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Abstract

We present a study of memory errors pooling data from
several large-scale production systems. We analyzed
correctable and uncorrectable errors and their temporal
and spatial distributions. To the best of our knowledge,
this is the first large-scale study of production systems
with physical location of the error within chips. We found
that error rates are higher than traditional assumptions
and exhibit high degree of spacial locality. In a com-
modity cluster up to 10% of nodes can be affected by un-
correctable errors annually, and up to 15% of total lost
compute time can be attributed to memory-related node
outages. We confirmed that machines from similar hard-
ware platforms suffer the same aging trends. For cor-
rectable errors, we measured FIT values at 85000, which
is much higher than previous studies. We discovered that
errors are highly localized on a small number of nodes
and chips. We also observed degradation from less to
more severe errors, showing that 40% of single symbol
correctable errors worsen to double symbol errors over
time. We offer evidence to suggest such occurrences are
due to hardware errors being the dominate failure mode,
such as a bad row in the DRAM cell, whereas most pre-
vious work focuses only on soft errors.

1 Introduction and Motivation

The memory system is an important part in any com-
puter architecture. Specifically, Dynamic Random Ac-
cess Memory (DRAM) devices can be found in almost
any platform from mobile devices to data centres, yet
their reliability characteristics are not well understood.

DRAM is commonly sold as Dual-Inline Memory
Modules (DIMMs) that can be plugged into commod-
ity machines. Memory DIMMs are one of the most
common components to fail in modern day data cen-
tres [33]. When errors happen they threaten the stabil-
ity and correctness of the entire system. This has been

a topic of major concern and much research has been
dedicated to methods of protection from memory errors
[14, 18, 20, 41]. Memory controllers are almost always
equipped with error correcting codes (ECC) which has
limited ability to rectify some errors. Depending on the
recoverability by the ECC hardware, errors can be clas-
sified into correctable and uncorrectable errors (CE and
UE).

Memory errors can have serious impacts on the op-
eration of data centres. Uncorrectable errors can lead to
machine crash, shutdown, or pollute the data being stored
in memory. The details of error characteristics are not
well understood. As a result, system administrators typ-
ically rely on ”rules of thumb” for DIMM replacements
such as one UE or an arbitrary CE threshold. The opera-
tor and material cost, plus the cost of downtime is a huge
expenditure for data centres housing tens of thousands of
nodes.

Previous studies on memory errors were typically
conducted in lab environments, or from small-scale data
collections [23, 25]. Their assumptions are often not
suited to real systems and thus the applicability of these
results to production environments are uncertain. Bet-
ter understanding of memory errors from real-world data
could help the design of hardware and software tech-
niques and further research in this area.

Some questions we would like to answer are: How
common are memory errors? How are they distributed
over time and across the error hardware? What is the
likely cause of these errors? These questions are impor-
tant because the characteristics of errors influence the de-
sign of future memory systems, and can impact admin-
istration policies on current systems. Answering these
questions would allow us to identify problems in current
systems and increase the reliability of systems in general.

In this work, we focus on analyzing several datasets
from real-world large-scale systems. We look at the fre-
quencies of uncorrectable errors, node outage and lost
compute time. We also investigate the distribution of



correctable errors in time and across error hardware. Us-
ing error address information, we classify error instances
into different categories and provide evidence that hard-
ware failures are a significant source of errors.

The remainder of this paper is organized as follows:
Section 2 presents the background and related work on
memory errors, Section 3 describes the systems and the
types of logs we studied, Section 4 details the character-
istics of uncorrectable errors, Section 5 documents the
distribution of correctable errors, and Section 6 presents
the behaviour of failed devices. We conclude and outline
directions of future work in Section 7.

2 Background and Related Work

In this section we provide some background on memory
errors and their mitigation. We summarize the conven-
tional error categories, correction techniques, and previ-
ous work analyzing failure data. The effectiveness of the
hardware and software used to deal with memory errors
is dependent on their characteristics, which is the under-
lying motivation for our work.

2.1 Sources of Memory Errors

There are many potential sources for memory errors. It
has been long understood that alpha particles in the oper-
ating environment can penetrate chips and significantly
alter the charge of a single storage cell to causes a ”bit
flip” [26]. Traditionally these errors have been classi-
fied as soft errors since their occurrences tend to be iso-
lated and random with no lasting effects. Alternatively,
physical defects can also cause errors on DRAM chips.
Defects may be introduced during fabrication or through
material degradation over the lifetime of the chip. Weak-
ness in the silicon layers can cause leakage and failure in
the circuitry of the cells. Since the defect resides in hard-
ware, it is likely that these errors will manifest repeat-
edly. The reoccurring errors have typically been named
hard errors. However, some hard errors may be more
appropriately termed intermittent errors since the mani-
festation is not always guaranteed [12].

The majority of previous work focuses on the as-
sumption that soft errors are the dominate form of errors
in memory systems. However, we offer evidence to sug-
gest that hard errors contribute a significant amount of
errors in large-scale systems.

2.2 Error Detection and Correction

As a result of discovering errors in the memory subsys-
tem, algorithms have been devised to recover data that
have been corrupted. The basis for error correction codes

(ECC) is the XOR logic operation. The most basic en-
codings utilize XORs to compute the parity (number of
0s and 1s) of a given byte, and that information allows
detection of single bit flips. Building on the theory of fi-
nite fields, more complicated encoding schemes were de-
veloped that corrects single-bit and detects double-bit er-
rors (SEC/DED). Similar ECC techniques are employed
in different levels of cache and throughout the memory
hierarchy.

Recently, more complex schemes were proposed to
provide stronger correction capabilities. IBM offered
the ”Chipkill” algorithm to tolerate failures of an entire
DRAM chip [14]. The bits from DRAM chips are or-
ganized into the error correction symbols such that the
failure of an entire chip is contained and recoverable.
Some systems are designed with spare bits so they can
be used instead of the failed chips (Redundant Bit Steer-
ing). More details on these techniques can be found in
the literature [20].

