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Abstract

A convenient solution to RGB-Infrared photography is

to extend the basic RGB mosaic with a fourth filter type

with high transmittance in the near-infrared band. Unfor-

tunately, applying conventional demosaicing algorithms to

RGB-IR sensors is not possible for two reasons. First, the

RGB and near-infrared image are differently focused due to

different refractive indices of each band. Second, manufac-

turing constraints introduce crosstalk between RGB and IR

channels. In this paper we propose a novel image formation

model for RGB-IR cameras that can be easily calibrated,

and propose an efficient algorithm that jointly addresses

three restoration problems—channel deblurring, channel

separation and pixel demosaicing—using quadratic image

regularizers. We also extend our algorithm to handle more

general regularizers and pixel saturation. Experiments

show that our method produces sharp, full-resolution im-

ages of pure RGB color and IR.

1. Introduction

The last few years have seen a wealth of new camera

and sensor technologies, with consumer-level photography

being a major driver of these efforts. An important devel-

opment in this direction are sensors that record short-wave

infrared (IR) and color (RGB) in one shot. Although in-

frared imaging has a long history in remote sensing and the

physical and biological sciences [25], recent work in com-

putational photography [8, 21, 22] suggests it has great un-

tapped potential in consumer imaging applications—from

flash photography and reduced-blur imaging to 3D sensing

and biometrics.

The conventional approach to joint infrared and color

imaging is either to swap color filters on a camera sensi-

tive to infrared or to use one camera dedicated to infrared

imaging and another one for color. Unfortunately, taking

sequential shots after swapping filters is problematic when

imaging moving subjects, and using two cameras raises a

host of problems of its own (e.g., higher cost, harder to

miniaturize, misaligned infrared and color images due to

differences in camera viewpoint).
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Figure 1: Pixel multiplexing, channel crosstalk and chromatic

aberration of our prototype RGB-IR camera. (a) Color filter ar-

ray. (b) Spectral response curves. (c), (d) Defocus kernel at three

spatial locations for depths 44 cm and 18cm away, respectively,

with the lens focused at 20cm. In each case, we overlay two ker-

nels: a combined RGB kernel (green) and an IR kernel (red). (e),

(f) Result of fitting the PSF model of Tang and Kutulakos [23],

and evaluating it at the same locations as in (c), (d).

Cameras utilizing RGB-IR sensors, on the other hand,

can be thought of as two cameras in one: they record both

photos on the same sensor with the same lens and thus can

be readily used in cellphone systems with conventional op-

tics, producing perfectly-aligned RGB and IR images. As

shown in Figure 1a, RGB-IR sensors extend the basic RGB

mosaic with a fourth filter type whose transmittance is high

in the short-wave IR band (800-950nm).

Producing a full-resolution RGB-IR photo from the out-

put of such a sensor requires inferring the three missing

channels at every pixel. Although individual solutions

to this color demosaicing problem for conventional cam-

eras [14] differ in many respects, they all rely on the fact that

the spectral power distribution of light arriving at nearby

pixels is often highly correlated. These correlations make

it possible to infer a pixel’s missing color channels from

nearby pixels where those channels are sensed directly.
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Unfortunately, applying conventional demosaicing algo-

rithms to data from an RGB-IR sensor is not possible for

two reasons.

First, manufacturing constraints cause the R, G and B

filters of a color mosaic to transmit in the IR band. Al-

though this is easily corrected in conventional RGB cam-

eras by placing an IR-blocking filter in the optical path, this

cannot be done for RGB-IR cameras. These cameras must

therefore contend with the fact that their R, G, and B pixels

actually record a superposition of the IR channel and a pure

R, G, and B channel, respectively (Figure 1b). Because the

RGB filters have high IR transmittance, they are also more

prone to saturation and noise, reducing dynamic range.

Second, it is not always possible for both the RGB and

the IR image of a subject to be focused on the sensor at

the same time, since light refracts differently depending

on wavelength. As a result, a major challenge in captur-

ing high-quality photos with an RGB-IR sensor is compu-

tational correction of the inevitable defocus blur. This blur

may be present either in the color component or the infrared

component, or potentially in both (Figure 1c-f). In prac-

tice, this means that for subjects closer than the hyperfocal

distance [20], adjusting the lens to bring the RGB chan-

nels into focus will cause the IR channel to be defocused

and vice versa. Naive demultiplexing of RGB-IR data un-

der such conditions yields poor-quality photos in which blur

from one channel is transferred to the others. This depen-

dence is especially problematic in high-resolution RGB-IR

cameras, where the IR band is far from the other three and

where even tiny levels of defocus blur will be captured by

the sensor.

