High Resolution Photography with an RGB-Infrared Camera
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Abstract conventional % 4000 " —;g e(rFf)(G)
A convenient solution to RGB-Infrared photography is B I 2 3000 “ \“ SN
to extend the basic RGB mosaic with a fourth Iter type G R s ||
with high transmittance in the near-infrared band. Unfor- RGB.IR g 2000 ‘\‘ \
tunately, applying conventional demosaicing algorithims t z 1000 ‘w‘ \
RGB-IR sensors is not possible for two reasons. First, the S'l e | 3
RGB and near-infrared image are differently focused due to G R A = N
different refractive indices of each band. Second, manufac 400 fv%?,dengtﬁ?? 1000
turing constraints introduce crosstalk between RGB and IR GY
channels. In this paper we propose a novel image formation g ce”ter
model for RGB-IR cameras that can be easily calibrated, --- ---
and propose an ef cient algorithm that jointly addresses
three restoration problems—channel deblurring, channel © (d)
separation and pixel demosaicing—using quadratic image  p— et o it
regularizers. We also extend our algorithm to handle more --- ---
general regularizers and pixel saturation. Experiments
show that our method produces sharp, full-resolution im- )
ages of pure RGB color and IR. Figure 1. Pixel multiplexing, channel crosstalk and chrima

aberration of our prototype RGB-IR camerga) Color Iter ar-

ray. (b) Spectral response curveg), (d) Defocus kernel at three

spatial locations for depths 44 cm and 18cm away, respégtive
1. Introduction with the lens focused at 20cm. In each case, we overlay two ker

nels: a combined RGB kernel (green) and an IR kernel ().

The last few years have seen a wealth of new camera(f) Result of tting the PSF model of Tang and Kutulakos [23],

and sensor technologies, with consumer-level photographyand evaluating it at the same locations as in (c), (d).
being a major driver of these efforts. An important devel-
opment in this direction are sensors that record short-wave Cameras utilizing RGB-IR sensors, on the other hand,
infrared (IR) and color (RGB) in one shot. Although in- can be thought of as two cameras in one: they record both
frared imaging has a long history in remote sensing and thephotos on the same sensor with the same lens and thus can
physical and biological sciences [25], recent work in com- be readily used in cellphone systems with conventional op-
putational photography [8, 21, 22] suggests it has great un-tics, producing perfectly-aligned RGB and IR images. As
tapped potential in consumer imaging applications—from shown in Figure 1a, RGB-IR sensors extend the basic RGB
ash photography and reduced-blur imaging to 3D sensing mosaic with a fourth Iter type whose transmittance is high
and biometrics. in the short-wave IR band (800-950nm).

The conventional approach to joint infrared and color  Producing a full-resolution RGB-IR photo from the out-
imaging is either to swap color lters on a camera sensi- put of such a sensor requires inferring the three missing
tive to infrared or to use one camera dedicated to infraredchannels at every pixel. Although individual solutions
imaging and another one for color. Unfortunately, taking to this color demosaicing problem for conventional cam-
sequential shots after swapping Iters is problematic when eras [14] differ in many respects, they all rely on the faatth
imaging moving subjects, and using two cameras raises ahe spectral power distribution of light arriving at nearby
host of problems of its own (e.g., higher cost, harder to pixels is often highly correlated. These correlations make
miniaturize, misaligned infrared and color images due to it possible to infer a pixel's missing color channels from
differences in camera viewpoint). nearby pixels where those channels are sensed directly.



