Utilizing Optical Aberrations for Extended-Depth-of-Field Panoramas - Supplementary Material

Huixuan Tang and Kiriakos N. Kutulakos
Dept. of Computer Science, University of Toronto
\{hxtang,kyros\}@cs.toronto.edu

1 Deriving the Lens Model

1.1 Deriving Eq. (2)

Assume the cone of rays exiting an idealized point light source forms a focused image at $\left(x_{f}, 0, f\right)$. In this section, we derive the paraxial intersection of one such ray $(s, t, 0)$ with the front lens, knowing that it intersects the back lens at $(u, v, 0)$, as shown in Fig. 11.

After refracted by the front lens, the cone of light exiting the point light source, are focused at a virtual "object point". A thin lens does not bend a ray passing through its center, the ray path from this point to $(0,0,0)$ to $\left(x_{f}, 0, f\right)$ is straight. Therefore we denote this virtual "object point" as ($m_{B} x_{f}, 0, m_{B} f$) by similar triangles.

Now this gives us an expression of $(s, t,-w)$, based on the fact that it is aligned on the same line with $(u, v, 0)$ and $\left(m_{B} x_{f}, 0, m_{B} f\right)$.

$$
\begin{equation*}
\binom{s}{t}=\binom{u}{v}+\frac{-w}{m_{B} f}\left[\binom{m_{B} x_{f}}{0}-\binom{u}{v}\right]=\left[1+\frac{w}{m_{B} f}\right]\binom{u}{v}+\frac{-w}{f}\binom{x_{f}}{0} \tag{14}
\end{equation*}
$$

ニ = paraxial prediction of light paths
Fig. 11: Derivation of Eq. (2).

Denote

$$
\begin{align*}
m_{P} & \doteq 1+\frac{w}{m_{B} f} \tag{15}\\
& s_{0} \doteq \frac{-w}{f} x_{f} \tag{16}
\end{align*}
$$

Eq. (14) becomes

$$
\begin{equation*}
\binom{s}{t}=m_{P}\binom{u}{v}+\binom{s_{0}}{0} \tag{17}
\end{equation*}
$$

Because the virtual object $\left(m_{B} x_{f}, 0, m_{B} f\right)$ is imaged by the back lens at $\left(x_{f}, 0, f\right)$, by the thin lens law

$$
\begin{equation*}
\frac{1}{f}+\frac{1}{-m_{B} f}=\frac{1}{F} \tag{18}
\end{equation*}
$$

Substituting Eq. (18) into Eq. (15), we have

$$
\begin{equation*}
m_{P} \doteq 1+\frac{w}{m_{B} f}=w\left(1 / w+\frac{1}{m_{B} f}\right)=w(1 / w+1 / f-1 / F) \tag{19}
\end{equation*}
$$

Thus, Eqs. (17), (19) and (16) give Eq. (2) in the paper:

$$
\binom{s}{t}=m_{P}\binom{u}{v}+\binom{s_{0}}{0}, \text { where } m_{P}=w\left(\frac{1}{w}+\frac{1}{f}-\frac{1}{F}\right) \text { and } s_{0}=\frac{-x_{f} w}{f}
$$

1.2 Deriving Eq. (4) and Eq. (5)

In this section we derive the expression for the ray displacement on the image plane due to Seidel aberrations as a function of back lens intersection (u, v) and the expressions for the Seidel coefficients as a function of focal distance f and lens parameters. As shown in Fig. 12, this is by decomposing the ray displacement into two parts: the displacement due to the aberration of the front lens $(\dot{x}, \dot{y})-(\bar{x}, \bar{y})$, and the displacement due to the aberration of the back lens $\left(x^{\prime}, y^{\prime}\right)-(\dot{x}, \dot{y})$.

