90 needs fewer derivative evaluations
than DDE_SOLVER for most of the problems. For Problem 10, DDVERK90 needs
less than one-third the number of derivative evaluations than the number required by
DDE_SOLVER. The STEPS values show that the number of time steps for DDVERK90
is less than that of the DDE_SOLVER.

GE_END, GE_.MESH and GE_CONT are comparable for all problems and for all
tolerances. DDE_SOLVER fails to solve Problem 8 with TOL=1073.

The high error overruns for Problem 1, 7 and 8 are due to the poor mathematical

conditioning of these problems.



Chapter 6

Conclusion

6.1 Summary

We introduced a new solver DDVERKO90 that has a new hierarchical interface that can be
used to solve a wide range of problems from those that have a simple structure constant
delay, and constant history to those that have events and a formulation that changes
after each event. As we showed it is able to deal with NDE problems with some minor
modifications. As we also showed the new interface is more intuitive and less likely to be

misinterpreted.

With the classification that we have made and the sample problems that we have
solved, it is easy to match a new problem to one of the classes and use the driver that is

available for the similar problem as a template.

We have carried out extensive numerical experiments over various types of DDEs
and compared the performance with DDE_SOLVER in terms of cost and reliability. The

results show that DDVERK90 is generally less expensive and more reliable.

We also studied the behaviour of our solver when the problem is stiff and showed

that, in these cases, one is able to detect stiffness.
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6.2 Future Work

Although we have tried to test DDVERK90 over a wide range of sample problems, testing
the reliability and robustness for other problems and identifying the situations in which
DDVERK90 may not be appropriate is one of the areas for future investigations.

In DDVERK90, as we have mentioned, there is a mechanism that helps users to detect
stiffness in the problem. Developing an automatic stiffness detection is also a subject for

future research.
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Sample Driver to Solve Example 6

MODULE define_DDEs
IMPLICIT NONE
INTEGER, PARAMETER :: NEQN=3,NU=2,NEF=1

CONTAINS

SUBROUTINE DDES(T,Y,Z,DY)
DOUBLE PRECISION :: T
DOUBLE PRECISION, DIMENSION(NEQN) :: Y,DY
DOUBLE PRECISION, DIMENSION(NEQN,NU) :: Z
INTENT(IN) :: T,Y,Z

INTENT(QOUT) :: DY

DY(1) = -Y(1) * Z(2,1) + Z(2,2)
DY(2) = Y(1) * Z(2,1) - Y(2)
DY(3) = Y(2) - Z2(2,2)

RETURN

END SUBROUTINE DDES
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SUBROUTINE EF(T,Y,DY,Z,G)

DOUBLE PRECISION ::
DOUBLE PRECISION,
DOUBLE PRECISION,

DOUBLE PRECISION,

T
DIMENSION(NEQN) :: Y,DY
DIMENSION(NEQN,NU) :: Z

DIMENSION(NEF) :: G

INTENT(IN) :: T,Y,DY,Z

INTENT(OUT) :: G

! Locate extrema as points where the derivative

! vanishes. The DIRECTION option is used to

! distinguish maxima and minima.

G(1) = DY(2)
RETURN

END SUBROUTINE EF

END MODULE define_DDEs

15k ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok 3k ok ok ok ok sk ok ok ok ok ok ok sk 3k ok ok ok ok ok sk 3k ok ok ok ok sk ok ok ok ok ok ok ok ok ok k %k

PROGRAM Example6

! The DDE is defined in the module define_DDEs.

! is solved here with DDVERK90 and its output written to a

! file. The auxilary function Example6.M imports the data into

! Matlab and plots it.
USE define_DDEs
USE DDVERK90_M
IMPLICIT NONE
! The quantities

! NEQN

! NU

! NEF

number of equations
number of delays

number of event functions

The problem
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! are defined in the module define_DDEs as PARAMETERs so
! they can be used for dimensioning arrays here. They are
! passed to the solver in the arrays NVAR and NLAGS.
INTEGER, DIMENSION(2) :: NVAR = (/NEQN,NEF/)

INTEGER, DIMENSION(1) :: NLAGS = (/NU/)

TYPE(DDVERK_SOL) :: SOL

TYPE(DDVERK_INT) :: YINT

TYPE (DDVERK_OPTS) :: OPTS

DOUBLE PRECISION :: T0=0.0DO,TFINAL=55.0DO0

! Prepare output points

INTEGER, PARAMETER :: NOUT=1000

DOUBLE PRECISION, DIMENSION(NOUT) :: TINT

! Local variables:

INTEGER :: I

DOUBLE PRECISION, DIMENSION(NU) :: LAGS=(/ 1.0DO ,10.0D0/)

DOUBLE PRECISION, DIMENSION(NEQN) :: HISTORY= (/ 5.0DO ,0.1D0,1.0D0/)

OPTS = DDVERK_SET(RE=1D-6,AE=1D-6, INTERPOLATION=.TRUE. ,DIRECTION=(/-1 /))
SOL = DDVERK90 (NVAR,NLAGS,DDES,LAGS,HISTORY, &
(/ TO,TFINAL /),0PTIONS=0PTS,EVENT_FCN=EF)
! Was the solver successful?
IF (SOL%FLAG == 0) THEN
! Form values for smooth plot:

TINT = (/ (TO+(I-1)*((TFINAL-TO)/(NOUT-1)), I=1,NOUT) /)

YINT = DDVERK_VAL(TINT,SOL,DERIVATIVES=.FALSE.)

! Write the solution to a file for subsequent plotting

! in Matlab.
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OPEN(UNIT=6, FILE=’Example6.dat’)
DO I = 1,NOUT
WRITE(UNIT=6,FMT=’(4D12.4)’) TINT(I),YINTAYT(I,1),&
YINT%YT(I,2),YINT)YT(I,3)
END DO
! Write the extrema to a file for plotting.
OPEN(UNIT=7,FILE="Example6extr.dat’)
DO I = 1,SOL%NE
WRITE(UNIT=7,FMT="(110,2D12.4)’) SOL%IE(I), &
SOL%TE(I) ,SOLAYE(TI,2)
END DO
PRINT *,’ Normal return from DDVERK90 with results’
PRINT *," written to the file ’Example6.dat’ and the"
PRINT *," extrema written to ’Example6bextr.dat’."
PRINT *,’ °’
PRINT *,’ These results can be accessed in Matlab’
PRINT *,’ and plotted by’
PRINT *,’ °’
PRINT *," >> [t,y,te,ye,ie] = Example6;"
PRINT *,’ ’

CALL DDVERK_PRINT_STATS(SOL)

ELSE
PRINT *,’ Abnormal return from DDVERK90 with FLAG = ’,&
SOLY%FLAG
ENDIF
STOP

END PROGRAM Example6
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