Based on the ECC employed by the system, errors
can be classified into correctable and uncorrectable er-
rors (CE and UE). Correctable errors are silently handled
by the memory controller. The error bits are recovered
using ECC and the memory request is fulfilled. How-
ever, even though the system can continue to execute,
if the ECC logic is required for many memory accesses
it is possible to perceive decreased performance. Alter-
natively, if ECC is unable to correct the error, the system
raises an exception and execution is typically halted. Un-
correctable errors lead to machine crashes or shutdowns,
and are a major concern for large-scale systems. Note
that the nature of the error (hard/soft/intermittent) is or-
thogonal to its recoverability.

Redundancy via multiple DIMMs have also been
suggested to increase reliability. Spare DIMMs are in-
cluded in the system to be used when the main DIMMs
break down [18]. ”Mirroring” techniques are also of-
fered which keep synchronized copies of entire DIMMs
in the system [22]. These approaches are similar to basic
hard drive RAID systems and suffer the same shortcom-
ings. Example trade-offs are lower memory capacity and
increased operating costs from redundant components.

Modern systems have varying degrees of ECC ca-
pabilities. Personal desktops and laptops often have no
ECC hardware at all. Commodity servers usually have
basic ECC built-in (SEC/DED), and better protection
such as mirroring is offered for higher-end servers. Com-
plex algorithms such as Chipkill are usually reserved for
systems where reliability is a major concern or for spe-
cialized hardware such as Blue Gene.

Researchers and hardware manufacturers have con-
tinuously proposed new concepts to tolerate failures and
increase the reliability of memory systems. Intel recently
began offering the ”hwpoison” mechanism to mark bad
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memory pages to allow attempts at recovering the run-
ning system [7]. Other approaches allow isolation of er-
ror pages or strengthen the encoding for selected parts of
memory, but require special hardware or target different
system architectures [21, 41].

2.3 Proactive Mechanisms

To reduce the chances of errors occurring in deployed
systems, memory tests have been devised as a proactive
way to verify the correctness of components. Memory
components are exercised by a large number or reads and
writes. Special access patterns are designed to expose
potential weaknesses in the silicon. Random patterns are
also used for additional test case coverage.

The memory DIMM is tested multiple times
throughout its life cycle. Manufacturers actively test
their products prior to shipping. Specialized machinery
is used to test DRAM chips and sort them into differ-
ent product grades. There are also testers for assem-
bled DIMMs. However, these testers exercise the de-
vice under test independently and not while the DIMM
is plugged into the system. Data centres typically em-
ploy a ”burn-in” process for new systems, in which the
system is stressed to filter out faulty components before
commercial deployment.

Specialized software have been written to facilitate
memory testing without requiring the DIMMs to be re-
moved from the main board. The popular Memtest86
software is commonly used to test for memory errors
[11]. These testers aim to cover the entire memory ad-
dress space, and as such require the machine to be booted
into their environment.

Software can also be written to test memory in user
space. A program can try to allocate and exercise large
amounts of memory to test for errors [30]. However, this
approach is subjected to the memory allocation limits
and policies of the operating system.

Many chipsets support memory ”scrubbing”, which
is a background hardware check of memory contents.
The typical scrubbing pace is slow to avoid performance
impacts. The scrubbing parameters and functionalities
are largely dictated by hardware vendors [6].

2.4 OS Mitigation Mechanisms

Operating systems have different mechanisms for mon-
itoring and isolation of potential bad memory pages.
The Linux Error Detection and Correction (EDAC) mod-
ule displays ECC summary information from supported
memory controllers [38]. Using data gathered from
EDAC, administrators can decide whether to remove
pages in memory to avoid faulty addresses. The Linux

BadMEM patches and the ”memmap=” boot-time argu-
ment allow memory page isolation or truncate the mem-
ory region available to the system [2, 31]. The Solaris op-
erating system can ”retire” memory pages that it deems
faulty and migrate the contents to other healthy pages
[37]. AIX offers ”dynamic reconfiguration” of memory
which allows for addition or removal of large chunks of
memory, which may also be used to avoid memory ar-
eas with hardware faults. Online memory hotplugging
for Linux is also under development, which also allows
removals of large sections of memory [5].

In virtualized environments, several memory man-
agement techniques such as ballooning and hotplug, al-
low the hypervisor to limit the memory capacities of the
guest machines [32, 39]. It is possible to use these mech-
anisms as a method to mitigate memory errors. Recent
efforts have been made targeting guest operating systems
by using page replacement or live virtual machine migra-
tion [15]. Nevertheless, these approaches are typically
not applicable to the hypervisor (Domain 0) or the kernel
and thus cannot offer protection for these areas.

2.5 Failure Data Analysis

Several previous studies of DRAM failure data have been
published [23, 25, 24]. However, the data source are lim-
ited to a small number of production servers or controlled
lab environments. Schroeder et al. analyzed data from
a large fleet of production machines, but unfortunately
only contains per DIMM error counts, and not location
information such as the error address [34]. Therefore the
characteristics of the errors within chips are not avail-
able.

Haque and Pande published a large-scale study on
memory used by graphics processing units (GPUs) [17].
Although the application is different, the basic DRAM
hardware is identical. The authors conclude that GPUs
do exhibit memory errors and manufacturers should in-
clude ECC capabilities on graphics cards.

There is a large body of work on reliability of sys-
tems in general. Supercomputer logs have been previ-
ously studied to better understand the internal workings
of these systems [27]. Failures in these systems have
been investigated, though in a more general sense [33].
Much work has focused on the reliability of storage sys-
tems [9, 8, 29, 33]. Reliability of internet services have
also been studied [28]. This work complements existing
research by providing a detailed look at failures related
to the memory components with location information.

Significant work has been done on fault injection
and sensitivity analysis for OS and programs in execu-
tion [10, 13, 36, 35, 40]. For example, Yim et al. exam-
ined different objects in memory and recovery methods
[40]. David and Campbell suggest several techniques for
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OS recovery [13]. This paper focuses on the causes of
these events, rather than the manifestation which are the
errors in execution.