Unfortunately, applying conventional demosaicing algo- 1.1. Related work
rithms to data from an RGB-IR sensor is not possible for

—— Individually, signal separation [3], demultiplexing [7,

, , . 13] and deblurring [11] have received considerable atten-
First, manufacturing constraints cause the R, G and Byjo in the computational photography and image process-
lters of a color mosaic to transmit in the IR band. Al- 4 communities. We are not aware, however, of solutions

though this is easily corrected in conventional RGB cam- applicable to RGB-IR cameras, where all three problems
eras by placing an IR-blocking lter in the optical path,shi ., /<t e understood and solved jointly.
cannot be done for RGB-IR cameras. These cameras must Speci cally, recent work in NIR imaging has proposed

therefore contend with the fact that their R, G, and B pixels .;ior Iter arrays for one-shot RGB and IR capture but

actually record asuperpositio.n of thg IR channeland a puregither does not consider image restoration [12], or stud-
R, G, and B channel, respectively (Figure 1b). Because thejeg gemosaicing or crosstalk in isolation [6,9]. Although

RGB lters have high IR transmittance, they are also more [1g1 aqdresses both crosstalk and demosaicing, it assumes
prone to saturation and noise, reducing dynamic range.  ¢rosstalk between the green and IR channels only. More-
Second, it is not always possible for both the RGB and oyer, these methods do not account for channel-dependent
the IR image of a subject to be focused on the sensor atgefocus blur and do not use Fourier-domain analysis either,
the same time, since light refracts differently depending which can offer signi cant computational ef ciencies.
on wavelength. As a result, a major challenge in captur-  Qur restoration algorithm is closely related to recent
ing high-quality photos with an RGB-IR sensor is compu- work on convex optimization for image restoration [2, 4].
tational correction of the inevitable defocus blur. Thiarbl In particu|ar, our work can be thought of as an extension of
may be present either in the color component or the infraredHeide et al's optimization framework [4], designed to ex-

component, or potentially in both (Figure 1c-f). In prac- pioit the special properties of image formation in cameras
tice, this means that for subjects closer than the hypérfocayith RGB-IR mosaics.

distance [20], adjusting the lens to bring the RGB chan-

nels into focus will cause the IR channel to be defocused2 |mage formation model

and vice versa. Naive demultiplexing of RGB-IR data un-

der such conditions yields poor-quality photos in whictrblu ~ We start by modeling the formation of the input RGB-IR
from one channel is transferred to the others. This depenimagei from the ideal ie., sharp and full-resolution) im-
dence is especially problematic in high-resolution RGB-IR ages of the scerle at various wavelengths. We then sim-
cameras, where the IR band is far from the other three andplify it further by assuming the sensor’s spectral respsnse

where even tiny levels of defocus blur will be captured by are approximately the superposition of four narrow-band
the sensor. response curves. This simpli ed model can be readily in-

Thus, high-quality RGB-IR photography requires simul- verted using existing restoration algorithms.

taneous solution of three basic computational problen)s: (1 Continuous image formation model Letus rst consider
channel separatiorwhereby the sensor's measurements are the unsaturated version of an input raw imagBepresent-
decomposedinto pure R, G, B and IR channelsp{@lde-  ing all images as column vectors, we can expjeas the
multiplexing where the value of these channels is estimated result of three successive linear operations on the ideal im
at every sensor pixel, and (8hannel deblurring where agel
wavelength-dependent defocus blur in the IR and/or RGB z !
channels is removed. We study their joint solution from . _ X S | d + 1
both a theoretical and an algorithmic perspective. 1= : () |<.{2-} e @
n=R;G;B;l

We propose a novel image formation model for RGB-IR o gl
cameras and then simplify it so it can be readily used with | z
contemporary restoration algorithms [4]. As a side bene t, |
our model enables ef cient restoration as well. Speci gall
we show that, in the absence of saturation, our model re-wheree denotes noise. We now describe in detail the three
duces to a set o 16 linear constraints in the Fourier operations:
domain and thus can be directly inverted under quadratic = Wavelength-dependent lens blusubjects close to the
regularization. Moreover, although iterations are nemgss camera will be out of focus in at least one of the R, G, B
to handle non-quadratic image regularizers and pixelaatur and IR channels no matter where the camera’s lens is fo-
tion, this formulation still enables ef cient implemenitath cused. This is because the index of refraction of the lens—
of the individual iterations. We nally extend our restora- and thus the distance of the camera from the plane of perfect
tion method to handle pixel saturation, which often occurs focus—depends on wavelength. In addition, optical aberra-
to RGB-IR cameras. tions will produce blur even at the in-focus depth, and the

