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Abstract

Although defocus blur is exclusively modelled as a disk
in contemporary computational photography methods, the
point spread function of real lenses significantly deviates
from the standard model due to lens aberrations and vi-
gnetting. Lens aberrations cause non-uniformity in the
structure of the point spread function, while vignetting
causes the structure to vary over the image plane. As a
result, point spread functions away from the image centre
have a highly anisotropic frequency spectrum, causing sig-
nificant blur in some directions but not others. We take ad-
vantage of this fact to create panoramas with a wide depth
of field. We achieve this through a multi-image restoration
procedure that removes blur in areas of overlap between
multiple images collected during regular panoramic pho-
tography. Our results suggest that real lenses preserve fre-
quencies well enough to allow photography with large aper-
tures, resulting in significantly shorter exposures.

1. Introduction
When a lens is defocused, the sharpness of the image is

reduced. This phenomenon is often modelled as a convolu-
tion, and the response of the lens to a point light source is
called the point spread function (PSF) [2]. In contemporary
methods of computational photography, the PSF is exclu-
sively modelled as a spatially-invariant disk with many zero
bands in its modulation transfer function(MTF [9]). The
small frequency support of disk PSFs makes it hard to re-
cover the sharp appearance of a scene after it is blurred.
Many special optical elements have been designed to in-
crease the frequency support of the lens PSF [3, 15, 13].

We observe that the PSF produced by real lenses signif-
icantly differs from the standard model. Fig. 1 exempli-
fies this observation, showing how the PSF of a real prime
lens varies over the image plane. In particular, two major
characteristics of the PSF were not well modelled by the
standard lens model. First, the PSF has a non-uniform and
anisotropic structure instead of the uniform disks predicted

(a) The point spread function varying over the image plane

(b) Zoomed views of the point spread functions

Figure 1. The point spread function of a Canon EF 50mm F/1.2L
prime lens. The PSF exhibits non-uniform, anistropic, and
spatially-varying structure.

by the standard model. Second, while defocus is almost
exclusively modelled as a spatially-invariant convolution,
the real lens PSFs show marked variation over the image
plane: The PSFs near the image centre are rotationally sym-
metric, but those at the periphery of the image are highly
anisotropic.

The non-uniform structure of the PSFs results from lens
aberration, i.e. the deviation of the real optics from their
paraxial approximation [2].Off-axis rays deviate from their
ideal path more seriously, making the aberration more evi-
dent when the lens aperture is widely open. The variation in
PSF anisotropy, on the other hand, is due to an interplay be-



tween lens aberration and vignetting [2], blocking of light
rays from the sensor.

In this report, we argue that modelling lens aberration
and vignetting allows us to take advantage of these phenom-
ena for image restoration. The aberrant MTFs are enhanced
in the radial direction within a specific range of defocus, and
therefore preserve the frequency content in this direction.
Taking advantage of this fact, we propose an efficient way to
capture panoramas using real lenses with aberrations. The
images are captured in the same way as regular panoramic
photography, but with a large aperture. In areas of overlap
between images, aberrations can preserve frequencies well
enough in specific directions to allow significant deblurring.

Moreover, we found that the variation of the real PSF
structure is beneficial to depth recovery. The frequency
magnitude of the PSFs decreases inhomogeneously with
defocus, exaggerating the contrast between differently fo-
cused images. This allows us to estimate a coarse depth
map for the scene without using an image prior.

2. Related Work
Our approach is related to previous work on PSF mod-

elling, depth of field(DoF) extension, light field theory, and
multi-image restoration.

PSF Modelling The spatially-varying structure of PSFs
was recently noted by Joshi et al. [11]. We are unaware,
however, of approaches that attempt to analyze this struc-
ture and use it for deblurring. Lens aberrations have been
studied extensively in optics, but most work focuses on
calibration, minimization and compensation of the aberra-
tions [10] because aberrations are considered undesirable.
In comparison, our goal is to investigate how lens aberra-
tions contribute to PSF structure and how we can use aber-
ration modeling to enhance deblurring performance.