3 Data Sources

In this section we briefly describe the architecture of the
systems we investigated, and the types of data we ob-
tained from each source. Due to the varying nature of
the logs, we made different assumptions for their analy-
sis. We describe our methods to identify memory errors
from these different logs.

3.1 Los Alamos National Lab

Our first data source is Los Alamos National Lab
(LANL). LANL has made failure data from their systems
publicly available [3]. The failure data contains infor-
mation for over 20 high-performance computing (HPC)
systems spanning nine years. Most of these systems
are clusters of commodity systems (symmetric multipro-
cessing or SMP) with regular ECC. Selected systems
with Non-Uniform Memory Access (NUMA) architec-
tures are also present. The detailed system configurations
are described in Table 1.

The logs we obtained include node outage data for
all systems from 1996 to 2005. While all failures that
led to node outages are recorded in the LANL logs, we
were able to identify memory-related failures since the
root cause of each node outage is included. Using the
root cause information, we can make the assumption that
uncorrectable errors occurred on a node with memory-
related outages. We attribute each outage caused by
DRAM as one UE on the node. It is possible that we
are underestimating since not all UEs will cause node
outages. We also obtained job logs from one of the sys-
tems to estimate the job interruptions caused by memory
errors.

3.2 Argonne National Lab

The second data source is Argonne National Lab (ANL).
We obtained data collected from their IBM Blue Gene/P
(BG/P) system. The BG/P system totals 40,960 nodes,
each with an identical 2 GB of memory. These cus-
tomized nodes have 40 memory chips directly soldered
on to the board instead of commodity memory DIMMs
[1]. This design requires replacement of the entire node
when DRAM chips or other on-board components re-
quire replacement.

The BG/P system implements several advanced
ECC features that are designed to increase the reliability
of the memory system. Extra bits are included to act as

spares and parity address bits, and Chipkill is employed
to tolerate the failure of an entire DRAM chip [19].

The BG/P system has an extensive reliability, avail-
ability, and serviceability (RAS) logging infrastructure.
We obtained RAS logs for roughly one year. This sys-
tem records instances of correctable and uncorrectable
errors.

The BG/P RAS logs specifically record information
about UEs in several categories. In addition to the direct
reporting of UEs, the messages for machine check ex-
ceptions raised by the DDR controller were also treated
as sources of uncorrectable errors.

CEs are reported at the granularity of individual jobs
since logging all occurrences may lead to unacceptable
overheads. At the end of each job, the total number
of correctable errors encountered during execution is re-
ported for each node (capped at 65,535). We use this in-
formation to study the distribution of correctable errors
over time and at the node level.

Additionally, the first instance of correctable errors
on an address is reported immediately during job execu-
tion, and during the regular diagnostics check executed
on the system. The immediate reports, although an un-
derestimation of the total errors, contains the information
of the faulting address and the originating DRAM chip.
We use this information to study distributions at the chip
level and within error chips.

3.3 SciNet Consortium
Our third data source is SciNet, one of the largest clusters
in Canada that provides computing facilities available to
researchers at University of Toronto and affiliated hospi-
tals [4]. The General Purpose Cluster (GPC) at SciNet
contains 3,780 nodes, each with 16 GB of memory.

We obtained parts replacement data from this sys-
tem which is manually entered by an administrator when
broken hardware is replaced. The replacement log we
obtained spans approximately one year. In conversa-
tion with the administrators, the standard practice is to
replace DIMMs when they have had an UE (or unusu-
ally high number of CEs). We assume that each memory
DIMM replacement was a result of at least one uncor-
rectable memory error. These numbers are believed to be
relatively accurate (if not underestimating) to the number
of UEs in the systems.

At present we are actively working with SciNet to
further monitor their system for memory errors. We hope
to include the results in future studies.

4 Uncorrectable Errors

We begin by studying the characteristics of uncorrectable
errors since it is the most severe category of memory er-
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Table 1: Node outage due to memory errors and FIT in LANL, ANL, and SciNet systems, LANL systems are numbered similar
to the CMU paper [33]. Most LANL systems have between 3% and 10% nodes affected annually, with the exception of some
platforms (G/H). The Argonne BG/P have significantly less nodes affected by UEs. However, the error rate per MB per year is
relatively similar between systems.

System Overviews Statistics
Source System HW Prod Nodes Node Obser. # UEs Affected Affected # UEs

Type Date Memory Time Nodes Nodes /MB /Yr
(GB) (Years) (Total) (/Yr)

LANL

4 D Apr 01 164 1 GB 4.4 51 19 3% 6.84E-05
5 E Sep 01 512 16 GB 3.8 386 179 9% 1.22E-05
6 E Dec 01 128 16 GB 0.3 5 4 10% 7.29E-06
7 E May 02 1,024 16 GB 3.4 567 316 9% 1.01E-05
8 E Oct 02 1,024 16 GB 2.9 204 127 4% 4.13E-06
9 E Sep 03 128 4 GB 2.0 10 10 4% 9.42E-06
10 E Sep 03 128 4 GB 2.0 14 11 4% 1.32E-05
11 E Sep 03 128 4 GB 2.0 19 16 6% 1.79E-05
12 E Sep 03 32 16 GB 2.0 3 3 5% 2.83E-06
13 F Sep 03 128 4 GB 2.0 16 11 4% 1.51E-05
14 F Sep 03 256 4 GB 2.0 64 39 8% 3.01E-05
15 F Sep 03 256 4 GB 2.0 70 45 9% 3.30E-05
16 F Sep 03 256 4 GB 2.0 66 38 7% 3.11E-05
17 F Sep 03 256 4 GB 2.0 51 39 8% 2.40E-05
18 F Sep 03 512 4 GB 2.0 70 36 3% 1.65E-05
19 G Dec 96 16 32 GB 5.8 159 16 17% 5.23E-05
20 G Jan 97 49 128 GB 8.7 1,080 48 11% 1.94E-05
21 G Oct 98 5 128 GB 6.9 52 5 14% 1.14E-05
22 H Nov 04 1 1,024 GB 0.9 24 1 100% 2.67E-05

