
The Complexity of Minimizing Certain Cost
Metrics for k-Source Spanning Trees

Harold S. Connamacher
University of Oregon

Andrzej Proskurowski
�

University of Oregon

May 9, 2001

Abstract

We investigate multi-source spanning tree problems where, given a graph with edge
weights and a subset of the nodes defined as sources, the object is to find a spanning tree
of the graph that minimizes some distance related cost metric. This problem can be used to
model multicasting in a network where messages are sent from a fixed collection of senders
and communication takes place along the edges of a single spanning tree. For a limited set
of possible cost metrics of such a spanning tree, we either prove the problem is NP-hard or
we demonstrate the existence of an efficient algorithm to find an optimal tree.

1 Introduction

The motivation for this paper is a message dissemination process called multicasting in which
a message is broadcast to multiple receivers across a network. One possible paradigm of multi-
casting has several sources from a fixed set of vertices transmit the data with every vertex in the
network as a receiver. Multicast protocols often use a single routing tree which is shared by all
transmissions. The goal of the tree construction may be to minimize the time it takes to complete
a message dissemination, and this paper examines the feasibility of constructing optimal routing
trees for such a protocol. The optimality of a tree is determined by minimizing some given cost
function. Multiple cost metrics are considered because different applications may call for dif-
ferent requirements and because some of the metrics turn out to define intractable optimization
problems.

If there is only one source, an algorithm to find the single source shortest paths spanning tree
will produce an optimal tree for each of the cost metrics considered. Therefore, this investigation

�

Research supported in part by a National Science Foundation grant NSF-ANI-9977524.

1

Problem Cost Metric Complexity Reference� �
-SPST �������
	���
�������������� ����� �!�"�$#&%'� (*) -complete + 2 ,

- �
-MVST ��������.���
����0/2143� ��� � �&��� � �5�"� #&%6� (*) -complete this paper

7 �
-MSST ��������8���
����0/2143�&��� �� ��� ���9�"� #&%6� (*) -complete this paper

: �
-SVET �������<;���
����=�� ���>/2143�&��� ���9�"� #&%6�) this paper

? �
-SSET ��������@���
���� � ����� /A143� ��� � �5�"� #&%6�) this paperB �
-MEST ��������C���
���� /A143�&��� D � ��� � � �"�$#&%'�) + 6 # 7 ,

Table 1: Multi-source Spanning Tree Problems and Their Complexity Status

considers only instances with more than one source. The problem is non-trivial because a short-
est paths tree from one of the sources would not yield good results when used in conjunction
with the other sources.

Each of the problems investigated in this paper has a specific cost metric parameterized
by the number of sources, a positive integer

�
. All the metrics are combinations of distances

between sources and vertices in the tree, and the operations combining the distances are max
and sum.�

-Source Spanning Tree Problems

Instance: A graph EF�G�IH�#&JK� with a length function, LNM$JPORQ ,
�

sources ST�VU��W	X#ZYZYZY[#
��\$]>^H , a positive integer K.

Question: Is there a spanning tree
 of E such that �����X�Z��
_�!`ba ?

Table 1 lists the different problems and their complexity status. It should be noted that each
of these problems is in (c) as one can simply guess a spanning tree and, in polynomial time,
calculate the appropriate cost metric.

The first of these problems,
�

-Source Shortest Paths Spanning Tree (
�

-SPST), is an instance
of the more general Optimum Communication Spanning Tree (cf. [ND7] in [3]) as defined in
[4]. Also, if every vertex is a source, this problem becomes the Shortest Total Path Length
Spanning Tree (cf. [ND3] in [3]). Both these problems are (c) -hard ([5]), and the

�
-SPST

problem is (*) -complete even with two sources and uniform edge weights ([2]). An efficient
solution exists for the last problem in Table 1,

�
-Source Maximum Eccentricity Spanning Tree

2

(
�

-MEST), and [7] presents an � ��� H�� 8�� � J���� H��
	���
�� H�� � algorithm while [6] presents an � ��� H�� 8 �
algorithm. The remaining four metrics were introduced as open problems in [7], and this paper
completely characterizes the complexity status of each of the four remaining problems: we prove(*) -completeness of two other problems,

�
-MVST and

�
-MSST, in Section 2 and tractability

of the remaining two problems,
�

-SVET and
�

-SSET, in Section 3.
Before proceeding, we give some basic definitions. A graph is a pair E � �IH�#&JK� where H

is the set of vertices and J is the set of edges. There is a length function defined on the edges,L9M J O Q . This paper will also make use of points where a point may be either a vertex of E
or a location along an edge of E . The sources of a graph are a nonempty subset of the vertices.
A spanning tree
 of E is a connected acyclic graph which connects all vertices of E using a
subset of the edges of E . The distance function, �2M6H�� HPORQ , on nodes � and % is the sum of
the length of each edge on a path from � to % , minimum over all such paths. Depending on the
set of edges considered, we distinguish between the tree distance � � ���[#&%'� in which the � % -path
is unique and the graph distance ��� ���[#&%'� which is defined over all possible paths from � to % inE . Finally, the source eccentricity of a graph is the maximum distance between a source vertex
and any other vertex.