Depth-of-Field Extended Photography Our work is also
closely related to research on extending the DoF of lenses.
The optics community focused on the wavefront coding
scheme, i.e. the use of a cubic lens to produce depth-
invariant, frequency-preserving MTF [3], as well as on low-
cost devices that have similar effects [6]. Computational
photography researchers have explored alternative ways
to generate frequency-preserving MTFs, including coded
aperture [12], focus sweep [8, 15], and focal stack [7] .

Our analysis is similar in spirit to wavefront coding, but
the PSF structure we study applies to standard photographic
lenses and thus has different characteristics. Specifically,
real lens MTFs preserve frequencies only on a specific side
of the focus range. Moreover, unlike wavefront coding, the
PSFs we study are spatially-varying and anisotropic. Even
though this means we cannot restore the sharp image from

a single input, the variation in PSF structure makes depth
recovery easier.

Light Field Theory We analyze the aberrant PSF using
several results from light field theory. We performed an
analysis analogous to Zhang et al. [18] to represent lens
aberrations as a non-linear deformation of the light field
space, and use the Fourier Photography Theorem in [16]
to relate lens aberrations with the MTF. The 4D light field
Fourier analysis in Levin et al. [13] allows us to explain the
specific PSF behaviour of real lenses, and to compare it to
specially-devised cameras for DoF-extension. Finally, we
employ the Gaussian image model in Hasinoff et al. [7] and
Levin et al. [12] to establish a theoretical prediction on the
error in panorama restoration and depth recovery.

Multi-image Restoration Several methods have been
proposed to use multiple images to resolve difficulty image
restoration problems. For example, [19] used noisy images
from multiple views to recover a noise-free image. Also, it
is suggested in [4] to capture multiple motion blurred im-
ages to refine estimation of the blurring kernel. Our restora-
tion algorithm also benefits from multiple inputs, but we
do not really increase the number of images because large
overlaps is already a requirement for building panoramas.
Besides, we emphasize on the contribution of the specific
PSF structure to restoration rather than that of multiple in-
puts. Our results show that real lenses greatly outperform
the ideal lens model that produce disk PSFs when using the
same number of inputs. Our work is very related to “coded
aperture pairs” [20] which uses a pair of aperture marks to
generate “complementary” PSFs that have a similar struc-
ture with the PSFs we observe. However, the occlusion
caused by these marks reduces exposure, making the image
acquisition process inefficient. Our work has the advantage
of allowing maximum amount of light collected by the sen-
sor.

3. Frequency-Preserving Structure in Real
Lens PSFs

3.1. Calibrating Real Lens PSFs

We first compute the spatially varying point spread func-
tion using the deconvolution based method in [11]. We cap-
ture, with a large and a small aperture, a calibration plane of
a known tiled pattern that has edges in all orientations and
corners(Fig. 2). Then we compute local PSFs by decon-
volving image windows. We vary both the location of the
image windows and the focus setting to discretely sample
the spatially-varying, depth-dependent PSF.

Fig. 3 shows the calibrated PSFs of three real lenses us-
ing the above approach. We observe that the PSF struc-
tures are highly non-uniform and the off-axis PSFs are very



Figure 2. Tile pattern captured at F/16 and F/1.2 for calibrating
local PSF structure.

50mm 85mm 24-70mm

Figure 3. Estimated PSF for Canon 50mm F1.2L, Canon 85mm
F1.2L and Canon 24-70mm F2.8 zoom lens. The Canon 50mm
lens focus at the infinity, and the other two lenses focus at the
macrophotography side of the focus setting. For the 24-70mm
zoom lens, a focal length of 70mm is used. The PSF of all the
lenses shows evident non-uniform, anisotropic structure.

anisotropic. This implies that real lens PSFs commonly de-
viates from the uniform disk structure predicted by the stan-
dard model. Although the three lenses produce PSFs of a
similar structure, these structures appear at different defo-
cus ranges. For instance, the ring-shaped structure was ob-
served when the Canon 50mm lens is focused at infinity, but
it appears at the macrophotography range of the other two
lenses.