ANL Intrepid BG/P Nov 07 40,960 2 GB 1.0 1501 32 0.078% 1.79E-6
SciNet GPC IBM Jun 09 3,780 2 GB 1.5 1562 51 0.93% 2.20E-5

1Some nodes have repeated UEs, later analysis only counts one UE per node
2156 replacements, but only 63 entries contains node information
3Replacement dates, may not reflect error date

rors. When errors occur in memory, program code and/or
data is corrupted. If the errors are not corrected, it is
highly possible to have the errors taint the execution of
applications or even the kernel. We analyzed the logs de-
scribed in Section 3 to gain insight to the characteristics
of uncorrectable errors. In the remainder of this section,
we show the characteristics of UEs based on the counts
extracted from the node outage, raised exception and re-
placement data stated in Section 3.

4.1 Nodes Affected

We calculated the fraction of nodes affected and the in-
cident rate of memory errors. Table 1 lists the nodes
affected and frequencies of UEs for LANL, ANL, and
SciNet systems. The left half is the overview of the
system platforms and configurations, and the right half
presents the node and UE statistics.

We start by looking at the LANL data. It is clear that
most LANL systems have between 3% to 10% of nodes

affected by memory errors annually (platforms D, E and
F). The hardware platform G and H are exceptions (17%,
11%, 14%, and 100%). They are systems with NUMA
architectures. The per node memory capacities and pro-
cessor counts are significantly larger for these node con-
figurations and thus the percentage of affected nodes is
skewed.

The SciNet GPC has a slightly lower node error rate
than LANL systems, but this may be due to the coarser
granularity of data and the fact that not all UEs may lead
to immediate replacement.

The ANL BG/P, on the other hand, has a signifi-
cantly lower node error rate than the rest of the systems.
There are two possible reasons for this. First, while BG/P
contains many more nodes, this can be attributed to the
usage of Chipkill ECC and other redundancy methods.
Since correctable errors are well-documented in this sys-
tem, it may also be possible that replacement is done well
before a node develops UEs. Secondly, it is interesting
to note that the node UE rates are slightly higher than
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Figure 1: Error per MB per year for observed systems.

those found in [34], where the workload for the systems
is not as compute and memory intensive. This could be
attributed to higher memory utilization in our systems,
it is possible that fewer errors were discovered in [34]
simply because memory was not exercised as often.

Even though per node UE rates are different for each
dataset, the error rate per MB is mostly consistent across
all systems, which shows that even though affected nodes
may vary, UE occurs at a similar rate for these systems.
This is likely because these systems use the similar un-
derlying DRAM technologies. Figure 1 plots the UE rate
for the systems. The ANL BG/P maintains the lowest
UE rate per MB per year, roughly one order of magni-
tude better than the worst systems, this may be attributed
to stronger the ECC protection.

4.2 Hardware Platform and Aging
Next we investigate how errors are distributed over time.
Understanding the distribution of errors over time may
help us predict when errors are likely to occur. Fig-
ure 2 shows the cumulative distribution function (CDF)
of memory-related node failure for several systems. Each
plot corresponds to a different hardware platform.

We observe that there are similarities within each
hardware platform. However, different platforms have
different aging characteristics.

The top left plot is for hardware type E in LANL
systems. While the observation period for the systems
is not uniform, trends can be spotted for systems with
longer observation time. Systems 5, 7 and 8 show very
stable failure rate for first 15 months, then the failure
rates ”level off” after 18 to 25 months. The similarity
within one hardware platform can be best illustrated by
the top right of Figure 2, which plots the failure CDF

Table 2: Node outage to job failure matching. (Top ) Using the
time window criteria. Majority of matched results are within
the 5 minute window. (Bottom) Using both time window and
node number. Majority of matched results are also within the 5
minute window. Memory-related job failures account for over
10% of failed jobs.

Time Matched Memory Memory
Window (s) Count Related %

300 467 41 9%
600 592 43 7%

1,800 793 55 7%
3,600 993 58 6%
7,200 1,066 62 6%

Time Matched Memory Memory
Window (s) Count Related %

300 252 38 15%
600 289 41 14%

1,800 358 49 14%
3,600 388 49 13%
7,200 437 52 12%

for hardware F. All the systems in this hardware platform
have a significant increase in failure rate after 13 months.
The bottom left plot shows hardware group G, which has
a different architecture than the rest of the LANL sys-
tems (NUMA vs SMP for other systems). The failure
rates over their long observation periods are fairly steady.
The bottom right plot shows the CDF of UE for ANL
BG/P. While it is difficult to conclude the aging effect on
this system due to the limited observation time and data
points (only months 21-33 since deployment), we can see
that the trend is steady within the observation period.

4.3 Job Failure and Lost Compute Time

To establish a perspective on how memory errors im-
pact the users of a system, we would like to estimate the
compute time lost due to a memory-related job crash.
Recall that an UE may potentially lead to node shut-
down. For this purpose we obtained job logs for sys-
tem 5 from LANL. These logs contain the job exit status
and we matched them to node outage data. The sim-
plest matching criterion would be the timestamps of the
events. Matching was also done using a combination of
timestamps and event node information. Different time
windows were used and it was found that 5 minutes was a
reasonable time window for matching failed jobs to node
outages. Figure 3 shows the CDF of matched events vs
their matched time window.

