
IEEE 2014 Conference on
Computer Vision and Pattern

Recognition
Blind Image Quality Assessment using Semi-supervised Rectifier Networks

Huixuan Tang Neel Joshi Ashish Kapoor

Blind image quality assessment
Ø  distorted image -> perceptual score (ground-truth unknown)	

Ø  State of art approach: kernel regression

Challenges
Ø  Requires highly expressive kernel���

difficulty: kernels for IQA are mostly linear to hand-crafted
features	

	

Ø  Requires sufficient data for generalization power���

difficulty: subjective scores are expensive to gather	

	

Our approach
Ø  Generate large unlabeled dataset (automatic and cheap)

Ø  Define regression kernel with deep belief network of rectifier units

Advantage: flexible, good generalization, semi-supervised
Semi-supervised training scheme:
1. Pre-train with unlabeled data
2. Fine-tune with labeled data

Results:
Ø  Performance deteriorates gracefully with decreasing labeled data

Ø  Outstanding overall performance on both LIVE and TID
(outperforms non-blind IQA measures)

Ø  Leave-one-distortion-type out performance

(generalization power to similar distortion types)

University of Toronto Microsoft Research

pe
rc

ep
tu

al
 s

co
re

perceptual score
= 58.753804

？?	

perceptual
score=?

？?	

Dataset	
 #ref	
 img	
 #dist	
 type	
 #dist	
 level	

LIVE	
 29	
 5	
 4-­‐5	

TID2008	
 25	
 17	
 5	

TID2013	
 25	
 23	
 5	

CSIQ	
 30	
 6	
 4-­‐5	

Figure 3: Examples of reference images in the unlabeled
dataset we simulate.

The key requirement of semi-supervised learning is that
the simulated and labeled data set should have an identical
and independent distributions. That is to say the distortion
types and levels should be the same as the labeled data set,
and the reference images should be about the same size as
those in the labeled data set. It is straightforward to expand
the data coverage from reference images under this assump-
tion.

We crawl 80 high quality images from internet (as shown
in Fig. 3) and simulate distortions of various levels and
types on these images. This considerably expands the train-
ing data along the dimension of reference images. In com-
parison, the LIVE and TID2008 data sets generate distorted
images from only 20 � 30 images. Note that a consider-
able portion of that data is used for performance evaluation
and not available for training. So the actual labeled train-
ing set is at most about 20 reference images ⇥ 5(LIVE) or
17(TID2008) distortion types ⇥ 4� 5 distortion levels.

Prior to simulating distortions, we first reduce the size of
images to 512 ⇥ 384 pixels to match the resolution of the
labeled data. In experiments for the LIVE dataset, our unla-
beled data is limited to the five included distortion types. In
experiments for the TID2008 dataset, we simulate 13 of 17
distortion types in the TID dataset. The 4 distortion types
that we did not simulate are non eccentricity pattern noise,
local block-wise intensity change, global intensity shift, and
contrast change. We exclude these types from the model
because the LBIQ features we use are invariant to these dis-
tortions and the inclusion of them hinders pre-training. 1 In
total, this results in an an unlabeled dataset of 5200 distorted
images generated from 80 distortion-free images.

4. Pre-training without labels
In the pre-training stage, we learn a generative model of

the features using the neural network representation. Such a
generative perspective is feasible due to the fact that we can
simply view the deep belief network as a stack of RBMs.
The seven RBMs connecting the hidden input layer and the
first hidden layer learn a generative model of each of the in-
put image features. Similarly, the next hidden layer learns
the joint distribution of all features. Note that we can con-
tinue to add more hidden layers and model even higher-level

1For fairness of evaluation, we only ignore these types during pretrain-
ing and include all distortion types in the fine-tuning and evaluation stage.

