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1 Deriving the Lens Model

1.1 Deriving Eq. (2)

Assume the cone of rays exiting an idealized point light source forms a focused
image at (xf , 0, f). In this section, we derive the paraxial intersection of one
such ray (s, t, 0) with the front lens, knowing that it intersects the back lens at
(u, v, 0), as shown in Fig. 11.

After refracted by the front lens, the cone of light exiting the point light
source, are focused at a virtual “object point”. A thin lens does not bend a ray
passing through its center, the ray path from this point to (0, 0, 0) to (xf , 0, f)
is straight. Therefore we denote this virtual “object point” as (mBxf , 0,mBf)
by similar triangles.

Now this gives us an expression of (s, t,−w), based on the fact that it is
aligned on the same line with (u, v, 0) and (mBxf , 0,mBf).(

s
t

)
=

(
u
v

)
+
−w
mBf

[(
mBxf

0

)
−
(
u
v

)]
=

[
1 +

w

mBf

](
u
v

)
+
−w
f

(
xf
0

)
(14)
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Fig. 11: Derivation of Eq. (2).
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Denote

mP
.
= 1 +

w

mBf
(15)

s0
.
=
−w
f
xf (16)

Eq. (14) becomes (
s
t

)
= mP

(
u
v

)
+

(
s0

0

)
(17)

Because the virtual object (mBxf , 0,mBf) is imaged by the back lens at
(xf , 0, f), by the thin lens law

1

f
+

1

−mBf
=

1

F
(18)

Substituting Eq. (18) into Eq. (15), we have

mP
.
= 1 +

w

mBf
= w(1/w +

1

mBf
) = w(1/w + 1/f − 1/F ) (19)

Thus, Eqs. (17), (19) and (16) give Eq. (2) in the paper:(
s
t

)
= mP

(
u
v

)
+

(
s0

0

)
, where mP = w

(
1

w
+

1

f
− 1

F

)
and s0 =

−xfw
f

1.2 Deriving Eq. (4) and Eq. (5)

In this section we derive the expression for the ray displacement on the image
plane due to Seidel aberrations as a function of back lens intersection (u, v)
and the expressions for the Seidel coefficients as a function of focal distance
f and lens parameters. As shown in Fig. 12, this is by decomposing the ray
displacement into two parts: the displacement due to the aberration of the front
lens (ẋ, ẏ)− (x̄, ȳ), and the displacement due to the aberration of the back lens
(x′, y′)− (ẋ, ẏ).

First we locate (x̄, ȳ), the sensor intersection of the refracted ray under parax-
ial approximation. Since (u, v, 0), (x̄, ȳ, d) and (xf , 0, f) are aligned on the same
line (

x̄
ȳ

)
=

(
1− d

f

)(
u
v

)
+
d

f

(
xf
0

)
(20)

Consider an virtual point light source at (s, t,−w). Among rays exiting this
light source, the ray passing through (0, 0, 0) is not bent, therefore we can assume
the image of this point light source to be at (m′Bs,m

′
Bt,−m′Bw).

By the thin lens law
1

w
+

1

−m′Bw
=

1

F
(21)
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Fig. 12: Derivation of Eq. (4) and Eq. (5)

Now consider another paraxial ray path (s, t,−w)→ (u′, v′, 0)→ (m′Bs,m
′
Bt,−m′Bw).

Assume this ray intersects the back lens at (ẋ, ẏ, d). By similar triangles(
ẋ
ẏ

)
−
(
x̄
ȳ

)
= (1− d

−m′Bw
)

[(
u′

v′

)
−
(
u
v

)]
=

(
1 + d

F − w
Fw

)[(
u′

v′

)
−
(
u
v

)]
(22)

Because the angular aberrations are cubic polynomial of ray height,(
u′

v′

)
−
(
u
v

)
= w · cF (s2 + t2)

(
s
t

)
(23)

(
x′

y′

)
−
(
ẋ
ẏ

)
= d · cB(u′2 + v′2)