Table 2 lists the count of matched events for differ-
ent criteria. Even though the total matched events in-
crease as the time window lengthens, the total number of

6



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time since deployment (Months)

F
ra

ct
io

n 
of

 U
E

s

CDF of Node Outage vs Time for LANL Systems (HW E)

 

 

5

6

7

8

9

10

11

12

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time since deployment (Months)

F
ra

ct
io

n 
of

 U
E

s

CDF of Node Outage vs Time for LANL Systems (HW F)

 

 

13

14

15

16

17

18

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time since deployment (Months)

F
ra

ct
io

n 
of

 U
E

s

CDF of Node Outage vs Time for LANL Systems (HW G)

 

 
19
20
21

20 22 24 26 28 30 32 34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time since deployment (Months)

F
ra

ct
io

n 
of

 U
E

s

CDF of UE vs observation time

Figure 2: Distribution of node outages over time for LANL and Argonne systems. (Top left) Systems with hardware type E. For
some systems with more data there is a slight rate-decrease after 22 months. (Top right) Systems with hardware type F. There is a
clear trend of increased failure rate after 13 months. (Bottom left) Systems with hardware type G which is older. Failure rate over
a long time is relatively steady. (Bottom right) Node UE rate for BG/P vs time, limited to the observations between month 21 to 33
since system deployment. The overall trend is steady.

Figure 3: Results of matching job failed status with node outage for LANL system 5: CDF of match results vs the time difference.
This matching was done using a very long window. The majority of memory-related errors happen within 5 minutes of node failure.
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Table 3: CPU and real time lost due to outages for different matching methods. Memory-related job failures account for at least
15% of lost computing time.

Match Method CPU Time CPU Time Real Time × Real Time ×
/ Outage Type Total (s) Median (s) CPU Total (s) CPU Median (s)
Time Only, All 413,665,817 975 519,480,711 90,560
Time Only, Memory 74,569,673 452,434 78,828,852 540,160
Memory % 18% 15%
Time+Node, All 353,121,227 212,504 435,003,699 495,280
Time+Node, Memory 74,389,162 677,726 78,585,148 876,864
Memory % 21% 18%

matched memory events stay relatively the same. This
supports the fact that the majority of memory-related
node outages can be matched to a job failure in a very
short period of time.

Based on the failed jobs that were matched to mem-
ory events, we estimated the computing time lost due
to memory errors, assuming no checkpointing was done
and the the entire job has to be started over. Table 3
shows the lost compute time due to memory errors. Cal-
culation was done using both the reported CPU time
and the real time. While job failures are rare in gen-
eral (1,800 jobs failed out of 300,000 submissions), the
amount of lost compute time can still be significant since
these are typically long jobs running across a large num-
ber of nodes. Nevertheless, it is clear that memory errors
are responsible for at least 15% of the total lost compute
time for system 5. Reducing the amount of memory er-
rors can have an impact on job throughput.

5 Correctable Errors

After studying the characteristics of the uncorrectable er-
rors, we turn our attention to the correctable errors. We
look at temporal and spacial correlations between cor-
rectable errors. Understanding correlations of CEs is im-
portant in practice since it is more difficult for ECC al-
gorithms to correct them if they are correlated in space
or time. Correlation between correctable errors may also
be indicators of hardware failures (rather than soft er-
rors). While they do not immediately lead to machine
crash or shutdown, repeated occurrences of correctable
errors may increase the access time of DRAM (since
ECC needs to be invoked for every access) or develop
into uncorrectable errors in the future. We seek to under-
stand the likelihood of CEs developing into UEs, and try
to offer some insight to the nature of the error (hard/soft).
We also wish to gain knowledge that would perhaps al-
low us to predict errors in the future.

We obtained ANL BG/P logs which contain entries
for correctable errors. Several types of CE instances
were recorded: single symbol, double symbol and chip-

kill CEs, where a symbol is 3 bits wide. Additional fields
were collected to help identify the origin of the error: the
error node, chip, and physical address. The first instance
of a CE during execution of a job is reported along with
the corresponding chip and address information. How-
ever, further CEs on the same location are not reported
for the remainder of the job. At the end of each job, a
summary message is reported stating the total number
of CEs for each type that occurred. The summary mes-
sages, which are capped at 65,535, provide a more real-
istic estimation of the number of errors on a node than
the first instance reports. For analyzing distributions at
the chip level, we use the first report instead since the
summary messages do not contain individual chip infor-
mation. Therefore the total number of errors identified at
the chip level is smaller than that at the node level. How-
ever, we believe that this does not significantly alter the
trends in the distributions.

In the remainder of this section, we discuss the char-
acteristics of correctable errors based on their distribu-
tion over time, across the error nodes and DRAM chips
within nodes.

5.1 Summary Characteristics

The severity of correctable errors depends on the num-
ber of bits that required correction. In the most common
case the error bits are contained within one symbol, or
the unit for computing the ECC syndrome. More severe
errors involve more ECC symbols and happen less often.
The BG/P is a specially designed system and supports
correction of single- and double-symbol errors, where a
symbol is 3 bits wide. The bits on the memory bus are
also arranged such that the failure of an entire DRAM
chip is correctable - Chipkill correctable error. One rea-
son for having strong ECC capabilities in the system is
the difficulty in replacement. The DRAM chips are sol-
dered directly on the node card and cannot be replaced
without swapping the entire node card.

First we present some high level statistics for CEs
in the BG/P system. One measure of reliability of de-
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Table 4: Summary of correctable errors statistics during observation period

Error Total FIT Error Node Chip Nodes Mean Median
Type Errors /MBit /MBit MTBF MTBF Affected Errors Errors

/Yr (Hrs) (Hrs) (/Yr %) /Node /Node
Single 383,530,603 51,210 0.46 0.95 38 868 (2.12%) 441,855 16
Double 167,611,259 22,380 0.20 2.18 87 438 (1.07%) 382,674 40
Chipkill 82,762,974 11,051 0.10 4.42 177 404 (0.99%) 204,858 45
All 633,904,836 84,641 0.76 0.58 23 999 (2.44%) 634,539 26

vices is the mean time between failures (MTBF). Often
the mean time to the first failure (MTTF) is also of inter-
est, but since we did not observe the BG/P system from
the beginning of its lifetime, it is impossible to know if
errors happened prior to the start of our observation.