2 The Intractable Problems

2.1 � -Source Maximum Vertex Shortest Paths Spanning Tree (� -MVST)

Instance: A graph EF�G�IH�#&JK� with a length function, LNM$JPORQ ,
�

sources ST�VU��W	X#ZYZYZY[#
��\$]>^H , a positive integer K.

Question: Is there a spanning tree
 of E such that �����X� .���
_���0/2143 � ����� �&��� � �!�"� #&%6�9`ba ?

This metric minimizes the sum of the distance to each source from the farthest vertex in
the tree. We show that this problem is (c) -hard. The proof is by a reduction from 3-SAT and
closely follows the proof of (*) -completeness of

�
-SPST in [2].

Theorem 2.1.
-
-MVST is (c) -complete even for graphs with unit edge lengths.

Proof. Given an instance of 3-SAT with � clauses �_	�#ZYZYZY #���� and � variables � 	X#ZYZYZY # �"! ,
we construct a graph E . For each variable, �$# , we create a 4-cycle gadget with vertices labeled,
in order, �&%# , � � # , �&% %# , �&'# . We will connect these 4-cycles in a chain such that �(% %# �)�"%#�* 	 for+ � � #ZYZYZYN#��-, �

. For each clause, �/. , create a vertex labeled �0. , and for each of the three
literals in the clause, connect the clause vertex to the associated variable gadget by a path with �
intermediate nodes so that if clause � . contains the literal � # , the path will connect vertex � . to
vertex � � # and if clause �/. contains the literal 12�3# , the path will connect vertex ��. to vertex � '# .
Finally, let Sb� U���	�#
��.�] with ��	_�4� % 	 and ��.��4� % %! , and let a � : � � -

. See Figure 1 for an
example of a clause and variable gadgets.

3

x

x

x’ x"
s = x’ s = x"

c

i i

i
F

i
T

11 2

j

n

Figure 1: The construction for
-
-MVST with clause ��. � 12� 	 � 12�&# � �"! .

This graph can be constructed in polynomial time because the chain of variable gadgets has7 � � �
vertices and

: � edges and each clause vertex is connected to the chain by three paths of �
vertices and � � �

edges. So there is a total of
7 � � � � � � 7 � � � � vertices and

: � � 7 � ��� � � �
edges in E .

The instance of 3-SAT is satisfiable if and only if E has a spanning tree
 with ��������.���
_� `a . To prove this, we observe that an assignment satisfying the given instance of 3-SAT deter-
mines such a tree
 . In this tree, the path between �W	 and ��. traverses the variable gadget chain
according to the variable truth assignment. If �(# is assigned true, � � # will be on the path, and
likewise if �&# is assigned false, � '# will be on the path. The tree is completed by choosing a literal
critical to satisfying each clause � . and, of the three edges incident with vertex � . , including in
the tree only the edge which leads to that literal. Finally, one additional edge from each variable
gadget is included in the tree. Define the weight of a vertex to be the sum of the distances to
both sources and note that the weight of a vertex is equal to twice the distance of the vertex from
the ��	 ��. -path plus the length of the � 	 �X. -path (equal to

- �). Each variable gadget vertex not on
the intra-source path is at distance one from it, each vertex in a path between a clause vertex and
the variable gadget chain is at distance at most � � �

from the intra-source path, and each clause
vertex is at distance � � �

from the intra-source path. Therefore, �����X� .���
_��� : � � - �0a .
Likewise, if we find an optimal tree for E , we can construct a satisfying 3-SAT assignment by

4

noting which literals lie along the �$	 ��. -path and setting each variable’s truth value accordingly.
This is possible because for E to have a spanning tree
 with �����X� .���
_� `0a , the path between��	 and ��. must not contain any of the clause vertices, and the nodes on the path must correspond
to a satisfying assignment for the � . s. Considering cases, if we allow the path to contain two or
more clause vertices, then the length of the �W	 ��. -path will be at least

: � � B
, and if we allow the

intra-source path to contain exactly one clause vertex, then the length of the path will be at least- � � :
. In this case, the weight for some other clause vertex, and thus the cost of the tree, will

be at least
: � � B

because that vertex is at distance � � �
from the intra-source path. Thus, no

clause vertex can be on the path from �$	 to ��. . Now, assume the tree does not correspond to a
satisfying assignment for the � . s. Then, by the way E was constructed, some clause vertex must
be at a distance � � -

from the intra-source path, and thus, �����X� . ��
���� : � � :�� a . Therefore,E has an optimal tree if and only if there is a satisfying assignment to the � # s. �

Corollary 2.2.
�

-MVST is (c) -complete.