Thus, high-quality RGB-IR photography requires simul-

taneous solution of three basic computational problems: (1)

channel separation, whereby the sensor’s measurements are

decomposed into pure R, G, B and IR channels, (2) pixel de-

multiplexing, where the value of these channels is estimated

at every sensor pixel, and (3) channel deblurring, where

wavelength-dependent defocus blur in the IR and/or RGB

channels is removed. We study their joint solution from

both a theoretical and an algorithmic perspective.

We propose a novel image formation model for RGB-IR

cameras and then simplify it so it can be readily used with

contemporary restoration algorithms [4]. As a side benefit,

our model enables efficient restoration as well. Specifically,

we show that, in the absence of saturation, our model re-

duces to a set of 4 × 16 linear constraints in the Fourier

domain and thus can be directly inverted under quadratic

regularization. Moreover, although iterations are necessary

to handle non-quadratic image regularizers and pixel satura-

tion, this formulation still enables efficient implementation

of the individual iterations. We finally extend our restora-

tion method to handle pixel saturation, which often occurs

to RGB-IR cameras.

1.1. Related work

Individually, signal separation [3], demultiplexing [7,

13] and deblurring [11] have received considerable atten-

tion in the computational photography and image process-

ing communities. We are not aware, however, of solutions

applicable to RGB-IR cameras, where all three problems

must be understood and solved jointly.

Specifically, recent work in NIR imaging has proposed

color filter arrays for one-shot RGB and IR capture but

either does not consider image restoration [12], or stud-

ies demosaicing or crosstalk in isolation [6, 9]. Although

[18] addresses both crosstalk and demosaicing, it assumes

crosstalk between the green and IR channels only. More-

over, these methods do not account for channel-dependent

defocus blur and do not use Fourier-domain analysis either,

which can offer significant computational efficiencies.

Our restoration algorithm is closely related to recent

work on convex optimization for image restoration [2, 4].

In particular, our work can be thought of as an extension of

Heide et al.’s optimization framework [4], designed to ex-

ploit the special properties of image formation in cameras

with RGB-IR mosaics.

2. Image formation model

We start by modeling the formation of the input RGB-IR

image i from the ideal (i.e., sharp and full-resolution) im-

ages of the scene lλ at various wavelengths λ. We then sim-

plify it further by assuming the sensor’s spectral responses

are approximately the superposition of four narrow-band

response curves. This simplified model can be readily in-

verted using existing restoration algorithms.

Continuous image formation model Let us first consider

the unsaturated version of an input raw image j. Represent-

ing all images as column vectors, we can express j as the

result of three successive linear operations on the ideal im-

age lλ

j =
∑

n=R,G,B,I

Sn

(
∫

rn(λ) Kλlλ
︸ ︷︷ ︸

wavelength-
dependent blur

dλ

)

︸ ︷︷ ︸

irradiance of n-th filter
︸ ︷︷ ︸

result of RGB-IR multiplexing

+ e (1)

where e denotes noise. We now describe in detail the three

operations:

Wavelength-dependent lens blur: subjects close to the

camera will be out of focus in at least one of the R, G, B

and IR channels no matter where the camera’s lens is fo-

cused. This is because the index of refraction of the lens—

and thus the distance of the camera from the plane of perfect

focus—depends on wavelength. In addition, optical aberra-

tions will produce blur even at the in-focus depth, and the



blur kernel will vary according to both image position and

depth. We characterize the wavelength-dependent blur for

each wavelength λ with a convolution matrix Kλ.

Channel crosstalk: Manufacturing constraints prevent

the filters of a color mosaic from blocking other bands, e.g.,

as shown in Figure 1b. This superposition of R, G, B and IR

makes it impossible to treat each channel individually, and

also limits the effective dynamic range of the image. Con-

sequently, the sensor irradiance of the n-th filter integrates

that of all wavelengths, weighted by the sensor response

curve rn.