3.2. Modeling Real Lens PSFs

The PSF structure deviates from the ideal disk shape
due to lens aberration and vignetting. Lens aberration is
the departure of the actual nonlinear lens optics from their
paraxial approximation [2]. Vignetting causes reduction in
brightness at the periphery of an image. This results from
either natural light fall off or physical occlusion by the lens
mechanics [2]. Here we only consider occlusion-triggered
vignetting, which modifies the PSF structure and affects the
frequency response of a lens.

We use the model shown in Fig. 4 to describe a lens that
has the above characteristics. The lens model contains two
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Figure 4. A simplified lens model considering lens aberration and
vignetting. The grey plane at z = d is the sensor plane.

groups of lens elements with an aperture stop placed behind
each of the group. We treat each lens group as a ”black box”
with the following ideal properties:

• Negligible light absorption. Lens elements only
change the direction and position of rays, not the ra-
diance along them.

• Pure Seidel aberration [17]. The actual light ray de-
viates from its paraxial approximation only by a third
order positional shift along the meridional direction.

• Aberration-vignetting independence.The effect of lens
aberration on the blocking of light rays is negligible.

We characterize the lens model with its point spread
function. Equivalently, we derive the light field [14] inci-
dent on the sensor plane due to a point light source. We
parameterize the light field with the focal plane at z = df
and the exit pupil plane at z = 0.

Vignetting model Without loss of generality, suppose the
source emits light rays that ideally focus at (xf , 0, df ), with
the chief ray intersecting the exit pupil at (uw, 0, 0). Be-
cause the PSF is centred on the chief ray, we parameterize
the light field relative to the chief ray, i.e. the ray (x, y, u, v)
passes through (uw + u, v, 0) in the exit pupil plane and in-
tersects the focal plane z = df at (xf+x, y, df ). Therefore,
the rays that transport radiance from the scene point to the
point of ideal focus, (xf , 0, df ) on the focal plane, is given
by

l(x, y, u, v) = δ(x, y)p(x, y, u, v), (1)

where δ is the Dirac delta function, and p(x, y, u, v) is the
pupil function that defines light rays that finally arrive at the
sensor: it is 1 if the corresponding ray passes through the
sensor and is 0 if the ray is blocked by the lens elements.



Aberration model Seidel aberration shifts each light ray
(x, y, u, v) by (∆u,∆v), we therefore modify Eq. 1 to ac-
count for this shift:

l̂(x, y, u, v) = δ(∆u− x,∆v − y)p(x, y, u, v). (2)

Note that we have assumed that lens aberrations have negli-
gible effect on the slope of rays, and are independent of the
pupil function.

Deriving the pupil function In AppendixA.2, we show
ray (x, y, u, v) intersects the plane of the entrance pupil
at (

mf

df
u,

mf

df
v,−dl). The factor mf , derived in Appendix

A.1, is the magnification factor at z = df
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1

df
+

1

dl
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f
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where dl is the distance between the two lens groups and f
is the focal length of the second lens group.

Deriving the aberration shifts (∆u,∆v) Therefore, the
light ray passes through the lens if (s, t) and (u+uw, v) fall
within the entrance and exit pupils, respectively,

u2 + v2 ≤
(
dfA

mf

)2

,

(u+ uw)2 + v2 ≤ R2.

(4)

i.e.

p(x, y, u, v) = p(u, v) =

{
1, Eq. 4 is satisfied
0, otherwise (5)

Knowing (s, t) also allows us to determine the deviation
of the light ray from its ideal path. Due to aberration, each
of the lens groups shifts the ray along the pupil radius, by
c1(s2 + t2)3/2 and c2((u+uw)2 +v2)3/2 respectively. The
coefficients c1 and c2 controls the deviation of the two lens
groups from the thin lens model. In Appendix A.3 we show
that the overall shift (∆u,∆v) is the sum of five Seidel
components [17]:(
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The aberration coefficients are dependant on the depth of
the focal plane df [17]:
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;

(7)

Here cspher, ccoma, castig, cfoc and cdistort are the aberration
coefficients for spherical, coma, astigmatism, field of cur-
vature and distortion, respectively.

3.3. Analysis of the real lens model

We now use the model of Section 3.2 to obtain an ex-
pression for the lens OTF.