irr %’ance ofn-th Iter }

result of RGB-IR multiplexing



blur kernel will vary according to both image position and Thus we simplify Eq. (1) as
depth. We characterize the wavelength-dependent blur for o .
; ) ) j=Fh +e; (6)
each wavelength with a convolution matrix
Channel crosstalk: Manufacturing constraints prevent Where matrix= models the entire image formation process
the lters of a color mosaic from blocking other banésy, F=S(C K: @
as shown in Figure 1b. This superposition of R, G, B and IR ) i
makes it impossible to treat each channel individually, and Here the block diagonal matrix
also limits the effective dynamic range of the image. Con- K =diag(Kr;Kg;Kg;K/) (8)

sequently, the sensor irradiance of thh lter integrates accounts for band-soeci ¢ defocus. mat@ | models
that of all wavelengths, weighted by the sensor response P '

curver channel crosstalk ( denotes tensor prOdlitCt of matrices)
n. d

Pixel multiplexing: Due to the mosaic pattern of the _ GmllmeGme il
color lter array, the narrow R, G, B bands are only mea- C = o II cac II Cas II cai II ' (©)
sured at every other pixel. Therefore, the highest frequen-gnq R Ge T ce T
cies in an individual ch_annel cannot b_e measured even if S= Sk Sg Sz S (10)
perfect channel separation and deblurring were possible. T . . . .

. : . : : . is the subsampling matrix that produces the nal mosaic.

model this, we multiply with a binary mask the image ir- . :

) In the following we assume that defocus is a known con-
radiance due to each color lter and then sum over all four

. Lo stant, so matri¥ in Eq. (7) is also known. We compute
Iters to produce the linear sensor imageT he correspond- ) . . . .
, X . . . : this matrix using a process akin to sensor and lens calibra-
ing matrixS, in Eq. (1) is a diagonal matrix that stores the

bi — tion for conventional cameras. Thus computing the hidden
inary indicator of then-th Iter . . . ) .
imageh from input imagei becomes aon-blindrestora-

. . . tion problem.
S [x:x] = 1 if lteris n atpixelx; @)
n 1 - . . .
0 otherwise: 3. Calibration
Finally, the captured imagesaturates at pixels wherethe ~ We compute matri¥ by computing the matrices and
pling matrix is xed by the2 2 mosaic pattern of the color
i =min(j;imax): (3) Iter array. SinceK depends on the lens optics wher€as

depends on the sensor responses, each is calibrated sepa-
Approximation for restoration purposes Since the rately.

wavelength is continuous, the ideal imadehas an in - Blur kernel calibration We use the technique of Joshi
nite number of channels and is dif cult to restore. In prac- gt g|. [5] to estimate the non-parametric blur kernels. We
tice, however, we can “discretize” the multi-spectral ireag  then t them to the compact PSF model of Tang and Kutu-
I into four pure color channels. This simpli es the model |gkos [23] to account for defocus and aberrations.
and makes it amenable to image restoration. First we need to eliminate sensor crosstalk to allow es-
We assume the four sensor response functr¢np = timating the blur kernels for each channel individually. We
[rr( )re( )re( )ri( )" (> indicates matrix transpose)  do this by placing color lters in front of the camera to allow
can be modeled as the superposition of four narrow-bandpnly a narrow band of wavelengths. The channel crosstalk

response functiong( ) = [qr( ) de( ) as( ) ai ( )I” for our particular prototype camera mainly occurs between

through a4 4 channel crosstalk matri: RGB and infrared. Therefore, we use IR-only and RGB-
only Iters for this purpose.

r()=Ca(): (4) We perform PSF calibration for individual focus settings

independently. For each focus setting, we estimate blur ker

Because we expect the bands to be narrow, we can aspg|s at22 depths spanning abolit5 meters around the in-
sume that the blur kernels are constant within the band offycy s position. At each depth, we estimate non-parametric