Input: B random batches of training samples v1, v2, . . . vB ;
Output: model parameters ⇥ = {✓1, ✓2, . . . , ✓K};
Parameters: learning rate ⌘, momentum ⌧ ;
initialize ⇥ (see text for details);
for t = 1 . . . T do

for v+ = v1, . . . , vB do
compute hidden unit mean h+ = max(W

v+
� + �, 0) ;

compute visible unit mean v� = �W>h+ + b;
compute hidden unit mean h� = max(W

v�
� + �, 0);

compute CD-1 gradients �✓(t)k :

�W = CD

✓
v

�

>
h

◆
, (1)

�� = CD (h) , �b = CD

✓
(v � b)

�2

◆
(2)

�� = CD

✓
(v � b)2

�3
� h>W

v

�2

◆
(3)

compute ADAGRAD learning rate �k = ⌘/
qP

t �✓(t)k ;

add momentum �

ˆ✓(t)k = �✓(t)k + ⌧�✓(t�1)
k ;

adjust model ✓k = ✓k +�

ˆ✓(t)k �k, k = 1 . . .K;
Figure 4: Pretrain RBMs of linear visible and ReL hidden
units.

representation of features. However, we limited ourselves to
two hidden layers as our experiments (see Sec. 6.1) did not
show an advantage for a deeper model architecture with the
specific features we used.

We pre-train the model greedily in a layer-by-layer man-
ner. Specifically, we first train the seven Gaussian-ReL
RBMs in the bottom layer and then the ReL-ReL RBM in
the top-layer by maximizing the likelihood of the data by
stochastic gradient descendant.2 The top level RBM of rec-
tified input is parameterized by network weights W, hid-
den layer bias �, and visible layer bias b. The Gaussian-
rectified RBMs are parameterized by network weights and
biases W, �, and b as well as visible unit variance �.

Fig. 4 and 5 outlines the steps to learn these parame-
ters given a number of samples for the input layer v+. The
high-level idea is to optimize the model parameters. The
core part is to compute the gradient of likelihood by 1-step
contrastive divergence (CD-1), which uses Gibbs sampling
to approximate the intractable true gradient. Specifically,
we simulate the model driven by the input data v for 1.5 cy-
cles and collect mean activation of visible and hidden units
h+, h�, and v� for the first and last upward half-cycle, and
the gradients are computed from the difference in statistics
between two cycles

CD(z) = E+ (z)�E� (z) . (6)

2In fact, the likelihood of RBMs of ReL unit is not well defined, but
the contrastive divergence gradients of such RBMs are well defined by
interpreting the ReL units as sum of binary units of shared weights – see
[9] for details.

…

JPEG
White noise

prev.	
 ours	

#ref	
 img	
 25-­‐30	
 80	

#dist	
 type	
 5-­‐23	
 17	
 (=TID2008)	

#dist	
 level	
 4-­‐5	
 5	

labled	
 yes	
 no	

internet images

8237 Gaussian visible units h(0)=v(1)

720 rectified linear hidden units h(1)=v(2)

60x4x3D hist.
of wavelet coeff.

(phase)

900x3D
cross-scale hist.
of wavelet coeff.

(phase)

20x3D unary hist.
of alpha matte

120 hidden units 120 hidden units 40 hidden units 150 hidden units 150 hidden units 120 hidden units

20x3D unary hist.
of fitting residual

25x3D patch
singularity

2D scalar blur/
noise measure

600 rectified linear hidden units h(2)

900x3D
cross-scale hist.
of wavelet coeff.

(magnitude)

60x4x3D hist. &
20x4x3D stat.

of wavelet coeff.
(real part)

60x4x3D hist. &
20x4x3D stat.

of wavelet coeff.
(magnitude)

Gaussian process regression of spherical kernel

20 hidden units

G
aussian-R

eL
R

B
M

s
R

eL-R
eL

R
B

M

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 7 11 15 19 23

M
ed

ia
n

Sp
ea

rm
an

 c
or

re
la

tio
n

#reference of labeled data

BRISQUE
LBIQ

Ours (#ref of unlabeled data=5)
Ours (#ref of unlabeled data=20)
Ours (#ref of unlabeled data=80)

LBIQBRISQUE Ours

M
ed

ia
n
 S

p
ea

rm
an

 c
o
rr

el
at

io
n

LIVE

 0.80
 0.82
 0.84
 0.86
 0.88
 0.90
 0.92
 0.94
 0.96
 0.98
 1.00

SSIM VIF OursM
ed

ia
n
 S

p
ea

rm
an

 c
o
rr

el
at

io
n

TID2008

 0.50

 0.55

 0.60

 0.65

 0.70

 0.75

 0.80

 0.85

 0.90

SSIM VIF LBIQ BRISQUE

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 7 11 15 19 23

M
ed

ia
n

Sp
ea

rm
an

 c
or

re
la

tio
n

#reference of labeled data

BRISQUE
LBIQ

Ours (#ref of unlabeled data=5)
Ours (#ref of unlabeled data=20)
Ours (#ref of unlabeled data=80)

Figure 8: Performance variation on LIVE dataset with dif-
ferent amount of labeled data for our method and two pre-
vious methods: BRISQUE and LBIQ.

