What Does an Aberrated Photo Tell Us About the Lens and the Scene?

Huixuan Tang
Kyros Kutulakos
University of Toronto

given K≥1 blur kernels from one photo ...

... can we infer depth?

... can we infer the full 5D PSF?

... can we infer the full 5D PSF?

... and can we infer the lens parameters?

related work

direct aberration measurement

[Liang et al 94][Ng & Hanrahan 06]

empirical PSF modeling

[Joshi et al 08][Kee et al 11]

blind/non-blind aberration correction

[Shih et al 12][Schuler et al 12]

requires physical access to camera

significant data acquisition, limited inference power

interaction w/ defocus not well understood

related work

direct aberration measurement

[Liang et al 94][Ng & Hanrahan 06]

empirical PSF modeling

[Joshi et al 08][Kee et al 11]

blind/non-blind aberration correction

[Shih et al 12][Schuler et al 12]

imaging

assumes aberration-free

depth from defocus

related work

direct aberration measurement

[Liang et al 94][Ng & Hanrahan 06]

empirical PSF modeling

[Joshi et al 08][Kee et al 11]

blind/non-blind aberration correction

[Shih et al 12][Schuler et al 12]

requires physical access to camera

inference from 1 aberrated photo

significant data acquisition, limited inference power

physics-based model of 5D PSF formation

interaction w/ defocus not well understood

unified analysis of aberration & defocus

three main results

single-point inference

regardless of deblurring quality, cannot predict lens blur at other depths/image locations

multi-point inference

reconstruction of depth & 5D PSF
may be possible from just 1 shot
in Seidel coefs & K defocus levels

practical modeling/inference of 5D PSFs

instead of modeling the PSF directly, model the aberrated rays

blur-equivalent arrangements

point-lens arrangements that send aberrated rays to identical pixels

Blur-consistent arrangements

point-lens arrangements that send aberrated rays to identical pixels

Blur-consistent arrangements

point-lens arrangements that send aberrated rays to identical pixels

approach: we characterize the space of blur-equivalent arrangements

i. the PSF integral

ii. the ray intersection function

iii. single-source inference

iv. multi-source inference

iv. preliminary experiments

blur formation model

complex function of lens params & defocus

ray-sensor intersections

simple 3rd order polynomial

vignetting function

 $\mathrm{d}x\mathrm{d}y$

intersection of discs

ii. the ray intersection function (for 3rd order Seidel aberrations)

ray intersection = perspective + defocus + aberration
$$\mathbf{a}(x,y) \qquad \qquad \mathbf{c} \qquad \qquad (x,y) \cdot D \qquad \mathbf{v}$$

ray intersection = perspective + defocus + aberration
$$\mathbf{a}(x,y) \qquad \qquad \mathbf{c} \qquad \qquad (x,y) \cdot D \qquad \mathbf{v}(x,y\!\!,\mathbf{c},D)$$

the Seidel displacement field

 $\mathbf{v}(x, y, \mathbf{c}, D)$

- 3rd order polynomial of pupil coordinates, perspective projection & defocus
- fully determined by 5 lens-specific aberration parameters

ray intersection = perspective + defocus + aberration
$$\mathbf{a}(x,y) \qquad \qquad \mathbf{c} \qquad \qquad (x,y) \cdot D \quad \mathbf{v}(x,y,\mathbf{c},D)$$

the Seidel displacement field

the ray intersection polynomial

$$\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ D \\ |c| \end{bmatrix} + \begin{bmatrix} 1 & D & D^2 & D^2 & D^3 \\ 0 & |c| & D|c| & 2D|c| & 3D|c|^2 \\ 0 & 0 & |c|^2 & 0 & 2D|c|^2 \\ 0 & 0 & 0 & |c|^2 & D|c|^2 \\ 0 & 0 & 0 & 0 & |c|^3 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \\ \Sigma_3 \\ \Sigma_4 \\ \Sigma_5 \end{bmatrix} \end{pmatrix}^T \begin{bmatrix} [x^2 + y^2](x,y) \\ (3x^2 + y^2, 2xy) \\ (x,0) \\ (x,y) \\ (1,0) \end{bmatrix}$$
 perspective & defocus aberrations pupil coords

$$\langle \mathbf{c}, D, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$$
 specific pupil aberration parameters
$$\mathbf{a}(x,y) \qquad \mathbf{c} \qquad (x,y) \cdot D \qquad \mathbf{v}(x,y,\mathbf{c},D)$$

iii. single-source inference

limits of local inference

what does 1 blur kernel in 1 photo tell us about the lens & the scene?

limits of local inference

what does 1 blur kernel in 1 photo tell us about the lens & the scene?