Gn - We denote them & . S _ . blur kernels a®  13image positions for the RGB and the
Thus we carny“discretize” the ideal image into a hidden |R channel independently [5].
EE We then account for monochromatic and chromatic aber-

imageh = = where the four channels are

e rations as well as defocus [23]. We tthe RGB and infrared

blur kernels simultaneously, constraining all four chdane
_ _ to have the same monochromatic aberration parameters, and
hn= agn()I()d: () to differ only in the defocus parameter (Figure 1c-f).

z



infrared (1 e 4.1. Direct restoration with quadratic regularizers
red® — 1 L

green (G) We rst consider the following minimization problem
blue (B) —

@ min jj th2+x Wm jRmh tmj2 @ (14)

4000 — red (R) h m m m .
green (G) m

— blue (B)

— infrared (I)

\ The regularization function is of the form

X
| A (h)=" WniRmh tmj?: (15)
m

400 \?v(;(\)/elengtﬁ?? 1000 The weightswy,, circulant matriceR ,,, and vectord
(b) control the speci ¢ choice of. For example, if is a Gaus-

Figure 2: Crosstalk calibration results for our RGB-IR came  gjgn prior on image gradients them2 f 1; 2g, matricesR

(a) Manually speci ed approximate intervals of support for keac andR, implement the gradients, andr ,, t; andt, are

channel. The support for the R, G, B, and IR channf35€; 800], .
[400; 650], [0: 600], and[800; 1000] nm respectively(b) Decom- zero,I rgspt_ectlvely, and; andw, control the strength of
posed sensor spectral response functions. regularization. . . .
From Egs. (7)-(10) it follows thaE is a banded matrix
Characterizing channel crosstalk We assume the sensor Wwith dimensiondVH  4WH for an input image of width
responses( ) are known for a dense sampling of wave- W and heightH. Because of its large size, the optimiza-
length .* Our goal is to nd a decompositiod = C 1! tion in Eq. (14) cannot be solved directly in general. In the
of spectral responses into four independent narrow bands Speci ¢ case of spatially-invariant blur, however, the iept
We manually de ne a binary function, to indicate the ap- ~ mization can be expressed in the Fourier domain and solved
proximate support of each channel, wheré ) =1 if is for each frequency independently, in one step.
within the support of channel and ,( ) = 0 otherwise. Speci cally, let Ar;Ag;Ag ;A andf be the Fourier
We then minimize the amount of demultiplexed sensor transform of the hidden image componehis hg; hs ; h;
response outside the support. This is computed by solvingand input imagej respectlvely A key property of the
a least-squares problem for each rjv of D Fourier-domain imagfis that the elements of the four spa-

3000

2000

1000

sensor spectral response

0

X ) tial frequencies
min drr( ) st.dy[n]=1 (11)
do ()0 (Uv);(u+ v)i(uv+ )i(u+ v+ ) (16)
and then computing@ by matrix inversion depend only on the corresponding elements in the hidden
image for any(u;v). In particular, iff,, andfi,, collect
C= dr dg dg d g (12) the elements o'ﬁ‘andﬁ for those frequencies, we have
Figure 2 shows the crosstalk calibration results for our sen Tu\, = Fyuhw + 8w ; a7

sor. In our implementation, we multiply the crosstalk ma-
trix C with a manually-de ned diagonal matrix so that the Wwhere
hidden image is properly white balanced. Fow =8C DRy : (18)

) ] The matrixk ,, isal6 16 diagonal matrix that models
4. RGB-IR image restoration per-frequency modulation due to defocus blur. The m&rix
isad 16matrix that models subsampling in the frequency