Memory errors can also be measured by Failures in
Time (FIT), which is the number of failures per billion
device hours per MBit. The FIT values reported in lit-
erature range from hundreds to tens of thousands FIT
per Mbit. A source of discrepancy between the reported
numbers could be due to inclusion of hard or soft errors
in the particular measurements [23, 24, 34]. The cor-
rectable errors present in our logs could be either hard or
soft errors as the system has no way to distinguish the
root cause.

Table 4 lists the CE statistics for different error types
at the node level. Single symbol errors are the most dom-
inate CEs on nodes with 383,530,603 occurrences, and
the event counts decrease for stronger ECC. Looking at
the annual error rate per MBit and nodes affected and
comparing to similar measures in Table 1, we can see
that the incident rate of CEs is much higher than UEs.

The FIT values we obtained are comparable to those
found in [34] which was also a study on large-scale pro-
duction systems, but different to some others [23, 24]
which were smaller or laboratory studies. This translates
to a fairly low MTBF at the node level, but slightly higher
at the chip level since there are 40 DRAM chips per node.
Furthermore, the logs we collected capped the count of
CEs at 65,535, therefore the totals presented here may
be an underestimation. Lastly, it is important to point out
each ECC symbol in the BG/P system is 3 bits wide, and
thus a single symbol may in fact contain multi-bit errors.

5.2 Temporal Characteristics

While the FIT and MTBF numbers provide an overview
of the CEs that happen in the system, we would like to
understand how these errors are distributed in time and
see if there are trends to when the errors happen, per-
haps allowing us to predict errors based on job run time
or system age. Figure 4 plots the CDF of errors over the
observation period. The x-axis denotes the months rel-
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Figure 4: CE distribution for different error types over the ob-
servation time period.

ative to system production time. We can see that error
rates for different CE types are in fact not uniform. The
error rates for all CEs begin to level off around month
23. The rate for single symbol errors is steady thereafter,
but double symbol and Chipkill CE rates begin to climb
again after 31 months before flattening out at month 32.
This suggests clustering of errors of these two types. An-
other possible explanation is that jobs were running for
long periods of time and reported their CE counts near
each other, but this is hard to tell without assembling the
complete job history. It is also important to point out that
do not know the error rates for the system before the start
of our observation.

5.3 Error Distribution Across Nodes

While we see that the distribution of CEs is not uniform
in time, it is also important to know how they are physi-
cally distributed on the hardware. This can help us design
better prediction or mitigation techniques using any spa-
cial locality that may exist. We first look at how CEs are
distributed across the error nodes, then look at the chips
within each node.
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Figure 5: Error distributions with respect to error nodes (Left) Distribution of errors across error nodes - x-axis is fraction of error
nodes for each type, y-axis is cumulative fraction of all errors of that type (Centre) CDF of error frequencies of error nodes - x-axis
is number of errors of a certain type on a single node, y-axis is cumulative fraction of all error nodes of that type. i.e. P(node has
≤ X number of errors) (Right) Distribution of error frequencies per error node
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Figure 6: Distribution of number of error chips per error node.
Over 80% of the chips only have one error chip.

Table 4 gives the number of error nodes for each CE
type, as well as the mean and median errors per error
node. The number of error nodes is very small compared
to the total number of nodes in the system. The high
mean and low median suggest a rather uneven distribu-
tion of CEs between the error nodes.

Figure 5 presents the distribution of CEs with re-
spect to the error nodes of corresponding error types.
The leftmost graph plots the cumulative fraction of CEs
against the fraction of error nodes. For example, the
point (x, y) represents that x fraction of error nodes ac-
count for total y fraction of errors. For all the error types,
we find that over 90% of the errors are located in 5% of
the nodes. The heavy concentration suggests that these
nodes may in fact have hardware failures.

The concentration of errors is further confirmed by
the center graph in Figure 5, where we plot the CDF of

node error counts. The top 20% of error nodes of each
type contains hundreds to millions of errors. The node
histogram for different ranges of error counts is shown
in the rightmost plot of Figure 5. For all CE types the
most common case is between 10 and 99 errors on the
same node.

The distribution of errors within nodes suggest that
errors are highly localized and a small portion of nodes
are responsible for a large number of CEs. This leads us
to believe that the errors are caused by faulty hardware
rather than random external events.

5.4 Error Distribution Across Chips

To investigate the exact location of errors within a node,
we extracted information about the chip where the error
occurred. The summary messages at the end of each job
does not contain location information for each error. We
resort to the first report of each address during job execu-
tion. This causes us to underestimate the total number of
errors that occurred, however, we can still identify repe-
tition on the same address across jobs.

Figure 6 shows the breakdown of nodes according
to the number of error chips. The plot clearly indicates
that over 80% of error nodes only contain a single error
chip. Further confirming that errors are highly localized
at the chip level. What we see as an error node is often a
single error chip within that node.

After discovering that the errors are highly localized,
we focused on how errors are distributed across chips.
Table 5 lists the error characteristics at the chip level. As
expected, the number of error chips is very close to the
number of error nodes. The number of chips with double
symbol errors is slightly higher due to the fact that the
double symbol error may be across two chips. Chipkill
errors are not included here because the algorithm can
only identify two potential error chips without certainty.
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Figure 7: Error distributions with respect to individual error chips (Left) CDF of errors across chips - x-axis is fraction of error
chips for each type, y-axis is cumulative fraction of all errors of that type (Centre) CDF of error frequencies on error chips - x-axis
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Table 5: Summary of error chip characteristics, Chipkill errors
are excluded since it is uncertain which of 2 possible chips gen-
erated the error

Error Type Error Chips Mean Median
Single 1,018 154 7
Double 384 64 8
Either 1,208 151 7

The mean and median values are also very close to nodes
with the same type of CE. This suggests that the error
distribution across chips is similar to that of nodes.