$$\langle \mathbf{c}, D, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$$

pupil radius ambiguity

Lemma: there is a blur-compatible solution for every R' > 0

$$\langle \mathbf{c}, D, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$$
 $\langle \mathbf{c}, D', R', \Sigma_1', \Sigma_2', \Sigma_3', \Sigma_4', \Sigma_5 \rangle$

depth & projection ambiguity

Lemma: there is a blur-compatible solution for every D', c' > 0

$$\langle \mathbf{c}, D, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$$
 $\langle \mathbf{c}', D', R, \Sigma_1', \Sigma_2', \Sigma_3', \Sigma_4', \Sigma_5' \rangle$

depth & projection ambiguity

Lemma: there is a blur-compatible solution for every D', c' > 0

$$\langle \mathbf{c}, D, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle \langle \mathbf{c}', D', R, \Sigma_1', \Sigma_2', \Sigma_3', \Sigma_4', \Sigma_5' \rangle$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ D \\ |c| \end{bmatrix} + \begin{bmatrix} 1 & D & D^2 & D^2 & D^3 \\ 0 & |c| & D|c| & 2D|c| & 3D|c|^2 \\ 0 & 0 & |c|^2 & 0 & 2D|c|^2 \\ 0 & 0 & 0 & |c|^2 & D|c|^2 \\ 0 & 0 & 0 & 0 & |c|^3 \end{bmatrix} \begin{bmatrix} \Sigma_1 \\ \Sigma_2 \\ \Sigma_3 \\ \Sigma_4 \\ \Sigma_5 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \\ 0 \\ D' \\ |c'| \end{bmatrix} + \begin{bmatrix} 1 & D' & D'^2 & D'^2 & D'^3 \\ 0 & |c'| & D'|c'| & 2D'|c'| & 3D'|c'|^2 \\ 0 & 0 & |c'|^2 & 0 & 2D'|c'|^2 \\ 0 & 0 & 0 & |c'|^2 & D'|c'|^2 \\ 0 & 0 & 0 & 0 & |c'|^3 \end{bmatrix} \begin{bmatrix} \Sigma_1' \\ \Sigma_2' \\ \Sigma_3' \\ \Sigma_4' \\ \Sigma_5' \end{bmatrix}$$

iii. multi-point inference

multi-local inference

what do K blur kernels in 1 photo tell us about the lens & the scene?

multi-local inference

what do K blur kernels in 1 photo tell us about the lens & the scene?

power of multi-local inference

Lemma: space of blur-consistent arrangements is discrete for K≥3

$$\langle \mathbf{c_1}, D_1, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$$
 $\langle \mathbf{c_2}, D_2, R, \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5 \rangle$

v. preliminary experiments

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20\mathrm{dof}, D + 20\mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

inference

- 1. choose the shot for a pair (D, D')
- 2. choose K blur kernels from that shot
- 3. estimate D' $\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5$
- 4. predict blur kernels for all depths

evaluation

compare predicted & ground-truth blur kernels

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20\mathrm{dof}, D + 20\mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

41 target positions

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20\mathrm{dof}, D + 20\mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

12x8 spatial position samples in ¼ field of view

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20 \mathrm{dof}, D + 20 \mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

12x8x41 blur kernels

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20\mathrm{dof}, D + 20\mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

inference (K=1)

- 1. choose the shot for a pair (D, D')
- 2. choose K blur kernels from that shot
- 3. estimate $\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4$
- 4. predict blur kernels for all depths

optimization

$$\max_{\Sigma_1 \cdots \Sigma_4} \mathbf{corr}(\mathbf{PSF}_{c,D',\Sigma_1 \cdots \Sigma_5}, \mathbf{PSF}_{data})$$

ground truth predicted

fitted depth = -20 DoF predicted depth = 20 DoF ground truth predicted

multi-point inference

ground-truth acquisition of 5D PSF

- 1. focus at depth D
- 2. for $D' \in [D \pm 20\mathrm{dof}, D + 20\mathrm{dof}]$ take narrow & wide-aperture shots estimate local blur kernels [Joshi 08]
- 3. repeat

inference (K>1)

- 1. choose the shot for a pair (D, D')
- 2. choose K blur kernels from that shot
- 3. estimate $D' \Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4, \Sigma_5$
- 4. predict blur kernels for all (D, D')

fitted depth = -20 DoF

ground truth predicted

fitted depth = -20 DoF predicted depth = 20 DoF predicted ground truth

quantitative evaluation (K=5)

Quantitative results for 3 different focus settings

concluding remarks

aberration & defocus blur give a great deal of info about the lens & scene

one-shot recovery of depth map & 5D lens PSF may be possible

modeling ray-sensor intersections easier & more general than modeling blur kernels directly

open problems

- blind estimation of blur kernels, depth & 5D PSF
- modeling mechanical vignetting
- accounting for changes in focus setting & zoom