By the Generalized Fourier Slice Theorem [16], the opti-
cal transfer function (OTF), i.e. the Fourier spectrum of the
PSF, is a slice in the Fourier light field

K(µ, ν) = L̂(
d

df
µ,

d

df
ν,
df − d
df

µ,
df − d
df

ν) (8)

where d is the lens-sensor distance, and L̂ this the Fourier
transform of l̂ in Eq. 2.

The function δ(∆u − x,∆v − y) can be expressed as
a light field l′ with l′(x, y, u, v) = δ(∆u − x,∆v − y).
Therefore, from the convolution theorem we have

L̂(x, y, u, v) = L(x, y, u, v)⊗ P (x, y, u, v) (9)

where ⊗ denotes convolution.
Eq. 9 tells us that the lens OTF is a convolution of two

light fields: one that depends only on aberrations, and one
that depends only on vignetting. We consider the effects of
these two terms below.

The effect of lens aberration We discuss the effect of
each Seidel component (Eq. 6) individually because these
components have nearly orthogonal effects [5].

According to the PSF of three commercial lenses we cal-
ibrated, we find that spherical aberrations dominate the PSF
structure. We first plot in Fig. 5 the 4D aberrant light field
and its Fourier spectrum with pure spherical aberration (i.e.
α = 0) to investigate the influence of this aberration on the
MTF.

Fig. 5(b) shows that the light field does not spend all the
energy on the manifold that contributes to the OTFs. This
suggests that real lenses do not perform as well as the lat-
tice focal lens [13]. Nevertheless, the lens does concentrate
energy near the focal region, preserving frequencies even
when it is not focused on the intended subject. Moreover,
we notice that the Fourier spectrum is higher only when ωx
and ωu (and accordingly ωy and ωv ) have the same sign,
i.e. when d < df . This indicates that lenses that have pos-
itive spherical aberrations show resistance to defocus when
the camera is focused farther than the subject.

Eq. 6 shows that the effect of other Seidel aberration
components increases as the PSF centre moves away from
the image centre. Among them, astigmatism aberrations
elongate the shape of the OTF and coma aberration pro-
duces a cubic phase delay in the wave field: this enhances
the OTF just like the cubic-shaped lens does in wavefront
coding [3].
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Figure 5. The 4D aberrant light field and its Fourier spectrum. In
the top figure, each subplot is a l(x, y, ·, ·) slice; in the bottom
figure, each subplot is an L(ωx, ωy, ·, ·) slice. The focal region
is L(aµ, aν, (1 − a)µ, (1 − a)ν) where a = d/df is the varying
ratio between the distance from the exit pupil to the sensor plane
and to the in-focus plane. The Fourier spectrum shows that the lens
spends energy out of the focal region. As the lens sensor distance
decreases from df , the lens is defocused from the subject, but the
L(aµ, aν, (1−a)µ, (1−a)ν) remains a relatively high magnitude.
This indicates that the MTF has some resistance to defocus if the
lens is focused farther than the subject.

The effect of vignetting Eq. 4 shows that the pupil func-
tion has a cat-eye shaped support in the u-v plane, with its
longer axis aligned to the concentric direction. Accordingly,
its Fourier spectrum is enlongated in the radial direction.
Fig. 6(a) shows a vertical pupil function of a horizontally
off-axis PSF and two slices of the Fourier light field before

R dA
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(a) The pupil function p(u, v), with its sup-
port colored in yellow. .

(b) Fourier spectrum of
the pupil function P (u, v)
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(c) Fourier slices in the aberration-only light field L(ωx, ωy , ωu, ωv) and
the actual light field L̂(ωx, ωy , ωu, ωv) .

Figure 6. Each slice in the aberration-only light field
L(ωx, ωy, ·, ·) in (a) is convolved by the Fourier spectrum
in (b). causing a blur in the radial direction(c).

and after blurring by the Fourier pupil function in Fig.6(b).
As shown in Fig. 6(c), the radial slice preserves its mag-
nitude after blurring, but the concentric slice is severely
washed out, losing frequency contents in the according di-
rection.