We plotted the CE distribution over the population
of error chips using the same methods in Figure 5. The
three graphs in Figure 7 confirms that the distribution of
errors across chips is has the same property to the dis-
tribution across nodes. The left plot of Figure 7 shows
that over 80% of the errors (one type or overall) orig-
inates from 20% of chips. The centre plot of per chip
error counts also closely resembles the case for nodes,
with the hundreds and thousands of errors originating
from the top 20% of error chips. Lastly, the right plot
showing the fraction of chips in each tier of error count
is roughly even over the log-scaled categories, slightly
different than those on nodes. The localization of er-
rors is not as extreme at the chip level because the log
messages recorded less error counts than that at the node
level. However, the property of the distributions remain
similar.

The CE distributions at the node and chip level
yielded interesting results. The reported errors origi-
nate from a small percentage of nodes and chip. Con-
sequently, these devices also have high number of errors.
We believe hardware failure is responsible for extremely
large number of recurring errors, and investigate these
errors within chips further in Section 6.

5.5 Degradation
The BG/P RAS logs contain different types of cor-
rectable errors as well as uncorrectable errors. In addi-
tion to looking at these error classes individually, we can
also analyze the progression from one type of error to
another. It would be useful for system administrators to
identify potentially faulty hardware before uncorrectable
errors happen.

To determine the accurate timestamp of messages,
we used the first instance report of errors during job exe-
cution. For any particular error, we look for degradation
by searching for another error on the same node within
a specified time window. Table 6 lists the breakdown
of different degradation scenarios for various time win-
dows. In particular, we studied the degradation scenarios
where more severe errors develop after encountering less
severe errors on the same node. For example, 22.66% of
single symbol errors are followed by at least one double
symbol error within one day.

From Table 6, we can see that single symbol errors
have a good probability of eventually developing into
double symbol errors on the same node, ranging from
22.66% to 44.86% depending on the time window. The
probability of single symbol errors further developing to
more severe errors is much lower, although not to be dis-
regarded due to the large number of errors that happen in
the system.

Degradation also exists from double symbol errors.
The probability of developing Chipkill errors after dou-
ble symbol errors increases from 4.66% to 25.78% for in-
creasing time windows. Double symbol errors also have
a higher likelihood of developing into UEs. This may
be because double symbol errors can be spread across
two chips, which may each develop further errors and
become uncorrectable even by the Chipkill algorithm.

An interesting fact is that we found no cases of Chip-
kill errors leading to uncorrectable errors. This may be
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Table 6: Probability of different error degradation scenarios at different time windows

Time Window (days) 1 7 14 30 60 90 ∞
Single symbol to double symbol 22.66% 32.03% 36.41% 39.76% 41.78% 42.67% 44.86%
Single symbol to Chipkill 0.57% 2.09% 2.90% 3.42% 3.75% 3.84% 4.19%
Single symbol to UE 0.02% 0.03% 0.03% 0.03% 0.03% 0.03% 0.04%
Double symbol to Chipkill 4.66% 15.99% 19.41% 23.63% 24.48% 24.69% 25.78%
Double symbol to UE 0.47% 0.60% 0.62% 0.62% 0.63% 0.63% 0.70%
Chipkill to UE 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Any CE to UE 0.08% 0.11% 0.11% 0.11% 0.11% 0.11% 0.13%

Table 7: Breakdown of chip error counts and unique error addresses. (Left) Breakdown of BG/P error chips according to number
of errors on chip. (Right) Breakdown of chips with multiple errors by number of unique error addresses.

Chip Type Count Percent
Single error on chip 332 27.5%
Multiple errors on chip 876 72.5%
Total 1,208 100%

Chip Type Count Percent
Single unique error address 401 45.8%
Multiple unique error addresses 475 54.2%
Total 876 100%

due to the small number of nodes recorded for both cases,
as the degradation to UE from other scenarios is also
small. Nevertheless, an entire chip failure may not be-
come any more severe until some other chip has an error.

For all the time windows, we see that one or two
weeks is a usually a fair approximation of the probabil-
ities of developing further errors. This also means that
degradation is not likely to happen over very long peri-
ods of time and can be detected relatively quickly when
it happens.

Overall, we observe that there is some degradation
from one form of CE to a more severe form in a short
time. However, the degradation to uncorrectable errors
is much less likely. The is likely due to the fact that the
strong ECC is implemented to correct errors from one
source chip. The nodes with potentially more than one
error chip (double symbol error), may be more suscepti-
ble to uncorrectable errors because the ECC hardware is
less capable of correcting multi-chip errors.

6 Device Failure Modes

The analysis in Section 5 shows that errors are highly lo-
calized on the hardware. Recurring errors, whether cor-
rectable or not, is likely caused by faulty hardware and
not external events. In this section we further analyze the
location of the correctable errors in attempt to understand
their root cause. To the best of our knowledge, this is the
first study of failure addresses from large-scale produc-
tion systems. We base our analysis on the incidents of
single symbol and double symbol errors on error chips,
which are the majority of observed CEs in the system.
We also believe this is an underestimation of the total

amount of errors since only the first incident on the same
location during a job is recorded. Re-occurrences on the
same address may happen more often.

6.1 Error Counts and Error Addresses
We first breakdown the error chips according to the num-
ber of errors they have. If only a single error occurs on
a chip, it can be explained as a soft error caused by a
random event from the environment, such as an alpha
particle. However, multiple errors on the same chip can
indicate hard or intermittent errors due to device fail-
ure. It is highly unlikely that alpha particles struck the
same chip twice over the course of one year. In this case,
we look to the address information to suggest the poten-
tial failure mode. It is obvious that a chip with a sin-
gle observed error will only have one error address. For
chips with multiple errors, the errors can be repeating
on the same address, which points towards a potential
defect in the corresponding DRAM cell. Alternatively,
if multiple errors on the chip are spread across different
addresses, we would like to see if the physical faulting
locations are related, which would mean some cluster-
ing of failed cells. To the best of our knowledge, this is
the first work with location information from large-scale
production systems.