In the absence of pixel saturation, we solve the follow- ) ) ; X )
domain as a mixture of frequencies of the hidden image:

ing optimization problem to estimate the hidden image

Eq. (6) 1 111111111111 1111
s=1 iiiiriiriaiiarin
minjj Fhj?+ (h) (13) 4 111111111111 111.1
" (19)
where is a regularization function of the hidden image ~ S€€ Appendix A for a derivation of Egs. (17)-(19).
The structure of matriF allows ef cient solution of We can now reformulate the optimization of Eq. (14) into
Eq. (13) under a Gaussian gradient prior as well as more~z - independentsubproblems, each of which involves only
general ones. We consider both cases below. the tuple of frequencies in Eq. (16) for soifig v):
1in practice we can obtain this from the Iter manufacturerttorough minji\uv ﬁuvﬁuvj2+ X ijIQmuv ﬁuv mqu (20)

additional calibration [16]. w m



whereRmy, is @16 16 diagonal matrix storing Fourier  ~Algorithm 1: Our nal restoration algorithm.
transform elemen_ts of the lters COfreSpondmg{Ql at th_e input :inputimage, image formation matri¥ , weightswi ; wa
four frequencies in Eq. (16), arfth,, stores the Fourier parameter =1=400, =40, =5

transform elements dof,, at these frequencies. See Ap- 1" initialization

pendix B for more details on how this optimization can be * ¢ ! o " o, o,
performed of ciently computeh  argming jj  Fhjc+ wijr xhjs+ wijr yhj

processh by bilateral Itering and inpainting saturated areas
In practice, the blur kernel varies due to optical aberra- 2 seth h,tx 0ty 0Oti 0
tions. Accordingly, we relax the defocus kernel's spatial ~ repeat

invariance by treating the input image as a collection of lo- ° Mast N~ . .
/I enforce inequality constraint

AW N P

cal patches, each of which is blurred by a different—but | i Pi+(1 P)max(Fh;imax)
known—-blur kernel. Il regularization penalty
7 tx min(max( tx + r xh; 1);1)
. . . i 8 ty  min(max(ty + r yh; 1);1)
4.2. Restoration with non-quadratic regularizers o | updatet; (t;+ (I diagAl) lA)h)

. . L . /I data fidelity
Since quadratic regularization tends to oversmooth im- ,, | updatez h  war Jtx  warjty  wot;

age discontinuities, we use a more general, robust regular-,; updateh  argminy jj Fhj2+ ijh  zj?

izer. Speci cally, we use a linear combination of an L1 Il extrapolation
norm on image gradients and a denoisng term [4] based on:2 extrapolateh  2h  hijast
the graph Laplacian matrix until convergence

output: estimated hidden imade

(h) = wa (it xhj g ir yhj2+wzh> (diagAL) A)h

(2= A
L1 on gradients Laplacian matrix 21) frequently and must be handlddiVe address this by turn-
where 1 denotes a vector of all ones and = ing EqQ. (13) into a constrained minimization problem:
Fjlag(A R; AG;A B;A)is a pixel af nity rnatnx.that_takes minjj Fhj2+ (h) 23)
into account pixel separation as well as intensity diffeen hij
in the hidden image: st i;Pj Pi (24)
o T .., ., 1. ., _Wherei is an input image containing saturated pixels, the
Anlxy]=exp ﬁd'St(X' y) ﬁjh[x] hyli® matrix P extracts unsaturated pixels, inequality constraints
(22) are applied element-wise, and the regularization function
Here and are spatial and intensity variance parameters, (h) is given by Eq. (21). The imagerepresents an ir-
respectively. radiance image that does not saturate, and becomes an ad-

To solve Eq. (13) we use the optimization approach of ditional unknown that must be estimated jointly with the
Heideet al. [4]. See Algorithm 1 for the exact sequence of hiddenimagé. _ N _
steps. This algorithm includes two steps beyond those in [4]  The inequality constraints ensure thas less tharj at
that handle pixel saturation and are discussed in Section 5.all saturated pixels, and is equajtotherwise. Formulating
The most computationally expensive steps in Algorithm pixel saturation as inequality constraints is essentialun
1 are Steps 2, 9 and 11. To update the slack variablies case because it allows us to updatesing ef cient Fourier-
Step9weset’= t;+ h, lteritwith a bilateral Iter [24] QOmain opera_tions (SecFion 4.1) _instead of solving a large
of spatial variance and intensity variance !, and nally linear system in the spaﬂa! doma|_n.
subtract the result fror®. We use the permutohedral lat- We extend the method in Section 4.2 to solve the above

tice [1] to implement the bilateral lter ef ciently. To com  Problemwith two steps in Algorithm 1:

pute the hidden image in Steps 2 and 11, we observe that
this involves a quadratic optimization that can be ef clgnt
solved with the method in Section 4.1.