The anisotropic, frequency-preserving PSF structure al-
lows significant deblurring in the radial direction. We take
advantage of this fact to efficiently capture panoramas with
a wide depth of field. Where image overlaps, the same un-
derlying sharp image is convolved with a PSF of different
orientations, thus preserving frequency contents in many di-
rections. This means that panoramas captured with an aber-
rant lens can tolerate defocus blur considerably, allowing us
to significantly reducing the exposure time by opening the
lens aperture.

4. Building Light-Efficient Panoramas

We employ a multi-image restoration procedure to re-
store the panorama. Because the PSF is spatially varying,
we restore the panorama patch by patch, assuming that the
PSF is spatially-invariant within each patch. We use the
PSFs calibrated in Sec. 3.1 to restore the panorama and run
the restoration procedure under a series of depth hypothe-
ses. After doing restoration for all hypotheses, we generate
a coarse depth map for the panorama and compute a re-
stored panorama from the deblurred images.
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4.1. Panorama Restoration

Let ψ be a patch in the ideal, unblurred panorama.
We assume that ψ appears in N input images. Let
ϕ1, ϕ2, . . . , ϕN be the corresponding patches in these im-
age. Now suppose that the spatially-varying PSF with defo-
cus level d is kd, the observed patche ϕj is formed by first
warping the ideal patch ψ and then blurring it with kd:

ϕj = τkd ⊗ Tj [ψ] + n. (10)

Here Tj is the mapping function that maps pixels in the ref-
erence coordinate to the j-th image coordinate. The pa-
rameter τ denotes the exposure level, and n is a zero-mean
Gaussian distributed noise with variance η2. Note that Tj
includes not only the effect of camera panning, but may also
include residual, translational shifts due to disparity.

Although it is possible to solve for ψ using Eq. 10, it is
more convenient to decompose the restoration process into
a warping and a deconvolution stage so that deconvolution
can be efficiently performed in the Fourier domain. Fig. 7
shows that there are two ways to decompose the restora-
tion process: (1) deconvolve each image individually, (2)
warp the input image to the reference coordinate and per-
form joint deconvolution. We choose the latter appraoch
because it allows us to use constraints from all images si-
multaneously.

ϕj = kjd ⊗ ψ + n. (11)

From now on the notation ϕj and kjd refers to the observed
patch and PSF kernel changed to the reference coordinate.

This problem can be solved in the Fourier domain [7]:

Ψ̄d(µ, ν) = τ
∑
j

(
Φj(µ, ν)Kj

d(µ, ν)∗
)
V −1
d (µ, ν). (12)

where

Vd(µ, ν) =

 1

η2

∑
j

||τKj
d(µ, ν)||

2
+ S−1

−1

. (13)

(a) three input images

(b) restoration with-
out alignment

(c) restoration with
alignment

(d) ground truth

Figure 8. Image alignment for better restoration. After alignment,
the details of the scene is better restored.

In the above equations, capitals denote Fourier transform
of the corresponding signal, ∗ denotes conjugate transpose
and S is the scalar variance of Ψ(µ, ν). From a Bayesian
perspective, Vd is the posterior variance of the underlying
Fourier spectrum of the sharp patch.

We restore a coarse depth map for the panorama by
choosing the estimate with the smallest reconstruction er-
ror:

ψ̄(p) = arg min
ψ̄d

∑
j

(
ϕj(p)− [kjd ⊗ ψ̄d](p)

)2

. (14)

In our implementation, we generate a piecewise-smooth
depth map with a Markov random field(MRF) [1] using the
pixel-wise reconstruction errors as the data term. We then
restore the panorama using this depth map.

Because deconvolution is sensitive to misalignment be-
tween inputs,our algorithm requires a very good estimate of
the warping functions for each input image. Unfortunately,
because of defocus blur, most SIFT features are extracted
from the in-focus area, and only suffice to compute the ho-
mography between images. Therefore, we need to refine
the alignment of images especially in the defocused region,
which typically has a larger misalignment due to disparity.
We arbitrarily choose one of the images (e.g. the image with
the smallest rotation) as the reference image and align the
other images to this image with a multi-scale Lucas-Kanade
algorithm. Fig. 8 shows the restoration results of a real im-
age assuming the correct depth is known. Observe that the
alignment of the image significantly improves the results.
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4.2. Evaluating Restoration Quality