Pixel multiplexing: Due to the mosaic pattern of the

color filter array, the narrow R, G, B bands are only mea-

sured at every other pixel. Therefore, the highest frequen-

cies in an individual channel cannot be measured even if

perfect channel separation and deblurring were possible. To

model this, we multiply with a binary mask the image ir-

radiance due to each color filter and then sum over all four

filters to produce the linear sensor image j. The correspond-

ing matrix Sn in Eq. (1) is a diagonal matrix that stores the

binary indicator of the n-th filter

Sn[x, x] =

{

1 if filter is n at pixel x ,

0 otherwise .
(2)

Finally, the captured image i saturates at pixels where the

irradiance is larger than the maximal pixel intensity imax

i = min(j, imax) . (3)

Approximation for restoration purposes Since the

wavelength λ is continuous, the ideal image l has an infi-

nite number of channels and is difficult to restore. In prac-

tice, however, we can “discretize” the multi-spectral image

l into four pure color channels. This simplifies the model

and makes it amenable to image restoration.

We assume the four sensor response functions r(λ) =
[rR(λ) rG(λ) rB(λ) rI(λ)]

⊤ (⊤ indicates matrix transpose)

can be modeled as the superposition of four narrow-band

response functions q(λ) = [qR(λ) qG(λ) qB(λ) qI(λ)]
⊤

through a 4× 4 channel crosstalk matrix C:

r(λ) = C q(λ) . (4)

Because we expect the bands to be narrow, we can as-

sume that the blur kernels are constant within the band of

qn. We denote them as Kn.

Thus we can “discretize” the ideal image into a hidden

image h =

[
hR

hG

hB

hI

]

where the four channels are

hn =

∫

qn(λ)l(λ) dλ . (5)

Thus we simplify Eq. (1) as

j = Fh+ e , (6)

where matrix F models the entire image formation process

F = S(C⊗ I)K . (7)

Here the block diagonal matrix

K = diag(KR,KG,KB,KI) (8)

accounts for band-specific defocus, matrix C ⊗ I models

channel crosstalk (⊗ denotes tensor product of matrices)

C⊗ I =

[
cRRI cRGI cRBI cRII
cGRI cGGI cGBI cGII
cBRI cBGI cBBI cBII
cIRI cIGI cIBI cIII

]

, (9)

and

S =
[
SR SG SB SI

]
(10)

is the subsampling matrix that produces the final mosaic.

In the following we assume that defocus is a known con-

stant, so matrix F in Eq. (7) is also known. We compute

this matrix using a process akin to sensor and lens calibra-

tion for conventional cameras. Thus computing the hidden

image h from input image i becomes a non-blind restora-

tion problem.

3. Calibration

We compute matrix F by computing the matrices K and

C that model band-specific blur and crosstalk. The subsam-

pling matrix is fixed by the 2×2 mosaic pattern of the color

filter array. Since K depends on the lens optics whereas C

depends on the sensor responses, each is calibrated sepa-

rately.

Blur kernel calibration We use the technique of Joshi

et al. [5] to estimate the non-parametric blur kernels. We

then fit them to the compact PSF model of Tang and Kutu-

lakos [23] to account for defocus and aberrations.

First we need to eliminate sensor crosstalk to allow es-

timating the blur kernels for each channel individually. We

do this by placing color filters in front of the camera to allow

only a narrow band of wavelengths. The channel crosstalk

for our particular prototype camera mainly occurs between

RGB and infrared. Therefore, we use IR-only and RGB-

only filters for this purpose.

We perform PSF calibration for individual focus settings

independently. For each focus setting, we estimate blur ker-

nels at 22 depths spanning about 1.5 meters around the in-

focus position. At each depth, we estimate non-parametric

blur kernels at 9 × 13 image positions for the RGB and the

IR channel independently [5].

We then account for monochromatic and chromatic aber-

rations as well as defocus [23]. We fit the RGB and infrared

blur kernels simultaneously, constraining all four channels

to have the same monochromatic aberration parameters, and

to differ only in the defocus parameter (Figure 1c-f).
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Figure 2: Crosstalk calibration results for our RGB-IR camera.

(a) Manually specified approximate intervals of support for each

channel. The support for the R, G, B, and IR channel is [550, 800],
[400, 650], [0, 600], and [800, 1000] nm respectively. (b) Decom-

posed sensor spectral response functions.