2.2 � -Source Maximum Source Shortest Paths Spanning Tree (� -MSST)

Instance: A graph EF�G�IH�#&JK� with a length function, LNM$JPORQ ,
�

sources ST�VU��W	X#ZYZYZY[#
��\$]>^H , a positive integer K.

Question: Is there a spanning tree
 of E such that �����X� 8���
_���0/2143 �&��� � � ��� � �!�"� #&%6�9`ba ?

This problem is also (*) -hard. We prove this using a similar technique to the proof of
Theorem 2.1, but in this case the reduction is from Exact Cover By 3-Sets (X3C) ([SP2] in [3]).
In X3C we are given a set � with � � �'� 7 � and a collection � of three-element subsets of � ,
and we are asked whether there exists ��� ^ � such that every member of � occurs in exactly
one member of � � . In the proof we will make use of the following observations:

Observation 2.3. �������&8���
���� 	� � �
	 �������&	4��
_� where �������&	���
�� � � �&��� � � ��� � �5�"� #&%6� .
The second observation is from [2, Observation 1].

Observation 2.4. The cost of a
-
-SPST spanning tree
 of a graph E with � vertices is

equal to � 	 � �
� � � - � � ��� � � % #�� � where � is the ��	 �X. -path, � �
� � is the length of � , and � � % #�� �
is the shortest distance from % to a vertex of � .

Theorem 2.5.
-
-MSST is (c) -complete even for graphs with unit edge lengths.

Proof. Given an instance of X3C with set � , � � � � 7 � , and a collection � , � ��� � � , of
three-element subsets of � , construct the graph E as follows. First, without loss of generality,

5

c1,1 c2,1 cm,1

x1 x3m
x3

s = v s = v

ccc1,n 2,n m,n

c

1 21

1,2

v
2

m+1

{ R

{m−1

Figure 2: The construction for
-
-MSST with triple � 	 �VU � 	 # � 8 # � 8 �] .

assume � is odd since we can always supplement � by a duplicate member. E will contain
� “triples” gadgets, each consisting of � � -

vertices % # #&� # D 	�#ZYZYZY[#&� # D ! #&%�#�* 	 and edges between
every � # D . vertex and % # #&%�#�* 	 , for

+ � � #ZYZYZYN#�� . For each triple � .�� � , there are � vertices� # D . in E . Linking the gadgets through the vertices % # forms a chain in E . Also, for each of the7 � elements � \�� � there is a vertex � \ in E , and for every � .���� and for each � \�� ��. ,
we connect � # D . and � \ in E by a path with �), �

internal vertices, for
+ � � #ZYZYZYN#�� . Finally,

connected to each vertex � \ there will be � ���. � . � � @. � additional vertices of degree one.
The two sources are � 	 � % 	 and ��. � %�� * 	 . See Figure 2 for an illustration of a “triples”
gadget.

Now, let

a � : � . � 7 � ���- � 8 ��,
�- � . ��, - ��� � B � . � � 7 �	� .

6

Note that

� H �IE�� � � 7 � � � � � � � ����� � � 7 ��� , � ��� � � � �
� J �IE�� � � - ��� � 7 ������� , � � � 7 �	� .

Thus, the reduction can be done in polynomial time. To complete the proof, we will show that
� has an exact cover if and only if E has a

-
-MSST tree of ������� 8 `ba .

For E to have a tree
 �

with � ���X�<8���
 � ��` a , the ��	 ��. -path in this optimal tree must pass
along all the “triples” gadgets and not include any element vertex � \ . Also, the path from an
element vertex � \ to a source vertex will not include any vertex � # D . which is not on the ��	 �X. -
path. If the ��	 ��. -path does not include any � \ , there will be exactly � vertices � # D . on the path,
and since each � # D . vertex has a direct path to only three of the �[\ vertices,
 �

exists if and only
if � has an exact cover.