Under a Gaussian assumption, the expected error in each
frequency components is its variance,

E
[
||Ψ(µ, ν)− Ψ̄(µ, ν)||2

]
= Vd(µ, ν), (15)

and [7] states that the mean squared error in the spatially
domain is the sum of the variance over all frequency com-
ponents

E
[
||ψ(p)− Ψ̄(p)||2

]
=
∑
µ,ν

Vd(µ, ν) (16)

Fig. 9 plots the expected restoration error of a real lens
and a standard lens. We observe that the error of the stan-
dard lens grows drastically with the increase of the kernel
width, but the error curve of the real lens remains flat near
the in-focus position, and grows much more slowly than
that of the standard lens when the lens is focused farther.
This validates our observation in Sec. 3.3 that real lens has
single-sided invariance to defocus to some extent.

Depth Restoration Capability To predict the perfor-
mance of our algorithm in depth restoration, we calculate
the Kullback-Leibler(KL) divergence between images of
different defocus level. A high divergence between two
different defocus levels is desirable because it indicates a
smaller chance to identify the depth incorrectly.

In Appendix B we show that, assuming the underlying
sharp image follows a Gaussian distribution, all possible
images blurred at each depth level forms a Gaussian cluster.
The KL divergence between Gaussian cluster d1 and d2 is

KL(d1, d2) = log

(
η2 + S|K2|2

η2 + S|K1|2

)
+
S

η2
|K2|2

− S|K1|2

η2 + S|K1|2
− S

η2

| < K1,K2 > |2
η2

S + |K1|2

(17)

whereK1 andK2 are the concatenate of local MTFsKj
d for

all the input images.
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Figure 10. KL divergence between images of different defocus
level, captured by a real lens (Canon 50mm 1.2L) or by an ideal
lens. Each entry in the matrix corresponds to the KL divergence
between a pair of defocus levels. The KL divergence matrix for
the real lens has larger value in the non-diagonal entries, and thus
enables rejection of false hypotheses.

Eq. 17 indicates that depth recovery becomes easier if the
PSFs at different defocus levels are less correlated. Fig. 10
plots the KL divergence matrix of a real lens or a stan-
dard lens. The figure shows that the KL divergence with
the real lens is higher, indicating that depth recovery with
real lenses is easier than a standard lens. This is because
the frequency components in the real lens MTF drops in-
homogenously, resulting in a smaller correlation between
MTF components.

5. Experimental Validation
5.1. Simulation

We simulated images of a scene composed of three depth
layers (Fig. 11). All the images are focused at the same
depth, and each image is associated with a specific local
PSF produced by a real lens. We restored the scene with the
blind deconvolution algorithm discussed in Sec. 4.1. De-
spite the challenging defocus blur, our algorithm success-
fully restores the details in the image and roughly recovers
the depth map. Note that our depth estimation procedure
does not require image prior because the incoherence be-
tween PSF structures has provided enough information.

5.2. Real Data

To test our method we use two datasets that represent
two different DoF ranges, and with prime and zoom lenses.
The first dataset is an indoor static scene, and was captured
with a Canon EF 24-70mm F/2.8 lens. We use a 70mm fo-
cal length and focus at the macrophotography range (0.38 –
0.7m) because the aberration of the lens is negative. The
second dataset is an outdoor portrait scene captured by
Canon EF 50mm F/1.2L lens. Because this lens preserves
frequency when focusing beyond objects, we focus at in-
finity and restore the person in the foreground. For both
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Figure 11. Multi-image restoration with unknown depth. We sim-
ulated 10 photos of a scene that consists of 3 layers, blurred by
defocus kernels of approximately 20, 40, and 60 pixels. The size
of the images is 256x256. Although the input images presents
challenging defocus blur, the restoration results achieves an pSNR
rate around 22dB.

scenes we capture the images with the largest aperture (F1.2
or F2.8).

Fig. 12 and Fig. 13 show the restoration results for each
dataset. In the first example, image details lost due to de-
focus are now successfully recovered, and we successfully
separated the foreground from the background. In the sec-
ond example, although the defocus blur is significant, we
were still able to recover the face in the foreground. How-
ever, because the defocus is so large, the image quality at
the sensor resolution is not as good as the small aperture
image. Because our simplified constant-depth assumption
does not handle depth discontinuity well, the restoration
presents some ringing artifacts near the depth boundary.