Characterizing channel crosstalk We assume the sensor

responses r(λ) are known for a dense sampling of wave-

length λ.1 Our goal is to find a decomposition D = C−1

of spectral responses into four independent narrow bands q.

We manually define a binary function δn to indicate the ap-

proximate support of each channel, where δn(λ) = 1 if λ is

within the support of channel n and δn(λ) = 0 otherwise.

We then minimize the amount of demultiplexed sensor

response outside the support. This is computed by solving

a least-squares problem for each row d⊤
n of D

min
dn

∑

λ:δn(λ)=0

∣
∣d⊤

n r(λ)
∣
∣
2

s.t. dn[n] = 1 (11)

and then computing C by matrix inversion

C =
[
dR dG dB dI

]−⊤
(12)

Figure 2 shows the crosstalk calibration results for our sen-

sor. In our implementation, we multiply the crosstalk ma-

trix C with a manually-defined diagonal matrix so that the

hidden image is properly white balanced.

4. RGB-IR image restoration

In the absence of pixel saturation, we solve the follow-

ing optimization problem to estimate the hidden image h in

Eq. (6)

min
h

|j− Fh|2 + ρ(h) (13)

where ρ is a regularization function of the hidden image h.

The structure of matrix F allows efficient solution of

Eq. (13) under a Gaussian gradient prior as well as more

general ones. We consider both cases below.

1In practice we can obtain this from the filter manufacturer or through

additional calibration [16].

4.1. Direct restoration with quadratic regularizers

We first consider the following minimization problem

min
h

|j− Fh|2 +
∑

m

wm

(
|Rmh− tm|2

)
. (14)

The regularization function ρ is of the form

ρ(h) =
∑

m

wm|Rmh− tm|2 . (15)

The weights wm, circulant matrices Rm, and vectors tm
control the specific choice of ρ. For example, if ρ is a Gaus-

sian prior on image gradients then m ∈ {1, 2}, matrices R1

and R2 implement the gradients ∇x and ∇y , t1 and t2 are

zero, respectively, and w1 and w2 control the strength of

regularization.

From Eqs. (7)-(10) it follows that F is a banded matrix

with dimensions WH × 4WH for an input image of width

W and height H . Because of its large size, the optimiza-

tion in Eq. (14) cannot be solved directly in general. In the

specific case of spatially-invariant blur, however, the opti-

mization can be expressed in the Fourier domain and solved

for each frequency independently, in one step.

Specifically, let ĥR, ĥG, ĥB, ĥI and ĵ be the Fourier

transform of the hidden image components hR,hG,hB ,hI

and input image j respectively. A key property of the

Fourier-domain image ĵ is that the elements of the four spa-

tial frequencies

(u, v), (u+ π, v), (u, v + π), (u + π, v + π) (16)

depend only on the corresponding elements in the hidden

image for any (u, v). In particular, if ĵuv and ĥuv collect

the elements of ĵ and ĥ for those frequencies, we have

ĵuv = Fuvĥuv + êuv , (17)

where

F̂uv = Ŝ(C⊗ I)K̂uv . (18)

The matrix K̂uv is a 16 × 16 diagonal matrix that models

per-frequency modulation due to defocus blur. The matrix Ŝ

is a 4×16 matrix that models subsampling in the frequency

domain as a mixture of frequencies of the hidden image:

Ŝ =
1

4

[ 1 −1 −1 1 1 1 −1 −1 1 1 1 1 1 −1 1 −1
−1 1 1 −1 1 1 −1 −1 1 1 1 1 −1 1 −1 1
−1 1 1 −1 −1 −1 1 1 1 1 1 1 1 −1 1 −1
1 −1 −1 1 −1 −1 1 1 1 1 1 1 −1 1 −1 1

]

.

(19)

See Appendix A for a derivation of Eqs. (17)-(19).

We can now reformulate the optimization of Eq. (14) into
WH
4 independent subproblems, each of which involves only

the tuple of frequencies in Eq. (16) for some (u, v):

min
ĥuv

|̂juv − F̂uvĥuv|
2+
∑

m

wm|R̂muvĥuv − t̂muv|
2 (20)



where R̂muv is a 16 × 16 diagonal matrix storing Fourier

transform elements of the filters corresponding to Rm at the

four frequencies in Eq. (16), and t̂muv stores the Fourier

transform elements of tm at these frequencies. See Ap-

pendix B for more details on how this optimization can be

performed efficiently.