The “only if” direction is easier and we will start the proof with it. A spanning tree
 �

corresponding to a cover � � has an ��	 ��. -path which includes exactly vertices � # D . from “triples”
gadgets, for all triples � . � � � (in any order of gadgets). The cost of
 �

is equal to the sum
of vertex distances to any of the sources (they are the same) and consists of (i) the total cost of
vertices on the ��	 ��. -path, (ii) the total cost of vertices on the paths from the chosen ��# D . s to all
element gadgets, and (iii) the total cost of vertices on all the other “truncated” paths, leading
from the not chosen vertices � # D . to element gadgets.

(i) The total cost of vertices on the � 	 � . -path is. ��
# � 	 + � - � . � � Y

(ii) The total cost of vertices on the paths between each chosen � # D . (on the � 	 � . -path) and
the element vertices it covers is

7 � ��
# � 	 � + � � � � ��

# � 	 � + � 7 � � YZYZY � ��
# � 	 � + � - � , � ���

� 7 �
�

��
# � 	 + � �

��
# � 	 � - + , � � �

� �- � 8 � 7- � .
.

7

The total cost of the degree one nodes attached to each � \ is7 �b+ ��� � � � � � � ��� � � � 7 � � YZYZY � ��� � � � - � , � � ,
� 7 �

�
� ��� � � � � ��

# � 	 � - + , � � �
� 7 �2+ � . � � � � . ,� B � � . � 7 � � .

(iii) The remaining � # D . nodes which are not on the ��	 ��. -path will be adjacent to either vertex% . or % .�* 	 , and to each of these � # D . nodes will be attached three paths of � , �
vertices.
 �

will be balanced so if a node hangs from %�. , then another node will hang from % ��� .�* . . Since
� is odd, there will be an even number of these extra � # D . s to distribute so it will be possible to
balance the tree. The total cost of “garbage collecting” these extra nodes is

� ����, � �
�
��� � � � � 7 ��� 	�

# � 	 � + � � � � ���
� ������,-� � � � � . ,-�- , -��
� � - � 8 ��,

�- � . ��, - ����, �- � 8 � �- � . � - � .

Thus, the cost of
 �

is

�������<8 ��
 � ��� : � . � 7 � ���- � 8 ��,
�- � . ��, - ��� � B � . � � 7 �	�F�0a ,

and thus
 �

is optimal for
�

-MSST.
For the “if” direction, we show that an optimal spanning tree
 �

of E must have an ��	 ��. -path
that includes � vertices � # D . and none of the element vertices � \ . Also, the path from an element
vertex � \ to a source vertex will not include any vertex � # D . which is not on the ��	 �X. -path. If
the ��	 �X. -path contains an element vertex, ��� , then the length of the intra-source path is at least- � � -

. Also, for one of the two sources, at least half of the paths in the tree from that source
to the element vertices must include � � , and after taking into account the paths to the remaining
element vertices, there are still � ��� , � ��� 7 �), - � additional nodes in the graph to be counted.

8

From this, we can estimate the cost of such a tree
 � to be

�����X� 8 ��
 � � � U�� 	 � . -path] � U paths to element vertices which include � �]� U paths to remaining element vertices] � U additional nodes]
�

. � * .�
# � 	 + � � 7 �- , � �

� ��
# � 	 � + � - � � � � � � 7 � � - � � �

� � 7 �- � � �
� ��
# � 	 � + � � � � ��� � - � � � � � ����, � ��� 7 � , - �

� � - � � - ��� - � � 7 �- � � 7 �- , � � � � ./� �- � - � . � � � 7 �	� � - � �
� � 7 �- � � � � � . � �- � � � �	� � - � � � 7 ��� . , - ��� , 7 � . � - �

� - � . � ? � � 7 � 7 �-�� � . � � � - � . � - � � : �	� � : ���
, - � . , - �	� � 7 ��� . , - ����, 7 � . � - �

� � - � 8 � 7- � . ��� � � 7 � . ��, - ��� � B � . � � : �	�
� B

�- � 8 � -�7- � . ��� � � - � � ; � � ��� � 8 � � 7 � . ��, - ���
� 7	� � 8 � -�7- � . � 7 � � - � � ; � � ��� � 8 ��,

�- � . ��, - ���
� : � . � 7 � � �- � 8 ��,

�- � . ��, - ��� � B � . � � 7 �	�
� a .