Inpainting large saturated regions (Step 3Ye initial-

ize h by inpainting the unknown color and intensity
of saturated pixels. This helps Algorithm 1 converge
faster. More details are given below.

5. Handling pixel saturation

20f course, if it were possible to balance the dynamic rangR®B

; and IR bands by attenuating the stronger of RGB anctIR, (with RGB-
Because the RGB lters do not block IR, the RGB plxel or IR-blocking lters), we could reduce the chance of satiora This is

inten_SitieS include an IR contributipn that reducgs the dy- hard to do in practice because the relative magnitudes of R@HR vary
namic range of the image. In particular, saturation occursspatially, and from scene to scene.



Enforcing inequality constraint (Step 6)Ve initialize Inpainting color and intensity  For each pair of channels
j with the input imagea in Step 1; at each iteration (m;n) we then inpaint the missing,, using the algorithm

we then x h and update each pixel pfto minimize of [10]. Speci cally we solve the following optimization
jj  Fhj? within their feasible interval-fimay ; 1 ) for problem

saturated pixels anidfor unsaturated pixels. Thus we min jU mn mn J2 (30)

do not update unsaturated pixels, and saturated pixels "o _
are updated tonax(Fh ; i max ). subject to the constraint thah, are updated only at pixels

where! 2 [x] = 0. The matrixU in Eq. (30) is an af n-

Partial saturation model Partially-saturated pixels,e. ity matrix that takes into account pixel separation and colo
pixels whose intensity is missing in some channels but not gifference in the support regiom, :

others, are common in RGB-IR images. Although we can-

1 .
not completely infer the color of such pixels, the incomelet Ulx;y]l/ exp ﬁdlst(X; y)?
color information they carry can inform pixel af nity—and (31)
. . L . X 10 [X]' 0 [ ]
is thus useful for inpainting. To make the most of the avail- " mn X mn 1Y (ConlX] VD2
able color information, we represent pixel colors as 4Ddine mn 22
iNR,G,Band IR : . . .
ha [X]# where the af nity weights are normalized to ensute =
helx] _— - 1.
hs [i((] - 0 1 (25)

Finally, we solve forh,, at each pixel using Eq. (25) by

; i xing  and solving with least squares. To deal with pixels
where the matrix 3 that saturate in all channels, we simply treat them as if the
pose B L Sk IR channels were not saturated. Although this may underes-
) g o I:EIE ) 0 ( e sl ) é (26) timate pixel intensity, it produces visually pleasing fesu

0 cos( B ) sin( es ) 0

0 cos( al ) 0 sin( )

0 OGI cos( g1 )  sin( :: ) 6. Results
is controlled by six parametersc; rs; R ; 6B, Gl To test our method, we ran experiments with a prototype

and g, . Thisis inspired by the color line model [15]which RGB-IR camera.

has been used to handle saturation in RGB images. Speci -gayration handling Figure 3 shows restoration results be-
cally, given knowrh, andhn, mn can be estimated by fore and after running Step 3 of Algorithm 1. Our color

inpainting algorithm produces reasonable color variaition
hm[X] +

mn [X] = arctan hnx] + (27)  Dboth textureless and textured multi-color regions.
n

Restoration quality Figures 4-6 show restoration results
in the absence of defocus. These results show the notable
quality improvements achieved with Algorithm 1.

The constant biases the color of low-intensity pixels to-
ward gray. In practice, we rst detect missing entries in

, then inpaint them, and nally restofe by xing  and
using Eq. (25). Ground-truth comparisons Figure 7 and 8 show ground-

truth comparisons between actual and estimated RGB and
IR channels. To capture the “ground-truth” channels we
used IR- and RGB-blocking Iters respectively. These
Iters guaranteed that the captured images were free of
crosstalk but did not prevent blur due to aberrations.