In practice, the blur kernel varies due to optical aberra-

tions. Accordingly, we relax the defocus kernel’s spatial

invariance by treating the input image as a collection of lo-

cal patches, each of which is blurred by a different—but

known—blur kernel.

4.2. Restoration with non­quadratic regularizers

Since quadratic regularization tends to oversmooth im-

age discontinuities, we use a more general, robust regular-

izer. Specifically, we use a linear combination of an L1

norm on image gradients and a denoisng term [4] based on

the graph Laplacian matrix

ρ(h) = w1 (|∇xh|+ |∇yh|)
︸ ︷︷ ︸

L1 on gradients

+w2h
⊤ (diag(A1)−A)
︸ ︷︷ ︸

Laplacian matrix

h

(21)

where 1 denotes a vector of all ones and A =
diag(AR,AG,AB,AI) is a pixel affinity matrix that takes

into account pixel separation as well as intensity differences

in the hidden image:

An[x, y] = exp

(

−
1

2α2
dist(x, y)2 −

1

2β2
|h[x]− h[y]|2

)

,

(22)

Here α and β are spatial and intensity variance parameters,

respectively.

To solve Eq. (13) we use the optimization approach of

Heide et al. [4]. See Algorithm 1 for the exact sequence of

steps. This algorithm includes two steps beyond those in [4]

that handle pixel saturation and are discussed in Section 5.

The most computationally expensive steps in Algorithm

1 are Steps 2, 9 and 11. To update the slack variables ti in

Step 9 we set t′i = ti+τ h̄, filter it with a bilateral filter [24]

of spatial variance α and intensity variance τ−1, and finally

subtract the result from t′i. We use the permutohedral lat-

tice [1] to implement the bilateral filter efficiently. To com-

pute the hidden image in Steps 2 and 11, we observe that

this involves a quadratic optimization that can be efficiently

solved with the method in Section 4.1.

5. Handling pixel saturation

Because the RGB filters do not block IR, the RGB pixel

intensities include an IR contribution that reduces the dy-

namic range of the image. In particular, saturation occurs

Algorithm 1: Our final restoration algorithm.

input : input image i, image formation matrix F, weights w1, w2

parameter σ = 1/400, τ = 40, α = 5
// initialization

1 set j← i

2 compute h← argminh |j−Fh|2 + w1|∇xh|2 + w1|∇yh|2

3 process h by bilateral filtering and inpainting saturated areas

4 set h̄← h, tx ← 0, ty ← 0, ti ← 0
repeat

5 hlast ← h

// enforce inequality constraint

6 j← Pi+ (I −P)max(Fh, imax)
// regularization penalty

7 tx ← min(max(tx + τ∇xh̄,−1), 1)

8 ty ← min(max(ty + τ∇yh̄,−1), 1)

9 update ti ← (ti + τ(I − diag(A1)−1A)h̄)
// data fidelity

10 update z← h− σw1∇⊤
x tx − σw1∇⊤

y ty − σw2ti

11 update h← argminh |j−Fh|2 + 1

σ
|h− z|2

// extrapolation

12 extrapolate h̄← 2h− hlast

until convergence

output: estimated hidden image h

frequently and must be handled.2 We address this by turn-

ing Eq. (13) into a constrained minimization problem:

min
h,j

|j− Fh|2 + ρ(h) (23)

s.t. j ≥ i,Pj ≤ Pi (24)

where i is an input image containing saturated pixels, the

matrix P extracts unsaturated pixels, inequality constraints

are applied element-wise, and the regularization function

ρ(h) is given by Eq. (21). The image j represents an ir-

radiance image that does not saturate, and becomes an ad-

ditional unknown that must be estimated jointly with the

hidden image h.

The inequality constraints ensure that i is less than j at

all saturated pixels, and is equal to j otherwise. Formulating

pixel saturation as inequality constraints is essential in our

case because it allows us to updateh using efficient Fourier-

domain operations (Section 4.1) instead of solving a large

linear system in the spatial domain.

We extend the method in Section 4.2 to solve the above

problem with two steps in Algorithm 1:

• Inpainting large saturated regions (Step 3). We initial-

ize h by inpainting the unknown color and intensity

of saturated pixels. This helps Algorithm 1 converge

faster. More details are given below.