Therefore, the � 	 � . -path in an optimal tree must not include any element vertex � � .
We define
 � UZ
 a spanning tree of E � � 	���. -path in
 does not contain an element vertex

� \$] . By Observation 2.3, a spanning tree
 �

is optimal for
�

-MSST if �������&8 ��
 � � � 	� � � 	/���
'� ��� UX�������&	���
_�
] .
To calculate /���
 � ��� UX������� 	 ��
_�
] , fix an arbitrary � 	 � . -path along the “triples” gadgets and

look at the minimum distance in E of each vertex % to the path. By Observation 2.4, we can
use this distance to find the minimum cost. Note that there are

- � � �
vertices on the path,7 � � � ����, � � vertices at distance

�
from the path,

7 ��� vertices each at distance from
-

to �

9

from the path, and
7 �	� vertices at distance � � �

from the path. Summing these up,

/���
� ��� UX������� 	 ��
_�
] � � 	 � �
� � � - �� ��� � � % #�� �
� + 7 �	� � : � � 7 � . ��, - ��� � � , � - � �

� - �
� 7 � � � ����, � ��� � 7 ���

��
# � . + � 7 �	�2��� � � � �

� � � . � B � � � � 8 ��, � . ��, : ��� � ��- � . � � B �	�� - �����X�<8 ��
 � ��� - a .

Thus, by Observation 2.3,
 �

has the minimum ��������8 . Note that in
 �

paths from element
vertices � \ to a source only include the subset of vertices � # D . that lie on the ��	 ��. -path. If the
path from � \ to a source included a vertex � # D . not on the ��	 �X. -path, the distance from � \ to the� 	 � . -path would increase by one. By Observation 2.4, �����X� 	 of the tree would increase and, by
Observation 2.3, so would �������&8 .

Thus, a spanning tree
 with �������&8 ��
_�!`ca can only exist if the � 	 �X. -path does not include
any element vertices and if the path from each element vertex to a source does not include any
vertex � # D . not on the ��	 ��. -path. As there are

7 � element vertices, � vertices � # D . on the ��	 �X. -
path, and each vertex � # D . directly connects to exactly 3 element vertices, E will have a spanning
tree
 with � ���X�<8���
_�9`ca if and only if � has an exact cover. �

Corollary 2.6.
�

-MSST is (c) -complete.

3 The Tractable Problems

The key strategy used in this section for proving that a minimum spanning tree problem has an
efficient solution is to prove that a single source shortest paths spanning tree (SPST) from some
point � is optimal for the given cost metric. By the argument presented next, if some SPST is
optimal, we can find the tree in polynomial time.

3.1 A Sufficient Set of Shortest Paths Spanning Trees

Let � be a set of spanning trees of E such that, for all points � of E , � contains a single source
shortest paths spanning tree (SPST) from � . An important result, for this paper, from [7] is
that we can construct � in polynomial time. The key idea is that although there is an infinite
number of points on a graph, we only need to construct a shortest paths tree from a polynomially
bounded subset of these points. Therefore, to prove a problem is in) , it suffices to show that

10

a SPST from some point � is optimal for the problem. Although this fact does not directly lead
to efficient algorithms, it does at least present us with a naı̈ve polynomial time solution which
is to generate a SPST from every necessary point and then choose the tree which has minimum
cost. Because this result is crucial to the proofs given later, it is described in full here with two
theorems of McMahan and Proskurowski [7].

For two points of an edge, � and
�

, let ����# � � denote the set of all intermediate points on the
edge. (Thus, for two adjacent vertices � and % , ���[#&%'� is the set of all points on the edge ���[#&%'� .)
First, for each edge �
�[#�� � in E , define a set of points ��� � D 	�
 as follows. For each vertex % � H , let� � ��� � � D 	�
 be a point on the edge �
�[#�� � so that for any point � � �
�[# � � � the shortest path from
� to % is through the vertex � , and likewise for any point � � � � � #�� � , the shortest path from � to% is through the vertex � . Let � � � � � � be the distance along the edge �
�[#�� � from � to � � . Then,

� � � � � � � �- � � � �
�'#&%'� , � �9�
�[#&%6� � L��
�[#�� ��� .
Thus, each of these points can be located in polynomial time. For the next two theorems, consider
a set � � � D 	�
 and index the vertices of E so that � � � � ��� �!`c� � � � ��� �!` YZYZY `b� � � � ��� � and consider
the � H�� , �

intervals � � ��� # � ����� � � for
� ` +�� � where � � � �0%�! � � and � � � � % 	 ��� . Without

loss of generality, we assume the absence of “long” edges (longer than the distance between their
endpoints, ie., ��� #&%6� � J such that L���� #&%6� � ���9��� #&%6�).

