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depends on depth & lens
1 photo — 4D scene-
dependent slice of PSF
hard to capture

hard to invert
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given K>1 blur kernels from one photo ...
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.. can we infer depth?
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... can we infer the full 5D PSF?




... can we infer the full 5D PSF?




... and can we infer the lens parameters?
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Key assumptions

3" order Seidel aberrations
geometric optics
rotationally-symmetric lens
>1 unknown lens elements
known optical center
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significant data acquisition,
limited inference power

blind/non-blind
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interaction w/ defocus
not well understood




direct aberration
measurement

. o ® 0 0 0 0 ¢ oo
e« 0 ¢ 0 0 0o 0o o @

[Liang et al 94][Ng & Hanrahan 06]

related work

empirical PSF blind/non-blind
modeling aberration correction
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depth from defocus

assumes aberration-free
Imaging

[Favaro 10]




related work

direct aberration empirical PSF blind/non-blind
measurement modeling aberration correction
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[Liang et al 94][Ng & Hanrahan 06] [Joshi et al 08][Kee et al 11] [Shih et al 12][Schuler et al 12]

requires physical significant data acquisition, interaction w/ defocus
access to camera limited inference power not well understood

inference from 1 physics-based model unified analysis of
aberrated photo of 5D PSF formation aberration & defocus




three main results

single-point inference

regardless of deblurring quality,
cannot predict lens blur at other
depths/image locations

multi-point inference

reconstruction of depth & 5D PSE e
may. be possible from just 1 shot > ambiguity
in Seidel coefs & K defocus levels

practical modeling/inference of 5D PSFs

instead of modeling the PSE directly,
model the aberrated rays




blur-equivalent arrangements

point-lens arrangements that send aberrated rays to identical pixels
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Blur-consistent arrangements

point-lens arrangements that send aberrated rays to identical pixels
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Blur-consistent arrangements

point-lens arrangements that send aberrated rays to identical pixels

point at

point at
depth D Y

approach: we characterize the space of blur-equivalent arrangements




I. the PSF integral

ii. the ray intersection function

iii. single-source inference

iv. multi-source inference

Iv. preliminary experiments




blur formation model

blur ray-sensor vignetting
kernel intersections function

W Jepecr|

complex function of simple 3" order intersection
lens params & defocus polynomial of discs




the ray intersection function
(for 3" order Seidel aberrations)
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ray intersection = + defocus +
a(x,y) (z,y) - D
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a(z,y)

/1' in-focus plane

ray intersection = + defocus +
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the Seidel displacement field

3"d order polynomial of pupil coordinates,
perspective projection & defocus

fully determined by 5 lens-specific
aberration parameters

ray intersection = + defocus +
a(z,y) (z,y) - D v(z,y,¢c,D)




the Seidel displacement field
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spherical

astigmatism field curvature

ray intersection =
a(r,y)

EQX

field distortion

+ defocus + aberration
(Zl?,y)D V(ZC,Q,C,D)




the ray intersection polynomial
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perspective & defocus pupil coords
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specific pupil
to pointadius

ray intersection = + defocus +
a(x,y) (z,y)- D




iii. single-source inference




limits of local inference

what does 1 blur kernel in 1 photo tell us about the lens & the scene?
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limits of local inference

what does 1 blur kernel in 1 photo tell us about the lens & the scene?
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pupil radius ambiguity

Lemma: there is a blur-compatible solution for every R’ > 0
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depth & projection ambiguity

Lemma: there is a blur-compatible solution for every D', =" > 0
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depth & projection ambiguity

Lemma: there is a blur-compatible solution for every D', =" > 0
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iii. multi-point inference




multi-local inference

what do K blur kernels in 1 photo tell us about the lens & the scene?
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multi-local inference

what do K blur kernels in 1 photo tell us about the lens & the scene?

cq, Y1, X9, X3, Jg, s)) 5 lens unknowns




power of multi-local inference

Lemma: space of blur-consistent arrangements is discrete for K>3
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v. preliminary experiments




single-point & multi-point inference

ground-truth acquisition of 5D PSF
1. focus at depth D
2. for D' € [D =+ 20dof, D + 20dof]
take narrow & wide-aperture shots
estimate local blur kernels [Joshi 08]
3. repeat

INEERE
: - 1. choose the shot for a pair (D, D')
B aaa00 2. choose K blur kernels from that shot
mechanical | o 3. estimate D’ ;. Y. Y5, 304 00

translational G o 4. predict blur kernels for all depths
stage k

evaluation
compare predicted &
ground-truth blur kernels




single-point & multi-point inference

ground-truth acquisition of 5D PSF
1. focus at depth D
2. for D' € [D =+ 20dof, D + 20dof]
take narrow & wide-aperture shots
estimate local blur kernels [Joshi 08]
3. repeat

41 target positions
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single-point & multi-point inference

ground-truth acquisition of 5D PSF
1. focus at depth D
2. for D' € [D =+ 20dof, D + 20dof]
take narrow & wide-aperture shots
estimate local blur kernels [Joshi 08]
3. repeat

12x8 spatial position samples in % field of view
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single-point & multi-point inference

ground-truth acquisition of 5D PSF
1. focus at depth D

2. for D' € [D =+ 20dof, D + 20dof]

take narrow & wide-aperture shots

estimate local blur kernels [Joshi 08]
3. repeat

12x8x41 blur kernels
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single-point & multi-point inference

ground-truth acquisition of 5D PSF

1. focus at depth D

2. for D' € [D =+ 20dof, D + 20dof]
take narrow & wide-aperture shots
estimate local blur kernels [Joshi 08]

3. repeat

inference (K=1)
i =4 1. choose the shot for a pair (D, D’)
S 2. choose K blur kernels from that shot

3. estimate 2.1, 209, 2.3, 24

mechanical ‘ :
translational E e o 4. predict blur kernels for all depths

stage

optimization

max corr(PSF. p y...5., PSFuut4)
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fitted depth =-20 DoF
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fitted depth =-20 DoF
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fitted depth =-20 DoF
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multi-point inference

ground-truth acquisition of 5D PSF
1. focus at depth D
2. for D' € [D =+ 20dof, D + 20dof]
take narrow & wide-aperture shots
estimate local blur kernels [Joshi 08]
3. repeat

inference (K>1)
: - 1. choose the shot for a pair (D, D')
R 2. choose K blur kernels from that shot
mechanical | " 3. estimate D’ 31,50y, 314,50, 50

translational L G o 4. predict blur kernels for all (D, D)
stage k




fitted depth =-20 DoF
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fitted depth =-20 DoF
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quantitative evaluation (K=5)

in-focus
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Quantitative results for 3 different focus settings
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concluding remarks

aberration & defocus blur give a great deal of info about the
lens & scene

one-shot recovery of depth map & 5D lens PSF may be possible

modeling ray-sensor intersections easier & more general than
modeling blur kernels directly

open problems
* blind estimation of blur kernels, depth & 5D PSF
* modeling mechanical vignetting
e accounting for changes in focus setting & zoom