First we locate (\bar{x}, \bar{y}), the sensor intersection of the refracted ray under paraxial approximation. Since $(u, v, 0),(\bar{x}, \bar{y}, d)$ and $\left(x_{f}, 0, f\right)$ are aligned on the same line

$$
\begin{equation*}
\binom{\bar{x}}{\bar{y}}=\left(1-\frac{d}{f}\right)\binom{u}{v}+\frac{d}{f}\binom{x_{f}}{0} \tag{20}
\end{equation*}
$$

Consider an virtual point light source at $(s, t,-w)$. Among rays exiting this light source, the ray passing through $(0,0,0)$ is not bent, therefore we can assume the image of this point light source to be at $\left(m_{B}^{\prime} s, m_{B}^{\prime} t,-m_{B}^{\prime} w\right)$.

By the thin lens law

$$
\begin{equation*}
\frac{1}{w}+\frac{1}{-m_{B}^{\prime} w}=\frac{1}{F} \tag{21}
\end{equation*}
$$

Fig. 12: Derivation of Eq. (4) and Eq. (5)

Now consider another paraxial ray path $(s, t,-w) \rightarrow\left(u^{\prime}, v^{\prime}, 0\right) \rightarrow\left(m_{B}^{\prime} s, m_{B}^{\prime} t,-m_{B}^{\prime} w\right)$. Assume this ray intersects the back lens at (\dot{x}, \dot{y}, d). By similar triangles

$$
\begin{equation*}
\binom{\dot{x}}{\dot{y}}-\binom{\bar{x}}{\bar{y}}=\left(1-\frac{d}{-m_{B}^{\prime} w}\right)\left[\binom{u^{\prime}}{v^{\prime}}-\binom{u}{v}\right]=\left(1+d \frac{F-w}{F w}\right)\left[\binom{u^{\prime}}{v^{\prime}}-\binom{u}{v}\right] \tag{22}
\end{equation*}
$$

Because the angular aberrations are cubic polynomial of ray height,

$$
\begin{gather*}
\binom{u^{\prime}}{v^{\prime}}-\binom{u}{v}=w \cdot c_{F}\left(s^{2}+t^{2}\right)\binom{s}{t} \tag{23}\\
\binom{x^{\prime}}{y^{\prime}}-\binom{\dot{x}}{\dot{y}}=d \cdot c_{B}\left(u^{\prime 2}+v^{\prime 2}\right)\binom{u^{\prime}}{v^{\prime}} \approx d \cdot c_{B}\left(u^{2}+v^{2}\right)\binom{u}{v} \tag{24}
\end{gather*}
$$

Therefore, the overall lateral ray displacement on the image plane is

$$
\begin{align*}
\binom{\Delta x(u, v)}{\Delta y(u, v)} & \doteq\binom{x^{\prime}}{y^{\prime}}-\binom{x}{y}=\left[\binom{x^{\prime}}{y^{\prime}}-\binom{\dot{x}}{\dot{y}}\right]+\left[\binom{\dot{x}}{\dot{y}}-\binom{x}{y}\right] \tag{25}\\
& =d \cdot c_{B}\left(u^{2}+v^{2}\right)\binom{u}{v}+\left(w+d \frac{F-w}{F}\right) \cdot c_{F}\left(s^{2}+t^{2}\right)\binom{s}{t}
\end{align*}
$$

From Eq. (17),

$$
\begin{align*}
\left(s^{2}+t^{2}\right)\binom{s}{t} & =\left(\left(m_{P} u+s_{0}\right)^{2}+\left(m_{P} v\right)^{2}\right)\binom{m_{P} u+s_{0}}{m_{P} v} \\
& =m_{P}^{3}\left(u^{2}+v^{2}\right)\binom{u}{v}+m_{P}^{2} s_{0}\binom{3 u^{2}+v^{2}}{2 u v}+m_{P} s_{0}^{2}\binom{3 u}{v}+s_{0}^{3}\binom{1}{0} \tag{26}
\end{align*}
$$