Theorem 3.1. For any two points ��	 and � . in the interval � � ��� # � ����� � � , the set of SPSTs
rooted at � 	 is the same as the set of SPSTs rooted at � . .

Proof. For both � 	 and � . , the shortest path to a vertex % . goes through � if � ` +
and

through � if � � +
. Thus, a SPST from either ��	 or � . contains a shortest paths tree from � to

the vertices % 	 #ZYZYZY #&% # and a shortest paths tree from � to the vertices % #�* 	 #ZYZYZY[#&% ! . Therefore,
the sets of all SPSTs from ��	 is identical to the set of all SPSTs from � . . �

Theorem 3.2. Any SPST for a point � � � � ����� � # � ����� � � is also a SPST for the point � ��� .
Proof. The proof follows from Theorem 3.1 and the definition of � � . �

Therefore, to create � , pick an arbitrary point � � � � ��� # � ����� � � for each interval � � ��� # � ����� � �
along an edge, find a SPST from � , and repeat the process for each edge in E . As there are
at most � H���, �

intervals per edge, � can be constructed in polynomial time. More efficient
methods for forming � are possible, and both [7] and [8] give such procedures.

11

s 1

s 2

p(c)2

p(c)1

c1 c2

D1

d’
d1 d2

D2

Figure 3: Diagram for the proof of Lemma 3.3

3.2 � -Source Sum of Vertex Eccentricities Spanning Tree (� -SVET)

Instance: A graph EF�G�IH�#&JK� with a length function, LNM$JPORQ ,
�

sources ST�VU�� 	 #ZYZYZY[#
��\$]>^H , a positive integer K.

Question: Is there a spanning tree
 of E such that �����X� ; ��
_��� � � ��� /A143 �&��� � � �"� #&%6�9`ba ?

In a spanning tree
 , define a vertex to be critical for a source if it is at the maximum distance
from the source. Likewise, a source is critical for a vertex if it is the source at maximum distance
from the vertex. (Note that these are not necessarily unique.) Let �N� %'� be the projection of % on
the ��	���. -path in the tree
 . The first lemma shows that the paths between two sources �6	X#
��. and
their critical vertices must intersect along the �W	 �X. -path.

Lemma 3.3. Given a tree
 and sources �$	X#
�X. � H ��
_� , then for all critical vertices� 	 #&� . �bH ��
� such that � � �"� # #&� # �� /2143 � ��� � � �"� # #&%'� , + �*U � # -] , we have � � �"� 	 #��N� � 	 ��������5�"��	�#��N� ��.X��� , and thus the ��	 ��	 -path and the �4.Z��. -path intersect.

Proof. Let � 	 �0� � �"� 	 #��N� � 	 ��� , � 	 � � � � � 	 #��N� � 	 ��� , � . �0� � �"� . #��N� � . ��� , � . �0� � � � . #��N� � . ��� ,
and let � � �0���!�"��	X#��N� ��.X��� ,����!�"��	X#��N� ��	Z��� . Assume that � � � � . Figure 3 illustrates this situation.
However, �'	 � �A	 � �'	 � � � � � .� �$. � � . � �$. � � � � �A	�6	 � �$. � �A	 � � . � �'	 � �W. � �A	 � � . � - � �� � � �
which contradicts the assumption. �

The next lemma shows that in a tree the path from each vertex to a source critical for it must
include the midpoint of the path between two sources with maximum intrasource distance.

12

Lemma 3.4. Given a tree
 , let �$	 and ��. be two sources with maximum intrasource
distance, and let � be the midpoint of the �$	 ��. -path in
 . For all vertices % � H ��
_� , the path in
 from % to its critical source must include � .

Proof. Given a vertex % assume, without loss of generality, � �5�"�4	X#��N� %6��� � ���5�"��	�#�� � .
Otherwise, replace ��	 with ��. in the following equations. Let � . , �	� U � #ZYZYZYN# �] , be the source
critical for % then, by definition, �W�5�"� .�#&%'� �b���5�"��	�#&%'� and ���5�"� .�#�� �9`b���9�"�4	X#�� � . Now, assume
� is not on the � . % -path. Then

� � �"� . #&%'� � � � �"� . #�� � � � � ���5#&%'�` ���5�"��	�#�� � � � �!��� #&%6�� ���5�"��	�#&%'� .
Thus the � .Z% -path must include � . �

The next lemma shows that we only need to consider two sources of a
�

-SVET instance.

