

Microsoft[®] Research

Blind Image Quality Assessment using Semi-supervised Rectifier Networks Neel Joshi

Blind image quality assessment

- distorted image -> perceptual score (ground-truth unknown)
- State of art approach: kernel regression

perceptual score = 58.753804

Challenges

- Requires highly expressive kernel difficulty: kernels for IQA are mostly linear to hand-crafted features
- Requires sufficient data for generalization power difficulty: subjective scores are expensive to gather

Dataset	#ref img	#dist type	#dist level
LIVE	29	5	4-5
TID2008	25	17	5
TID2013	25	23	5
CSIQ	30	6	4-5

Huixuan Tang University of Toronto

Our approach

Generate large unlabeled dataset (automatic and cheap)

internet i	a the second sec	JPE White Gussian	G Noise Silur
	prev.	ours	
#ref img	25-30	80	
#dist type	5-23	17 (=TID2008)	
#dist level	4-5	5	
labled	yes	no	

- Define regression kernel with deep belief network of rectifier units Advantage: flexible, good generalization, semi-supervised Semi-supervised training scheme:
 - 1. Pre-train with *unlabeled* data
 - 2. Fine-tune with *labeled* data

Ashish Kapoor

Microsoft Research

Results:

(outperforms non-blind IQA measures)

Leave-one-distortion-type out performance (generalization power to similar distortion types) color encodes distortion

IEEE 2014 Conference on **Computer Vision and Pattern** Recognition

Performance deteriorates gracefully with decreasing labeled data

Outstanding overall performance on both LIVE and TID

color encodes quality

Dist. type	corr.	
JP2K	0.958	
JPEG	0.951	
WN	-0.488	
GB	0.970	
FF	0.944	