Substituting Eq. (26) into Eq. (25), we arrive at Eq. (4), the expression for the lateral ray displacement on the image plane:

$$
\begin{aligned}
& \binom{\Delta x(u, v)}{\Delta y(u, v)} \doteq\binom{x^{\prime}}{y^{\prime}}-\binom{\bar{x}}{\bar{y}}=\underbrace{\alpha_{1}\left(u^{2}+v^{2}\right)\binom{u}{v}}_{\text {spherical }}+\underbrace{\alpha_{2} x_{f}\binom{3 u^{2}+v^{2}}{2 u v}}_{\text {coma }} \\
& +\underbrace{\alpha_{3} x_{f}^{2}\binom{u}{0}}_{\text {astigmatism }}+\underbrace{\alpha_{4} x_{f}^{2}\binom{u}{v}}_{\text {field curvature }}+\underbrace{\alpha_{5} x_{f}^{3}\binom{1}{0}}_{\text {field distortion }}
\end{aligned}
$$

and Eq. (5), the expression of Seidel coefficients as a function of lens parameters and focus setting f :

$$
\begin{array}{ll}
\alpha_{1}=d c_{B}+c_{F}\left(w+d \frac{F-w}{F}\right) m_{P}^{3}, \quad \alpha_{2}=-c_{F}\left(w+d \frac{F-w}{F}\right) m_{P}^{2}(w / f) \\
\alpha_{3}=2 c_{F}\left(w+d \frac{F-w}{F}\right) m_{P}(w / f)^{2}, & \alpha_{4}=c_{F}\left(w+d \frac{F-w}{F}\right) m_{P}(w / f)^{2} \\
\alpha_{5}=-c_{F}\left(w+d \frac{F-w}{F}\right)(w / f)^{3}
\end{array}
$$

2 Deriving Eq. (14)

By the convolution theorem, the formation of the blurry path of depth λ can be written in the Fourier domain:

$$
\begin{equation*}
\mathcal{F}\left[\varphi_{j}\right](\mu, \nu)=\mathcal{F}\left[k_{\lambda}^{j}\right](\mu, \nu) \mathcal{F}[\psi](\mu, \nu)+\mathcal{F}[n](\mu, \nu), \forall \mu, \nu, j \tag{27}
\end{equation*}
$$

In the following we denote Φ_{j} and Ψ as the 1 D vector forms of $\mathcal{F}\left[\varphi_{j}\right]$ and $\mathcal{F}[\psi]$, and K_{λ}^{j} as a diagonal matrix with the non-zero entires being pixels in $\mathcal{F}\left[k_{\lambda}^{j}\right]$.

Since n is random Gaussian noise of variance η^{2}, the probability of Φ_{j} conditioned on Ψ and λ is

$$
\begin{equation*}
\operatorname{Pr}\left(\Phi_{j} ; \Psi, \lambda\right) \sim \mathcal{N}\left(\Phi_{j} \mid K_{d}^{j} \Psi, \eta^{2} I_{P}\right) \tag{28}
\end{equation*}
$$

with I_{D} being the $D \times D$ unit matrix. Here P is the number of pixels in ψ.
Assuming that Ψ is a Gaussian of zero mean and isotropic variance S,

$$
\begin{equation*}
\operatorname{Pr}(\Psi) \sim \mathcal{N}\left(0, S I_{P}\right) \tag{29}
\end{equation*}
$$

From Eq. (28) and (29), the frequencies in the observed images

$$
\Phi=\left[\Phi_{1}, \cdots, \Phi_{j}, \cdots, \Phi_{N}\right]
$$

are also Gaussian:

$$
\begin{equation*}
\operatorname{Pr}(\Phi ; \lambda)=\mathcal{N}\left(0, \eta^{2} I_{N P}+S K_{\lambda}^{T} \overline{K_{\lambda}}\right) \tag{30}
\end{equation*}
$$

where K_{λ} is a matrix of $P \times N P$ elements corresponding to the horizontal concatenate of vectorized OTFs under the depth hypothesis λ

$$
\begin{equation*}
K_{\lambda}=\left[K_{\lambda}^{1}, \cdots, K_{\lambda}^{j}, \cdots, K_{\lambda}^{N}\right] \tag{31}
\end{equation*}
$$

In the following we define K_{1} and K_{2} as the K_{λ} for depth hypothesis λ_{1} and λ_{2}. Now consider the distribution of Φ under these two depth hypothesis, their variance are

$$
\begin{equation*}
\Sigma_{1}=\eta^{2} I_{N P}+S K_{1}^{T} \overline{K_{1}}, \quad \Sigma_{2}=\eta^{2} I_{N P}+S K_{2}^{T} \overline{K_{2}} \tag{32}
\end{equation*}
$$