2Of course, if it were possible to balance the dynamic range of RGB

and IR bands by attenuating the stronger of RGB and IR (e.g., with RGB-

or IR-blocking filters), we could reduce the chance of saturation. This is

hard to do in practice because the relative magnitudes of RGB and IR vary

spatially, and from scene to scene.



• Enforcing inequality constraint (Step 6). We initialize

j with the input image i in Step 1; at each iteration

we then fix h and update each pixel of j to minimize

|j−Fh|2 within their feasible interval—[imax,∞) for

saturated pixels and i for unsaturated pixels. Thus we

do not update unsaturated pixels, and saturated pixels

are updated to max(Fh, imax).

Partial saturation model Partially-saturated pixels, i.e.

pixels whose intensity is missing in some channels but not

others, are common in RGB-IR images. Although we can-

not completely infer the color of such pixels, the incomplete

color information they carry can inform pixel affinity—and

is thus useful for inpainting. To make the most of the avail-

able color information, we represent pixel colors as 4D lines

in R, G, B and IR :

Θ

[
hR[x]
hG[x]
hB [x]
hI [x]

]

= 0 , (25)

where the matrix

Θ =







cos(θRG) − sin(θRG) 0 0
cos(θRB) 0 − sin(θRB) 0
cos(θRI) 0 0 − sin(θRI)

0 cos(θGB) − sin(θGB) 0
0 cos(θGI) 0 − sin(θGI)
0 0 cos(θBI) − sin(θBI)







(26)

is controlled by six parameters θRG, θRB , θRI , θGB, θGI

and θBI . This is inspired by the color line model [15] which

has been used to handle saturation in RGB images. Specifi-

cally, given known hm and hn, θmn can be estimated by

θmn[x] = arctan
hm[x] + ǫ

hn[x] + ǫ
. (27)

The constant ǫ biases the color of low-intensity pixels to-

ward gray. In practice, we first detect missing entries in

θ, then inpaint them, and finally restore h by fixing Θ and

using Eq. (25).

Support region of saturated pixels We compute a binary

map ωn[x] to indicate which pixels in channel n of the hid-

den image have saturated pixels in their neighborhood:

ωn[x] =

{

1 if maxy∈Ωx,cmn≥0.5 i[y] < imax,

0 otherwise.
(28)

Here subscript m of cmn denotes the filter type at pixel y

in the color filter array. The neighborhood Ωx corresponds

to pixels at a distance less than the radius of the blur ker-

nel. So the map ω marks pixels that carry significant color

information about the saturated region.

Then we compute the support region ω′
mn for θmn using

ω′
mn[x] = ωm[x]ωn[x] (29)

since hm[x] and hn[x] must both be known to compute

θmn[x].

Inpainting color and intensity For each pair of channels

(m,n) we then inpaint the missing θmn using the algorithm

of [10]. Specifically we solve the following optimization

problem

min
θmn

|Uθmn − θmn|
2 (30)

subject to the constraint that θmn are updated only at pixels

where ω′
mn[x] = 0. The matrix U in Eq. (30) is an affin-

ity matrix that takes into account pixel separation and color

difference in the support region θmn:

U[x, y] ∝ exp

(

−
1

2α2
dist(x, y)2

−
∑

mn

ω′
mn[x]ω

′
mn[y]

2β2
(θmn[x]− θmn[y])

2

)

,

(31)

where the affinity weights are normalized to ensure U1 =
1.

Finally, we solve for hn at each pixel using Eq. (25) by

fixing Θ and solving with least squares. To deal with pixels

that saturate in all channels, we simply treat them as if the

IR channels were not saturated. Although this may underes-

timate pixel intensity, it produces visually pleasing results.

6. Results

To test our method, we ran experiments with a prototype

RGB-IR camera.

Saturation handling Figure 3 shows restoration results be-

fore and after running Step 3 of Algorithm 1. Our color

inpainting algorithm produces reasonable color variation in

both textureless and textured multi-color regions.

Restoration quality Figures 4-6 show restoration results

in the absence of defocus. These results show the notable

quality improvements achieved with Algorithm 1.

Ground-truth comparisons Figure 7 and 8 show ground-

truth comparisons between actual and estimated RGB and

IR channels. To capture the “ground-truth” channels we

used IR- and RGB-blocking filters respectively. These

filters guaranteed that the captured images were free of

crosstalk but did not prevent blur due to aberrations.