Support region of saturated pixels We compute a binary
map! ,[X] to indicate which pixels in channalof the hid-
den image have saturated pixels in their neighborhood:

1 if maxys ,cmn 0:51[Y] <imax; (28)

0 otherwise. Computation time Matlab implementation of the direct
method (Section 4.1) takes about 1 second to process a
672 760pixel patch on a desktop computer. In compatri-
son, a mathematically equivalent image-domain implemen-
tation takes about a minute to nish under the same settings.
Full restoration is still far slower because of its iterativa-
ture and the use of bilateral ltering. It takes abdu4tsec-
onds per iteration, with abod®0 of those seconds spent on
1O X1 = ! mX]! nIX] (29) bilateral ltering, andt_ypical images requiring 20 iteil_(ms.
Removal of the denoising term from step 9 results in an op-
sincehny, [x] and h,[x] must both be known to compute eration that is three times faster, at the expense of noisier
mn [X]. results.

Lnlx] =

Here subscripm of ¢, denotes the lter type at pixey
in the color lter array. The neighborhood, corresponds
to pixels at a distance less than the radius of the blur ker-
nel. So the map marks pixels that carry signi cant color
information about the saturated region.

Then we compute the support regiofy,, for m, using



Step 2 result Step 3 result Step 3 result

Step 2 result Step 3 result

Figure 3: We compare results before and after color inpagntthe estimate of hidden imageby Step 2 of Algorithm 1 has errors in

saturated regions. Step 3 corrects the color and intenfsityah regions. We only show RGB bands since no IR saturationrs in these
examples.

input sequential restoration direct restoration

full restoration

Figure 4: Restoration result$nput: We turn on camera autofocus to minimize defocus blur. Wealize the image mosaic with two
sub-images: the three channels of the RGB image store pireler the R, G, B color lters, and the IR image stores pixeider the IR
Iter. We compare three method§equential restoration rst performs demosaicing by spline interpolation, andrtherforms channel
separation by inverting Eq.(4). Note the aliasing artam eyelashesDirect restoration corresponds to Steps 1-3 of Algorithm 1. It
produces over-smoothed resullll restoration corresponds to full execution of Algorithm 1. The nal resobntains clear skin and iris
details that are invisible in the input, and does not suffemf noise or artifacts. Note that since the input RGB costéithcontributions
as well, it is much brighter than the equivalent RGB-only gms. To better visualize those, their intensities are dcake
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input sequential restoration

RGB 4 IR 1.5 RGBon} 4 Ron}
.. ’

full restoration

direct restoration

Figure 5: Restoration results for an RGB-IR image with a lotensity IR channellnput: We turn on camera autofocus, so blur is due
to aberrations but not defocuResults: The sequential and direct methods produce noisy IR estim@er full restoration, on the other

hand, produces clean and sharp results.

input sequential restoration

RGB- on! - IR- on| 4’ RGB- on! - IR- on| 4 RGB- on! IR- on|
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A. Derivation of Egs. (17)(19) B. Ef cient solution of Eq. (20)

Let T be the matrix implementing the Fourier transform of For each frequency tupléu;v), the quadratic optimization
a single-channel image of widi¥ and heightH , DenoteT = problem in Eq. (20) has a closed-form solution
diag(T; T;T;T) the matrix implementing the Fourier transform N
of an RGB-IR image in each band. Aw = BLEBw +Ruw  Zw (38)
We rstturn Eqg. (6) into a Fourier-domain formulation by mul
tiplying both sides of Eq. (6) witfi noting thatT~ T = | where the diagonal matrik ., and the vectoe,, are de ned as
T:Tj = TFh + Te qu :X Wmﬁ>muv Qmuv ) (39)
(32)
=(TFT )Th+Te=Fh + &;
zw = FLw + Wi R oy Sy (40)
where], A andé@ denote the Fourier transform of (unsaturated) m

input, hidden and noise image, respectively. The métrirodels

! R : . Our key idea is to use to the Woodbury matrix identity [17]
image formation in the Fourier domain