0.9). Second, with increasing unlabeled data to pretrain
the model, the regression performance steadily improves.
When pretraining with unlabeled data of 20 reference im-
ages, the performance is nearly as good as when pretraining
with the entire unlabeled dataset of 80 references.

Finally, we compare the performance of our model and
the state-of-art methods on the TID2008 dataset3. A re-
peated random subsampling experiment of 1000 trials is
conducted for fair comparison. Due to the difficulty of this
dataset, we use the entire unlabeled dataset for pretraining
and distortion images of 20 reference images for testing. As
shown in Fig. 9, the overall performance of our method is
0.841, and it is much better than state-of-the-art methods:
LBIQ is 0.74 and BRISQUE is 0.61. Though it is not as
good as the original LBIQ metric for a few distortion types.
This is because the Gaussian process in trying to reconcile
among the 17 distortion types, sacrifices the performance
on individual distortion types. 4

6.3. Generalization across distortion types

Finally, we explore the ability of our model to generalize
across distortion types.

We first visualize the low-dimensional embedding of the
LIVE and TID2008 dataset in Fig. 10 to gain some intu-
ition on why generalization across distortion types are pos-
sible. We scatter the eigenspace projection of the neural net-
work output of LIVE and TID2008 dataset and color code
the corresponding distortion types or subjective image qual-
ity. Fig. 10 shows not only continuity in subjective image
quality in the eigenspace but also a clustering across simi-

3We exclude the 25th image of the dataset from testing because it is a
synthetic image and its feature significantly differs from natural images.

4We have also tried to pick images of distortion types that are well
modeled by the LBIQ features for training and all images for testing. This
results in better performance than LBIQ in the specific distortion types we
use for training but worse overall performance.

 −0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
ed

ia
n

S
pe

ar
m

an
 c

or
re

la
ti

on

Distortion type

BRISQUE
LBIQ
Ours

1 Additive Gaussian noise 10 JPEG
2 Color noise 11 JPEG2000
3 Spatial correlated noise 12 JPEG trans. error
4 Masked noise 13 JPEG2000 trans. error
5 High frequency noise 14 Non-ecc. pattern
6 Impulse noise 15 Block intensity change
7 Quantization noise 16 Intensity shift
8 Gaussian blur 17 Contrast change
9 Image denoising 18 Overall

Figure 9: Performance of LBIQ, BRISQUE and our method
on the TID2008 dataset. Our model is trained using 80 ⇥
13 ⇥ 5 unlabeled and 20 ⇥ 17 ⇥ 5 labeled images. LBIQ
and BRISQUE are trained using the same labeled data.

color encodes distortion color encodes quality

LI
V

E

0.02

0.04

0.06

−0.06−0.04−0.0200.020.040.06

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.02

0.04

0.06

−0.06−0.04−0.0200.020.040.06

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

TI
D

20
08

−0.1
−0.05

0−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−0.1
−0.05

0−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Figure 10: Kernel eigen-space embedding of the LIVE and
TID2008 dataset. Similar distortion types are clustered to-
gether and quality changes smoothly in this eigenspace.

lar distortion types (different types of noise, distortion, and
compression). This indicates that the quality measure of a
distortion type can be generalized from labels for similar
distortion types.

To validate this idea, we perform a “leave-one-distortion-
type-out” experiment on the LIVE dataset. For each distor-
tion type, we use all data for other distortion types to train

Dist.	
 type	
 corr.	

JP2K	
 0.958	

JPEG	
 0.951	

WN	
 -­‐0.488	

GB	
 0.970	

FF	
 0.944	