6. Conclusion

We take advantage of the spatially-varying anisotropic
structure of PSF produced by real lenses to efficiently cap-
ture panoramas. We have found that lens aberrations cause
non-uniform structure in the PSF, and vignetting further
modifies the PSF structure in a spatially varying manner.
The non-uniformity in the PSF structure facilitates preserv-
ing higher frequencies in the underlying sharp image while

the variation of the structure causes off-axis PSFs to blur
mainly in the radial direction. These two effects allow cap-
turing panorama with a large aperture without losing im-
portant frequency contents of the underlying sharp scene
appearance, but within a much shorter exposure time.

The effectiveness of our proposed method depends on
the level of aberration by the lens optics. Although we
have observed lens aberrations on several lenses, we also
observe that not all lenses have significant aberrations, pos-
sibly because lens makers regard aberrations as defects to be
avoided. However, we can introduce lens aberrations into
the system by adding aspherical optical pieces in front of
the lens.

At present, we treat the image alignment and restoration
procedure separately. However, both disparity and defocus
are correlated with depth. In the future, we will explore the
possibility to use the disparity among input images to vali-
date the depth map estimated during restoration, hopefully
achieving a more reliable depth estimation.
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A. Derivation of the Lens Model

We are interested in deriving the light field due to an
ideal, isotropic point light sources at (xw, 0, 1) and focused
at the z = df plane. We first derive the path of the ideal
chief ray which helps us to parameterize the light field.
Then we trace the ideal path of arbitrary rays emitted by
the point source through the two pupils to determine which
rays are blocked and how they are shifted from their ideal
path due to aberrations.

Table 1 summarizes the main parameters of the lens
model used in the derivation below.

A.1. The magnification factor(Eq. 3)

By the definition, the chief ray passes the entrance pupil
through the optical centr, and is not bent by the first lens



(a) panorama created by autostitch with border cropped.

(b) input images and the defocused PSFs for the
foreground

(c) from left to right: restored panorama patch with the foreground PSF, the finally restored panorama patch, a small
aperture image of the same scene, and the likelihood for each pixel to be in the foreground..

Figure 13. The portrait scene. The panorama (a) was captured with a Canon EF 50mm 1.2L lens, and created with autostitch. We test our
algorithm by restoring a image window (highlighted in the red box) in the panorama that consists of two depth layers. Three images (b)
was used to restore the image window. In (c) it is shown that our algorithm successfully restores the detailed structure in the foreground
despite the significant defocus blur.

Table 1. Main parameters for derivation of the lens model

notation meaning
A Aperture radius
R Exit pupil radius
f Focal length of the second lens group
d Lens-sensor distance
dl Distance between the two lens groups
df Distance of the in-focus plane
xw the x-homogenous coordinate of the point

light source
uw the offset of the chief ray on the exit pupil

plane at z = 0
x, y Intersection of the light ray with the focal

plane at z = df
u, v Intersection of the light ray with the exit

pupil
s, t Intersection of the light ray with the entrance

pupil
(su, sv, 1) The slope of the light path within the lens
(sx, sy, 1) The slope of the output light ray

group. The slope of the ray incident on the exit pupil
is (xw, 0, 1). Therefore it intersects the plane z = 0 at
(lxw, 0, 0).

Let
uw = dlxw. (18)

Suppose the second length group has focal length f . The
slope of the chief ray is

(
−uw

(
1
f −

1
dl

)
, 0, 1

)
after pass-

ing through the lens. Therefore, the ray is focused at
(xf , 0, df ) where

xf = uw − dfuw
(

1

f
− 1

dl

)
(19)

From Eq. 18 and 19 we get

xf = xwdldf

(
1

df
+

1

dl
− 1

f

)
. (20)

The slope of the ray is mf = xf/xw. Combining with
Eq. 20 we get

mf = xf/xw = dfdl(
1

df
+

1

dl
− 1

f
). (21)



A.2. The pupil function(Eq. 4)