'eZv Fuw + Ruw ' = qul qulﬁiv qulﬁuv qul (41)

E=TFT: (33)
to simplify the inverse o6 16 matricest ), Fu + Ry to the
By plugging Eg. (7) into Eq. (33), we have inverse of4 4 matrices
F=Ts(C DKT’ (34) Qu = 1+ Fuw R FY: (42)
=(TST)T(C DT> )NTKT?): The matriceQu, are small enough to allow explicit solution of

its inverse, and to implement the inverse with element-wizer-
First, from Eq. (10) the Fourier-domain subsampling become  ations.
Thus we can compute Eq. (38) as
TST” = > > > > (35
TORTT TSelm TSeT TSI 2 B9 g Rz RuE2)Qw FwRiiza): (4)
The matricesTS, T~ are circulant sinceS, are diagonal ma-
trices. Each row offS, T~ is a shifted version of the Fourier
transform of the diagonal @&, , which marks the pixel locations
under then-th color Iter. For the particula? 2 mosaic pat-
tern we discuss in this paper, the row associated with the fre Qu = I +
quency(u; V) is non-zero only in columns corresponding to fre-
quencies afu;v), (u+ ;v), (u;v+ )and(u+ ;v + ),
as in Eq. (16). The values of these entries gre 5; ;3 for

Algorithm 2 shows the exact steps to compute Eq. (43) for all
(u; v) simultaneously. Speci cally, alQ,, can be computed at
the same time by linearly combinirig basis matrices

quw Il : (44)
[
The frequency-speci c coef cients are

T>SeT, 51 L LliorT7SeT, 5441 for T”SeT, qu = diag(Ruw Ru'Ru) (45)
and; ;% 3forT”S T, respectively.

Second, from Eg. (9), the Fourier-domain crosstalk causes s while the basis matrices are shared by all frequencies

perposition among different bands at each frequency

im;n]= [m;I1] [n;1] (46)
T(C NDT>=Cc (IT”)=C I: 36 where
( ) ( ) (26) =8C I): (47)
Third, from Eg. (8), the Fourier-domain defocus matrix is This follows from substituting®,y = R v into Eq. (42).
TKT” =diag(TK g T TK ¢ T ;TK g T7;TK | T7); - -
9(TK & ¢ ? ' %37) Algorithm 2: Computing Eq. (43) for al{u; v)
where each matriXX , is circulant when the blur kernels are input : input image frequencids,, , camera paramete€s, § and
spatially-invariant. ConsequenflyK T~ is a diagonal matrix that kuy = diag( R uv ), regularization parameters
stores the Fourier transform of the blur kernels in the fands. Fmuv = diag( Rmu ), fmuv_andwm

This is simply the convolution theoreme., image-domain con- (* " and "=" denote elementwise multiplication and division)

. . . . recompute matrices and by Eqs. (46),(47
volution corresponds to Fourier-domain modulation. ; FUV P W oy rmuvy as. (46).(47)
The above shows that a row f corresponding to the fre- o A
. ) . 3 Zuv (Kuy  Juv)+ m Wm (rmuv tmuv )
quency(u; V) is non-zero only in the columns corresponding t0 4 computequy ~ kuw kuv =ruv andQuy by Eq. (44)
(u;v),(u+ ;v),(u;v+ )and(u+ ;v + ), ie, Eq. (16). 5 solvexyy for all linear systemsQuy Xuv = (Zuy  Kuv =ruv)
Consequently, we can decompose Eq. (33) #f&- linear sys- 6 computefiyy  Zuy =ruy (K Xuv =fuy

tems, each relevant to a particular, v), by extracting rows and output: estimated hidden image frequencfs,
columns corresponding to Eqg. (16). This leads to Eq. (17) and
Eq. (18), with§ de ned by Eq. (19).