Lemma 3.5. Let ��	 and ��. be two sources with maximum intrasource distance in a tree
 , and pick � to be the midpoint on the �$	 �X. -path in
 . For any vertex % and any source � # ,+ � 7 #ZYZYZY[# � , either �$�5� % #
��	Z���b���5� % #
� # � or � �!� % #
��.X� �b� �!� % #
� # � .
Proof. Assume, without loss of generality, that �6�5�"�4	�#�� � %'�����b� �!�"��	�#�� � . Then, � �5� % #
��	Z���� � � % #�� � � � � ���5#
� 	 � .

���9� % #
� #"� ` ���5� % #�� � � � �!��� #
� #I�` ���5� % #�� � � � �!��� #
��	��� ���5� % #
�4	Z� .
�

We are now ready to prove that there exists a SPST from some point in E which is optimal
for

�
-SVET.

Theorem 3.6. Given a graph E with sources �$	X#ZYZYZY[#
��\ � H �IE�� , there exists a point � such
that any SPST rooted at � is an optimal tree for

�
-SVET.

Proof. Let
 �

be an optimal tree for
�

-SVET and let �$	 and ��. be two sources with max-
imum intrasource distance in
 �

. Pick � to be the midpoint on the � 	 � . -path in
 �

. Let
��
be a shortest paths spanning tree of E with the root � and assume ������� ; ��
 � � � �����X� ; ��
 � � .
Thus, there exists some vertex % and a source � . , � � U � #ZYZYZY # �] , of greatest distance from% in
 � for which � � � � % #
� # � � ����� � % #
� .�� where � # is the source of maximum distance from

13

% in
 �

. By Lemma 3.5 and without loss of generality, assume
+ � �

. By Lemma 3.4,��� � � % #
��	Z�5�F��� � � % #�� � � � � � ��� #
��	Z� and note that �$� � � % #
� .4� `*� � � � % #�� � � ��� � ��� #
� .�� . Thus,��� � � % #�� � � ��� � ��� #
��	Z� � ��� � � % #�� � � ��� � ���5#
��.X� . From the definition of � , we have �'� � ��� #
��	Z� ���� � ��� #
� .�� . This implies �$� � � % #�� � � ��� � ���5#
��.4� � ����� � % #�� � � ��� � ��� #
� .�� but contradicts the
fact that
 � is a shortest paths tree. Therefore, � ���X�&;$��
 � � ��� ���X� ; ��
 � � so a SPST rooted at � is
optimal for

�
-SVET.

�

The main result of this subsection follows directly from Theorems 3.6, 3.1, and 3.2.

Theorem 3.7.
�

-SVET �) .

3.3 � -Source Sum of Source Eccentricities Spanning Tree (� -SSET)

Instance: A graph EF�G�IH�#&JK� with a length function, LNM$JPORQ ,
�

sources ST�VU��W	X#ZYZYZY[#
��\$]>^H , a positive integer K.

Question: Is there a spanning tree
 of E such that �����X� @���
_��� � �&��� /A143 � ��� � �!�"� #&%6�9`ba ?

To prove that this problem is polynomially solvable we will again prove that there exists a
point � such that a shortest paths spanning tree rooted at � has the optimal �������Z@ . The diameter
of a graph is the maximum distance between any two vertices, and a shortest path of this length
is called diametral. The next lemma proves that a path from a source to its critical vertex in a
tree
 must intersect a diametral path in
 . Also, one of the endpoints of this diametral path will
be critical to the source. From this lemma, we can prove that all paths between source nodes and
their critical vertices will intersect at the midpoint of a diametral path in
 .

Lemma 3.8. In a tree
 , let � be the midpoint of a diametral path with � and � the endpoints
of this path. For each source ��# and its critical vertex � # , � + � � #ZYZYZY # � � , � is on the � #�� # -path in
 . Moreover, if � # is the set of critical vertices for � # , then � #�� U �[# �]����� .

Proof. First, show the � � -path intersects with the ��# ��# -path for some
+
. If the two paths

do not intersect, they must be joined in
 by some non-empty path � sharing a vertex � with
the � # � # -path and a vertex % with the � � -path. See Figure 4a for an illustration of this situation.
Note that 	 ��
 �
� , otherwise the � � # -path would be longer than the � � -path. Also note that� ��
 � 	 , otherwise the � # � -path would be longer than the ��# � # -path. Yet, these two facts imply

 ` � , and thus the � � -path must intersect the � # � # -path.

The next step is to show � #�� U �[# �]����� . Let � be the intersection of the � � -path and
the � # ��# -path, and let � and % be the (not necessarily different) endpoints of this intersection.
Without loss of generality, assume the situation is as in Figure 4b. Let � be the diameter of
 ,

14

ci

s i

x

y

a

b

f

e
v

u

h

(a) Assume paths do not intersect.

s i

ci
x

y

ba

f

e
u

v
h

(b) Assume paths do intersect.