The left half of Table 7 shows the number of chips
with single and multiple errors. Approximately a quarter
of the error chips only have a single error, which may be
caused by soft errors. The remaining 70% of the error
chips have multiple error addresses. The right side of
Table 7 shows that for these chips, nearly half only have
one error address (slightly over a third of all error chips).
The single error address strongly suggests that these are
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Figure 8: Error distributions for chips with multiple errors (Left) CDF of number of unique error addresses on for chips with multiple
errors. 46% of chips only have one error address, and 90% of chips have less than 100 error addresses. (Right) Distribution of
errors counts per address on chips with multiple errors. Over 90% of the error addresses on these chips have < 10 errors.

hard errors and the chip is in fact defective. The second
category of chips with multiple errors have multiple error
addresses. We have to look at the distribution of error
addresses to better understand the failure mode.

Figure 8 illustrates the distribution of error addresses
on chips. The left plot shows the CDF of number of
unique error addresses the chips with multiple errors.
As expected, 46% of these chips only have a single ad-
dress. Even though the rest of the chips have multiple
error addresses, we observe that overall the majority of
chips with multiple errors have less than 100 faulting ad-
dress, with the a small number of chips having hundreds
of addresses.

The distribution of error counts per address is pre-
sented in the right plot in Figure 8. The addresses col-
lected from chips with multiple errors are organized by
their error counts. The majority of error addresses only
have less than 10 errors, but some addresses may have
hundreds of errors. The disparity in number of faulting
addresses and error counts motivates us to further look at
the physical layout of the error chips.

6.2 Rows, Columns, and Banks

DRAM cells inside a chips are laid out in two-
dimensional arrays. Many such arrays are layered on top
of each other. To address a single cell, the appropriate
layer, or bank must specified, then the row and column is
specified to index a cell within the bank.

Previously we looked at only at the distribution of
errors with respect to the memory addresses. It would be
interesting to show how these relate to physical locations
on the DRAM chip such as row, column or bank. Revert-

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of error banks

F
ra

ct
io

n 
of

 c
hi

ps
 w

ith
 m

ul
tip

le
 e

rr
or

 a
dd

re
ss

es

Figure 9: Distribution of unique error banks on chips with mul-
tiple error addresses

ing memory addresses to their physical locations is non-
trivial because this mapping is different for every mem-
ory controller. We obtained information from Blue Gene
architects and performed the reverse-mapping using the
memory controller specification for IBM Blue Gene/L
(BG/L) systems [16]. The memory controller specifica-
tions for BG/P and BG/L are believed to be similar.

We first check the distribution of addresses over
banks for chips that contain more than one error address.
Figure 9 shows the number of banks for chips with mul-
tiple error addresses. Out of 4 banks available from each
DRAM device, it is clear that most chips with multiple
errors are confined to one bank.
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Figure 10: CDF of unique error rows and columns on chips
with multiple error locations, scaled by available rows and
columns on the chip

Within each bank, the errors are also localized. For
each chip with multiple error addresses, we calculated
the number of rows and columns spanned by the error
addresses, normalized by the total available rows and
columns within a chip. Figure 10 plots the fraction of
rows and columns that contains errors. There is a ten-
dency for errors on the same chip to appear in a small
fraction of rows. The spread over columns is around one
order of magnitude larger for the majority of error chips.
This indicates that the multiple errors we observe tend to
be on the same row, meaning that these rows are likely to
be defective.

7 Conclusion and Future Work

Memory devices are integral in any computer system. Its
capabilities are often key factors in the systems’ overall
performance. Unfortunately, it is also one of the most
frequently replaced hardware components. To under-
stand the characteristics of DRAM reliability, we ana-
lyzed data from three different sources: Los Alamos Na-
tional Lab, Argonne National Lab, and SciNet Consor-
tium.

Using node outage and replacement data, combined
with reports of uncorrected errors and machine check ex-
ceptions, we computed the nodes affected by memory er-
rors. In typical commodity systems, up to 10% of nodes
are expected to have uncorrectable errors annually. The
UE per MB per year is in the order of 10−5 to 10−6.
For some systems we found evidence of aging, and the
behaviours of systems within the same hardware plat-
form tend to be similar.From matching node outages to
job failure logs, we estimate that up to 15% of total lost

compute time is due to memory-related outages.

For correctable errors, the FIT value we measured
from the Blue Gene/P system is around 85,000, which is
much higher than some previous studies . Furthermore,
the logs point out that correctable errors are very local-
ized in production systems. 90% of the CEs happen on
only 5% of the error nodes, and the source of the errors is
almost certainly a single chip within the node. The hard-
ware with the most errors can contain up to millions of
errors in the single year of being observed.

There is also evidence that some error nodes develop
more severe errors after observing less severe CEs. For
instance, 40% of single symbol errors eventually develop
into double symbol errors. Although it is very rare for
CEs to develop into UEs. Furthermore, the majority of
degradation can be observed in a short time window. The
localization of errors and the degradation points to hard-
ware errors as the major error source rather than soft er-
rors.

Finally, we studied the error address on the chips to
gain insight the nature of the error that has occurred. Ap-
proximately 27% of the chips only contain a single error,
which might be an incidence of soft error due to alpha
particles. Interestingly, 33% of the error chips have re-
curring errors in the same address, which is an indication
for hard or intermittent errors.

When studying the distribution of physical error lo-
cations within a chip, we saw errors being confined to
fewer number of rows than columns, and limited to one
single error bank. The localization suggests that they are
also likely clustered error due to hardware.

The observation of hard errors as a major failure
mode motivates a wide range of future work. We would
like to further examine the locality of errors. We hope
to come up with models to explain and predict the dif-
ferent failure modes such as rows or columns. Based on
these models, we would also like to be able to predict
errors in production systems, which may allow graceful
service degradation or shutdown. Furthermore, the char-
acteristics of errors enables us to construct better mitigat-
ing mechanisms, both in hardware and at the operating
system level. For example, we can enhance page isola-
tion policies by incorporating the error models from field
data.
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