(
u′

v′

)
≈ d · cB(u2 + v2)

(
u
v

)
(24)

Therefore, the overall lateral ray displacement on the image plane is(
∆x(u, v)
∆y(u, v)

)
.
=

(
x′

y′

)
−
(
x
y

)
=
[(x′

y′

)
−
(
ẋ
ẏ

)]
+
[( ẋ

ẏ

)
−
(
x
y

)]
= d · cB(u2 + v2)

(
u
v

)
+ (w + d

F − w
F

) · cF (s2 + t2)

(
s
t

) (25)

From Eq. (17),

(s2 + t2)

(
s
t

)
=
(

(mPu+ s0)2 + (mP v)2
)(

mPu+ s0

mP v

)
= m3

P (u2 + v2)

(
u
v

)
+m2

P s0

(
3u2 + v2

2uv

)
+mP s

2
0

(
3u
v

)
+ s3

0

(
1
0

)
(26)
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Substituting Eq. (26) into Eq. (25), we arrive at Eq. (4), the expression for
the lateral ray displacement on the image plane:(

∆x(u, v)
∆y(u, v)

)
.
=

(
x′

y′

)
−
(
x̄
ȳ

)
= α1(u2 + v2)

(
u
v

)
︸ ︷︷ ︸

spherical

+α2xf

(
3u2 + v2

2uv

)
︸ ︷︷ ︸

coma

+ α3x
2
f

(
u
0

)
︸ ︷︷ ︸
astigmatism

+ α4x
2
f

(
u
v

)
︸ ︷︷ ︸
field curvature

+ α5x
3
f

(
1
0

)
︸ ︷︷ ︸

field distortion

and Eq. (5), the expression of Seidel coefficients as a function of lens parameters
and focus setting f :

α1 = dcB + cF (w + d
F − w
F

)m3
P , α2 = −cF (w + d

F − w
F

)m2
P (w/f)

α3 = 2cF (w + d
F − w
F

)mP (w/f)2, α4 = cF (w + d
F − w
F

)mP (w/f)2

α5 = −cF (w + d
F − w
F

)(w/f)3

2 Deriving Eq. (14)

By the convolution theorem, the formation of the blurry path of depth λ can be
written in the Fourier domain:

F [ϕj ](µ, ν) = F [kjλ](µ, ν)F [ψ](µ, ν) + F [n](µ, ν),∀µ, ν, j (27)

In the following we denote Φj and Ψ as the 1D vector forms of F [ϕj ] and

F [ψ], and Kj
λ as a diagonal matrix with the non-zero entires being pixels in

F [kjλ].
Since n is random Gaussian noise of variance η2, the probability of Φj con-

ditioned on Ψ and λ is

Pr(Φj ;Ψ, λ) ∼ N
(
Φj |Kj

dΨ, η
2IP

)
(28)

with ID being the D ×D unit matrix. Here P is the number of pixels in ψ.
Assuming that Ψ is a Gaussian of zero mean and isotropic variance S,

Pr(Ψ) ∼ N (0, SIP ) (29)

From Eq. (28) and (29), the frequencies in the observed images

Φ =
[
Φ1, · · · , Φj , · · · , ΦN

]
are also Gaussian:

Pr(Φ;λ) = N (0, η2INP + SKT
λKλ) (30)
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where Kλ is a matrix of P × NP elements corresponding to the horizontal
concatenate of vectorized OTFs under the depth hypothesis λ

Kλ =
[
K1
λ, · · · ,K

j
λ, · · · ,K

N
λ

]
(31)

In the following we define K1 and K2 as the Kλ for depth hypothesis λ1 and
λ2. Now consider the distribution of Φ under these two depth hypothesis, their
variance are

Σ1 = η2INP + SKT
1 K1, Σ2 = η2INP + SKT

2 K2 (32)

The Kullback-Leibler(KL) divergence between these two Gaussian distribu-
tions are therefore

KL(λ1, λ2) =

∫
Pr(Φ;λ1)