Figure 4: Diagrams for the proof of Lemma 3.8

15

� � ���5� � # � � . As � # � ��# , � � 	 , and as the � � -path is a diametral path of
 , 	 � � . Thus,� � 	 and � �!�"� # # � ���0���5�"� # #&��# � . Therefore, � � � # .
Finally, let � be the midpoint of the � � -path so �'�!� � #�� �������5� � #�� � � 	. � . We show that �

lies in � and thus on the ��# � # -path. If ���� � , then either � � 	. � or 	 � 	. � . If we let � � 	. � ,
then
 � 	 � 	. � hence
 � � � 	. � so � �
 � � and �

� � �
�
�
 � � , and a contradiction is

reached. Also, if we let 	 � 	. � , then � � 	. � which implies ��� 	 � � , and a contradiction is
again reached. Therefore, � # 	 ` 	. � , so � � � , and thus � is on the � # � # -path. �

With this lemma, we can prove
�

-SSET �) .

Theorem 3.9. Given graph E with sources S and a tree
 �

minimizing �����X��@ over all
spanning trees of E . A SPST rooted at � , the midpoint of a diametral path of
 �

, is also optimal
for

�
-SSET.

Proof. Let
 �

be an optimal tree, let � be the diameter of
 �

, and let � and � be the
endpoints of a diametral path. By Lemma 3.8, all ��# � # -paths include � , and � or � is critical for
each source. Let
 � be a SPST rooted at � . Let � # be a critical vertex for ��# in
 �

and � �# a
critical vertex for ��# in
 � . Then

� ���X� @ ��
�� � � �
#
� � � � �"� # #&� �# ���

` �
#
� � � � �"� #<#�� � � � � � ���5#&� �# ���

` �
#
� � � � �"� # #�� � � �- � �

� �
#
� � � � �"� # #�� � � � � � ��� #&� # ���

� ������� @ ��
 � �
By the assumption that
 �

is optimal, � ���X� @ ��
_� �0�����X� @ ��
�� � so
�� is optimal as well. �

From Theorems 3.9, 3.1 and 3.2, the next theorem follows directly.

Theorem 3.10.
�

-SSET �) .

4 Conclusion

We have filled the gaps in the complexity status of certain problems of constructing optimal
multi-source spanning trees with different distance related cost metrics. One of these problems

16

was recently shown to be (c) -hard and another was shown to have an efficient solution. We
have resolved the complexity status of the problems for related metrics, and two of these metrics
were shown to yield (*) -hard problems while the cost under the other two metrics could be
minimized in polynomial time.

Further research may include streamlining efficient algorithms for the polynomially solvable
problems and finding efficient approximation algorithms and efficient algorithms on restricted
classes of graphs for the (c) -hard problems. There has been some work on approximation
algorithms for the more general Optimum Communication Spanning Tree in [9], and [1] presents
a polynomial algorithm for Shortest Total Path Length Spanning Tree for distance hereditary
graphs. Both of these results may be applied to the

�
-SPST problem. Relating these theoretical

results to the practical applications (as those of multicast routing trees) would also be of interest.

References

[1] E. Dahlhaus, P. Dankelmann, W. Goddard, and H. C. Swart. MAD trees and distance hered-
itary graphs. In Proceedings of JIM’2000, pages 49–54, 2000.

[2] A. M. Farley, P. Fragopoulou, D. Krumme, A. Proskurowski, and D. Richards. Multi-source
spanning tree problems. Journal of Interconnection Networks, 1(1):61–71, 2000.

[3] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, NY, 1979.

[4] T. C. Hu. Optimum communication spanning trees. SIAM Journal of Computing, 3(3):188–
195, 1974.

[5] D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. The complexity of the network
design problem. Networks, 8(4):279–285, 1978.

[6] D. W. Krumme and P. Fragopoulou. Minimum eccentricity multicast trees. Submitted, 1999.

[7] B. McMahan and A. Proskurowski. Multi-source spanning trees: Algorithms for minimizing
source eccentricities. Submitted, 1999.

[8] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and S. S. Ravi. Spanning trees –
short or small. SIAM Journal of Discrete Mathematics, 9(2):178–200, 1996.

[9] B. Y. Wu, K. Chao, and C. Y. Tang. Approximation algorithms for some optimum commu-
nication spanning tree problems. Discrete Applied Mathematics, 102:245–266, 2000.

17