The Kullback-Leibler(KL) divergence between these two Gaussian distributions are therefore

$$
\begin{align*}
\mathrm{KL}\left(\lambda_{1}, \lambda_{2}\right)= & \int \operatorname{Pr}\left(\Phi ; \lambda_{1}\right)\left(\log \operatorname{Pr}\left(\Phi ; \lambda_{1}\right)-\log \operatorname{Pr}\left(\Phi ; \lambda_{2}\right)\right) \lambda \Phi \tag{33}\\
& =\frac{1}{2}\left(\log \left|\Sigma_{1}^{-1} \Sigma_{2}\right|+\operatorname{tr}\left(\Sigma_{1}^{-1} \Sigma_{2}\right)-N P\right)
\end{align*}
$$

Now, we compute the determinant and trace of $\Sigma_{1}^{-1} \Sigma_{2}$. By the matrix determinant formula

$$
\begin{align*}
& \left|\Sigma_{1}\right|=\eta^{2 N P} \cdot\left|I_{P}+\eta^{-2} S \overline{K_{1}} K_{1}^{T}\right| \tag{34}\\
& \left|\Sigma_{2}\right|=\eta^{2 N P} \cdot\left|I_{P}+\eta^{-2} S \overline{K_{2}} K_{2}^{T}\right| \tag{35}
\end{align*}
$$

From Eq. (31),

$$
\begin{equation*}
\overline{K_{\lambda}} K_{\lambda}^{T}=\operatorname{diag}\left(\sum_{j}\left|\mathcal{F}\left[k_{\lambda}^{j}\right]\right|^{2}\right) \tag{36}
\end{equation*}
$$

therefore

$$
\begin{align*}
& \left|\Sigma_{1}\right|=\prod_{\mu, \nu}\left(\eta^{2}+\sum_{j}\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}\right) \tag{37}\\
& \left|\Sigma_{2}\right|=\prod_{\mu, \nu}\left(\eta^{2}+\sum_{j}\left|\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2}\right) \tag{38}
\end{align*}
$$

The determinant of $\Sigma_{1}^{-1} \Sigma_{2}$ is thus

$$
\begin{equation*}
\left|\Sigma_{1}^{-1} \Sigma_{2}\right|=\frac{\left|\Sigma_{2}\right|}{\left|\Sigma_{1}\right|}=\prod_{\mu, \nu}\left(\frac{\eta^{2}+S \sum_{j}\left|\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2}}{\eta^{2}+S \sum_{j}\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}}\right) \tag{39}
\end{equation*}
$$

From the Woodbury matrix identity,

$$
\begin{equation*}
\Sigma_{1}^{-1}=\frac{1}{\eta^{2}}\left(I_{N P}-\frac{S}{\eta^{2}} K_{1}^{T}\left(I_{P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}}\right) \tag{40}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\Sigma_{1}^{-1} \Sigma_{2} & =\left(I_{N P}-\frac{S}{\eta^{2}} K_{1}^{T}\left(I_{P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}}\right)\left(I_{N P}+\frac{S}{\eta^{2}} K_{2}^{T} \overline{K_{2}}\right) \\
& =I_{N P}+\frac{S}{\eta^{2}} K_{2}^{T} \overline{K_{2}}-\frac{S}{\eta^{2}} K_{1}^{T}\left(I_{P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}} \tag{41}\\
& -\left(\frac{S}{\eta^{2}}\right)^{2} K_{1}^{T}\left(I_{P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}} K_{2}^{T} \overline{K_{2}}
\end{align*}
$$

From Eq. (44),

$$
\begin{array}{r}
\operatorname{tr}\left(\frac{S}{\eta^{2}} K_{2}^{T} \overline{K_{2}}\right)=\frac{S}{\eta^{2}} \sum_{\mu, \nu} \sum_{j}\left|\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2} \\
\operatorname{tr}\left(\frac{S}{\eta^{2}} K_{1}^{T}\left(I_{P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}}\right)=\sum_{\mu, \nu} \sum_{j} \frac{\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}}{\frac{\eta^{2}}{S}+\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}} \tag{43}
\end{array}
$$