Computation time Matlab implementation of the direct

method (Section 4.1) takes about 1 second to process a

672× 760 pixel patch on a desktop computer. In compari-

son, a mathematically equivalent image-domain implemen-

tation takes about a minute to finish under the same settings.

Full restoration is still far slower because of its iterative na-

ture and the use of bilateral filtering. It takes about 14 sec-

onds per iteration, with about 10 of those seconds spent on

bilateral filtering, and typical images requiring 20 iterations.

Removal of the denoising term from step 9 results in an op-

eration that is three times faster, at the expense of noisier

results.



Step 2 result Step 3 result Step 2 result Step 3 result Step 2 result Step 3 result

Figure 3: We compare results before and after color inpainting: the estimate of hidden image h by Step 2 of Algorithm 1 has errors in

saturated regions. Step 3 corrects the color and intensity of such regions. We only show RGB bands since no IR saturation occurs in these

examples.

input

RGB IR

sequential restoration

5×RGB-only IR-only

direct restoration

5×RGB-only IR-only

full restoration

5×RGB-only IR-only

Figure 4: Restoration results. Input: We turn on camera autofocus to minimize defocus blur. We visualize the image mosaic with two

sub-images: the three channels of the RGB image store pixels under the R, G, B color filters, and the IR image stores pixels under the IR

filter. We compare three methods: Sequential restoration first performs demosaicing by spline interpolation, and then performs channel

separation by inverting Eq.(4). Note the aliasing artifacts on eyelashes. Direct restoration corresponds to Steps 1-3 of Algorithm 1. It

produces over-smoothed results. Full restoration corresponds to full execution of Algorithm 1. The final result contains clear skin and iris

details that are invisible in the input, and does not suffer from noise or artifacts. Note that since the input RGB contains IR contributions

as well, it is much brighter than the equivalent RGB-only images. To better visualize those, their intensities are scaled ×5.

7. Conclusion

RGB-IR cameras simultaneously suffer from three prob-

lems: pixel multiplexing, channel crosstalk and chromatic

aberrations. The coupling of these problems makes appli-

cation of conventional demosaicing algorithms to RGB-IR

images difficult. Our key contribution is a novel image for-

mation model for RGB-IR cameras that accounts for all

three problems, allows easy calibration, and enables effi-

cient restoration with common image regularization func-

tions.

We believe that our approach paves the way for a va-

riety of applications based on RGB-IR sensors. From a

practical perspective, our algorithm can potentially be ac-

celerated further by exploiting GPUs or using regularization

functions that can be efficiently implemented [19].
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A. Derivation of Eqs. (17)-(19)

Let T be the matrix implementing the Fourier transform of

a single-channel image of width W and height H , Denote T =
diag(T,T,T,T) the matrix implementing the Fourier transform

of an RGB-IR image in each band.

We first turn Eq. (6) into a Fourier-domain formulation by mul-

tiplying both sides of Eq. (6) with T noting that T ⊤
T = I

ĵ = Tj = TFh+Te

= (TFT
⊤)T h+Te = F̂ĥ + ê ,

(32)

where ĵ, ĥ and ê denote the Fourier transform of (unsaturated)

input, hidden and noise image, respectively. The matrix F̂ models

image formation in the Fourier domain

F̂ = TFT
⊤
. (33)

By plugging Eq. (7) into Eq. (33), we have

F̂ = TS(C⊗ I)KT
⊤

= (TST
⊤)(T (C⊗ I)T ⊤)(T KT

⊤) .
(34)

First, from Eq. (10) the Fourier-domain subsampling becomes

TST
⊤ =

[

TSRT
⊤ TSGT

⊤ TSBT⊤ TSIT
⊤
]

. (35)

The matrices TSnT
⊤ are circulant since Sn are diagonal ma-

trices. Each row of TSnT
⊤ is a shifted version of the Fourier

transform of the diagonal of Sn, which marks the pixel locations

under the n-th color filter. For the particular 2 × 2 mosaic pat-

tern we discuss in this paper, the row associated with the fre-

quency (u, v) is non-zero only in columns corresponding to fre-

quencies at (u, v), (u + π, v), (u, v + π) and (u + π, v + π),
as in Eq. (16). The values of these entries are 1

4
,− 1

4
,− 1

4
, 1

4
for

T⊤SRT, 1

4
, 1

4
,− 1

4
,− 1

4
for T⊤SGT, 1

4
, 1

4
, 1

4
, 1

4
for T⊤SBT,

and 1

4
,− 1

4
, 1

4
,− 1

4
for T⊤SIT, respectively.