Consider a ray that passes through (uw + u, v, 0) at the
exit pupil, the slope of the ray is

sx =
xf − (u+ uw)

df
=
mfxw − (u+ uw)

df
, (22)

sy = − v

df
. (23)

By back tracking the ray through the second lens group,
whose focus length is f , the ray slope (su, sv, 1) becomes

su =sx +
u+ uw
f

=
mfxw
df

+ (u+ uw)(
1

f
− 1

df
),

(24)

sv = sy +
v

f
= v( 1

f −
1
df

). (25)

From Eq. 24, 25, the intersection of the ray and the en-
trance pupil is at

s = u+ uw − sudl (26)

=
mfu

df
, (27)

t = v − svdl (28)

= v(dl +
1

df
− 1

f
(29)

Substituting 21 into the above equation:

s =
mfu

df
, t =

mfv

df
(30)

Suppose the aperture stop and the exit pupil to have ra-
diusA andR respectively, the light rays that passes through
the lens follows

s2 + t2 ≤ A2, (31)
(u+ uw)2 + v2 ≤ R2. (32)

Substituting Eq. 30 into the inequalities Eq. 31 and 32 leads
to the pupil function in Eq. 4.

A.3. The Seidel Aberration Coefficient (Eq. 6)

The actual light path is shifted from the ideal path due to
Seidel aberrations by [17]

∆s = c1(s2 + t2)s,∆t = c1(s2 + t2)t, (33)

where c1 is the level of aberration of the first lens group.
The rays are further shifted after the second lens group,

∆u = ∆s+ c2
(
(u+ uw)2 + v2

)
(u+ uw), (34)

∆v = ∆t+ c2
(
(u+ uw)2 + v2

)
v. (35)

where the parameter c2 is the level of aberration of the sec-
ond lens group.

Eq. 6 now follows by substituting Eq. 30, 33 into Eq. 34.

B. Derivation of the KL Divergence(Eq. 17)
The convolution in Eq. 11 can be written in the Fourier

domain:
Φj(µ, ν) = τKj

dΨ(µ, ν) + n; (36)

Assuming that each component in Ψ(µ, ν) is a Gaussian
of zero mean and variance S(µ, ν),

Pr(Ψ) ∼ N (0, S) (37)

the probability of each φj conditioned by ψj is

Pr(Φj |Ψ, d) ∼ N
(

Φj −Kj
dΨ, η2

)
. (38)

From Eq. 37 and Eq. 38, the frequencies in the observed
images Φ are also Gaussian:

Pr(Φj |d) = N (0, η2I + SKj
d(Kj

d)∗). (39)

Therefore, the Kullback-Leibler(KL) divergence be-
tween images of different defocus levels is the divergence
between the two zero mean Gaussians with different covari-
ance

KL(d1, d2) =∫
d2

Pr({Φj}|d1) (log Pr({Φj}|d1)− log Pr({Φj}|d2)) dd2,

∝ log |Σ−1
1 Σ2|+ tr(Σ−1

1 Σ2)−Np.

(40)

where Np is the number of frequency components in the
image, and the covariance matrices are

Σ1 = η2I + SK1K
∗
1

Σ2 = η2I + SK2K
∗
2 .

(41)

Here K1 and K2 are the concatenate of all frequency com-
ponents in local MTFs for the input images.

Now, the matrix determinant formula gives us

|Σ1| = η2Np · (η2 + S||K1||2) (42)
|Σ2| = η2Np · (η2 + S||K2||2) (43)

From the Woodbury matrix identity,

Σ−1
1 =

1

η2

(
I − SK1K

∗
1

η2 + S||K1||2

)
. (44)

Therefore,

Σ−1
1 Σ2 =

(
I − SK1K

∗
1

η2 + S||K1||2

)(
I +

S

η2
K2K

∗
2

)
.

(45)
The trace of Σ−1

1 Σ2 is

tr
(
Σ−1

1 Σ2

)
= Np +

S

η2
|K2|2

− S|K1|2

η2 + S|K1|2
− S

η2

| < K1,K2 > |2
η2

S + |K1|2

(46)

Substituting Eq. 42,Eq. 43 and Eq. 46 in Eq. 40 gives
Eq. 17.