Since

$$
\begin{equation*}
\overline{K_{1}} K_{2}^{T}=\operatorname{diag}\left(\sum_{j} \overline{\mathcal{F}\left[k_{1}^{j}\right]} \mathcal{F}\left[k_{2}^{j}\right]\right) \tag{44}
\end{equation*}
$$

we have

$$
\begin{align*}
& \operatorname{tr}\left(\left(\frac{S}{\eta^{2}}\right)^{2} K_{1}^{T}\left(I_{N P}+\frac{S}{\eta^{2}} \overline{K_{1}} K_{1}^{T}\right)^{-1} \overline{K_{1}} K_{2}^{T} \overline{K_{2}}\right) \\
= & \operatorname{tr}\left(\left(\frac{S}{\eta^{2}}\right)^{2} K_{1}^{T} \operatorname{diag}\left(\frac{\sum_{j} \overline{\mathcal{F}\left[k_{1}^{j}\right]} \mathcal{F}\left[k_{2}^{j}\right]}{1+\frac{S}{\eta^{2}} \sum_{j}\left|\mathcal{F}\left[k_{\lambda}^{j}\right]\right|^{2}}\right) \overline{K_{2}}\right) \tag{45}\\
= & \frac{S}{\eta^{2}} \sum_{\mu, \nu} \frac{\mid \sum_{j} \mathcal{F}\left[k_{1}^{j}\right](\mu, \nu) \overline{\left.\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2}}}{\sum_{j}\left(\frac{\eta^{2}}{S}+\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}\right)}
\end{align*}
$$

The trace of $\Sigma_{1}^{-1} \Sigma_{2}$ is

$$
\begin{align*}
\operatorname{tr}\left(\Sigma_{1}^{-1} \Sigma_{2}\right) & =N P+\frac{S}{\eta^{2}} \sum_{\mu, \nu, j}\left|\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2}-\sum_{\mu, \nu, j} \frac{S\left|\mathcal{F}\left[k_{1}^{j}\right]\right|^{2}(\mu, \nu)}{\eta^{2}+S\left|\mathcal{F}\left[k_{1}^{j}\right]\right|^{2}(\mu, \nu)} \\
& -\frac{S}{\eta^{2}} \sum_{\mu, \nu} \frac{\left|\sum_{j}\right| \mathcal{F}\left[k_{1}^{j}\right](\mu, \nu) \overline{\left.\mathcal{F}\left[k_{2}^{j}\right](\mu, \nu)\right|^{2}}}{\sum_{j}\left(\frac{\eta^{2}}{S}+\left|\mathcal{F}\left[k_{1}^{j}\right](\mu, \nu)\right|^{2}\right)} \tag{46}
\end{align*}
$$

Substituting Eq. (39) and Eq. (46) into Eq. (33) gives Eq. (14)

$$
\begin{aligned}
\mathrm{KL}\left(\lambda_{1}, \lambda_{2}\right)=\frac{1}{2} \sum_{\mu, \nu}[& \log \left(\frac{\eta^{2}+S \sum_{j}\left|\mathcal{F}\left[k_{2}^{j}\right]\right|^{2}}{\eta^{2}+\left.S \sum_{j}\left|\mathcal{F}\left[k_{1}^{j}\right]\right|\right|^{2}}\right)+\frac{S}{\eta^{2}} \sum_{j}\left|\mathcal{F}\left[k_{2}^{j}\right]\right|^{2} \\
& \left.-\sum_{j} \frac{S\left|\mathcal{F}\left[k_{1}^{j}\right]\right|^{2}}{\eta^{2}+S\left|\mathcal{F}\left[k_{1}^{j}\right]\right|^{2}}-\frac{S}{\eta^{2}} \frac{S \mid \sum_{j} \mathcal{F}\left[k_{1}^{j}\right] \overline{\mathcal{F}\left[k_{2}^{j}\right] \mid}}{\sum_{j} \eta^{2}+S\left|\mathcal{F}\left[k_{1}^{j}\right]\right|^{2}}\right](\mu, \nu) .
\end{aligned}
$$