Second, from Eq. (9), the Fourier-domain crosstalk causes su-

perposition among different bands at each frequency

T (C⊗ I)T ⊤ = C⊗ (TT
⊤) = C⊗ I . (36)

Third, from Eq. (8), the Fourier-domain defocus matrix is

T KT
⊤ = diag(TKRT

⊤
,TKGT

⊤
,TKBT

⊤
,TKIT

⊤) ,
(37)

where each matrix Kn is circulant when the blur kernels are

spatially-invariant. Consequently T KT
⊤ is a diagonal matrix that

stores the Fourier transform of the blur kernels in the four bands.

This is simply the convolution theorem, i.e., image-domain con-

volution corresponds to Fourier-domain modulation.

The above shows that a row in F̂ corresponding to the fre-

quency (u, v) is non-zero only in the columns corresponding to

(u, v), (u + π, v), (u, v + π) and (u + π, v + π), i.e., Eq. (16).

Consequently, we can decompose Eq. (33) into WH
4

linear sys-

tems, each relevant to a particular (u, v), by extracting rows and

columns corresponding to Eq. (16). This leads to Eq. (17) and

Eq. (18), with Ŝ defined by Eq. (19).

B. Efficient solution of Eq. (20)

For each frequency tuple (u, v), the quadratic optimization

problem in Eq. (20) has a closed-form solution

ĥuv =
(

F̂
⊤

uvF̂uv + R̂uv

)−1

zuv (38)

where the diagonal matrix R̂uv and the vector zuv are defined as

R̂uv =
∑

m

wmR̂
⊤

muvR̂muv , (39)

zuv = F̂
⊤

uv ĵuv +
∑

m

wmR̂
⊤

muv t̂muv . (40)

Our key idea is to use to the Woodbury matrix identity [17]
(

F̂
⊤

uvF̂uv + R̂uv

)−1

= R̂
−1

uv − R̂
−1

uv F̂
⊤

uvQ
−1

uv F̂uvR̂
−1

uv (41)

to simplify the inverse of 16× 16 matrices F̂⊤

uvF̂uv + R̂uv to the

inverse of 4× 4 matrices

Quv = I+ F̂uvR̂
−1

uv F̂
⊤

uv. (42)

The matrices Quv are small enough to allow explicit solution of

its inverse, and to implement the inverse with element-wise oper-

ations.

Thus we can compute Eq. (38) as

ĥuv = R̂
−1

uv zuv − (R̂−1

uv F̂
⊤

uv)Quv

−1(F̂uvR̂
−1

uv zuv) . (43)

Algorithm 2 shows the exact steps to compute Eq. (43) for all

(u, v) simultaneously. Specifically, all Quv can be computed at

the same time by linearly combining 16 basis matrices

Quv = I+
∑

l

quv[l]Πl . (44)

The frequency-specific coefficients are

quv = diag(K̂uvR̂
−1

uv K̂uv) (45)

while the basis matrices are shared by all frequencies

Πl[m,n] = Ψ[m, l]Ψ[n, l] (46)

where

Ψ = Ŝ(C⊗ I) . (47)

This follows from substituting F̂uv = ΨK̂uv into Eq. (42).

Algorithm 2: Computing Eq. (43) for all (u, v)

input : input image frequencies ĵuv, camera parameters C, Ŝ and

kuv = diag(K̂uv), regularization parameters

rmuv = diag(R̂muv), t̂muv and wm

(“·” and “/” denote elementwise multiplication and division)

1 precompute matrices Ψ and Π by Eqs. (46),(47)

2 ruv ←
∑

m wm · rmuv · rmuv

3 zuv ← Ψ(kuv · ĵuv) +
∑

m wm(rmuv · tmuv)
4 compute quv ← kuv · kuv/ruv and Quv by Eq. (44)

5 solve xuv for all linear systems: Quvxuv = (zuv · kuv/ruv)

6 compute ĥuv ← zuv/ruv −Ψ(kuv · xuv/ruv

output: estimated hidden image frequencies ĥuv