(
log Pr(Φ;λ1)− log Pr(Φ;λ2)

)
λΦ

=
1

2

(
log |Σ−1

1 Σ2|+ tr(Σ−1
1 Σ2)−NP

) (33)

Now, we compute the determinant and trace of Σ−1
1 Σ2. By the matrix de-

terminant formula

|Σ1| = η2NP · |IP + η−2SK1K
T
1 | (34)

|Σ2| = η2NP · |IP + η−2SK2K
T
2 | (35)

From Eq. (31),

KλK
T
λ = diag(

∑
j

|F [kjλ]|2) (36)

therefore

|Σ1| =
∏
µ,ν

(η2 +
∑
j

|F [kj1](µ, ν)|2) (37)

|Σ2| =
∏
µ,ν

(η2 +
∑
j

|F [kj2](µ, ν)|2) (38)

The determinant of Σ−1
1 Σ2 is thus

|Σ−1
1 Σ2| =

|Σ2|
|Σ1|

=
∏
µ,ν

(
η2 + S

∑
j |F [kj2](µ, ν)|2

η2 + S
∑
j |F [kj1](µ, ν)|2

)
(39)

From the Woodbury matrix identity,

Σ−1
1 =

1

η2

(
INP −

S

η2
KT

1 (IP +
S

η2
K1K

T
1 )−1K1

)
(40)
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Therefore,

Σ−1
1 Σ2 =

(
INP −

S

η2
KT

1 (IP +
S

η2
K1K

T
1 )−1K1

)(
INP +

S

η2
KT

2 K2

)
= INP +

S

η2
KT

2 K2 −
S

η2
KT

1 (IP +
S

η2
K1K

T
1 )−1K1

−
(
S

η2

)2

KT
1 (IP +

S

η2
K1K

T
1 )−1K1K

T
2 K2

(41)

From Eq. (44),

tr(
S

η2
KT

2 K2) =
S

η2

∑
µ,ν

∑
j

|F [kj2](µ, ν)|2 (42)

tr(
S

η2
KT

1 (IP +
S

η2
K1K

T
1 )−1K1) =

∑
µ,ν

∑
j

|F [kj1](µ, ν)|2
η2

S + |F [kj1](µ, ν)|2
(43)

Since
K1K

T
2 = diag(

∑
j

F [kj1]F [kj2]) (44)

we have

tr

((
S

η2

)2

KT
1 (INP +

S

η2
K1K

T
1 )−1K1K

T
2 K2

)

=tr

((
S

η2

)2

KT
1 diag

 ∑
j F [kj1]F [kj2]

1 + S
η2

∑
j |F [kjλ]|2

K2

)

=
S

η2

∑
µ,ν

|
∑
j F [kj1](µ, ν)F [kj2](µ, ν)|2∑
j(
η2

S + |F [kj1](µ, ν)|2)

(45)

The trace of Σ−1
1 Σ2 is

tr
(
Σ−1

1 Σ2

)
= NP +

S

η2

∑
µ,ν,j

|F [kj2](µ, ν)|2 −
∑
µ,ν,j

S|F [kj1]|2(µ, ν)

η2 + S|F [kj1]|2(µ, ν)

− S

η2

∑
µ,ν

|
∑
j |F [kj1](µ, ν)F [kj2](µ, ν)|2∑
j(
η2

S + |F [kj1](µ, ν)|2)

(46)

Substituting Eq. (39) and Eq. (46) into Eq. (33) gives Eq. (14)

KL(λ1, λ2) =
1

2

∑
µ,ν

[
log

η
2 + S

∑
j

|F [kj2]||2

η2 + S
∑
j

|F [kj1]||2

+
S

η2

∑
j

|F [kj2]|2

−
∑
j

S|F [kj1]|2

η2 + S|F [kj1]|2
− S

η2

S|
∑
j F [kj1]F [kj2]|2∑

j η
2 + S|F [kj1]|2

]
(µ, ν) .


