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Abstract

We determine the exact threshold of satisfiability for ran-
dom instances of a particular NP-hard constraint satisfac-
tion problem. The problem appears to share many of the
threshold characteristics of random

�
-SAT for

�����
; for

example, we prove the problem almost surely has high reso-
lution complexity. We also prove the analogue of the ���
	��� -
SAT conjecture for a class of problems that includes this
problem and XOR-SAT.

1. Introduction

Determining the satisfiability threshold for random
�

-
SAT is a fundamental problem that has received attention
from several scientific communities. (See, eg. [1] for a sur-
vey of the area.) The basic question is this: determine a con-
stant ��� such that a uniformly random instance of

�
-SAT

with � variables and ��� clauses will be almost surely (a.s.)
satisfiable if ����� � and a.s. unsatisfiable if ����� � . A prop-
erty holds almost surely (a.s.) if its probability tends to 1
as the number of variables tends to � . The case

��� � is
well-understood - ��� ���

[11, 28, 21]. But for
�����

it is
not even known whether � � exists, although Friedgut[23]
proved something close. We know that for ��� � � ! � [29, 31]
the formula is a.s. satisfiable, while for �"�$# �%!'&)( [18] it is
a.s. unsatisfiable, so if � � exists it satisfies

�*�%! ��+,� � +
# �%!'&-( .

This is a mathematically beautiful problem, and as a re-
sult, it has attracted much attention from mathematicians
and theoretical computer scientists. Furthermore, it is also
widely studied by researchers, mostly in AI, who build
SAT-solving tools, and in statistical physics, who model
thresholds from nature. For AI researchers, it has long been
observed[10, 38] that this random model provides a rich

� Much of this work was done while the second author was a guest at
the Fields Institute, and a visiting researcher at Microsoft Research.

source of difficult problems if the number of clauses is
close to � � � (or more correctly, to an experimentally de-
termined conjecture for the value of � � � ). For physicists
(see eg. [34, 35, 46, 45]), there is a correspondence between
problems such as random

�
-SAT and models used to study

threshold behaviors of natural processes, such as that of wa-
ter when its temperature passes through the “threshold of
freezing”. So they regard random

�
-SAT as an important

mathematical object, the understanding of which will pro-
vide insights into physical phenomena.

This interest spread to generalizations of
�

-SAT. For ex-
ample, the Schaefer[47] generalizations inspired studies of
random instances of problems such as 1-in-

�
-SAT[3], NAE-�

-SAT[3, 6],
�

-XOR-SAT[19, 36]. Generalizing further to
allow the variables to take values from a domain of size
larger than 2 led to the study of various models for ran-
dom constraint satisfaction problems[5, 16, 37, 39, 40]. In
all of these cases, the primary focus has been to try to de-
termine the satisfiability threshold. For empirical results,
there is a large body of work by researchers building CSP-
solving tools to experimentally approximate the satisfiabil-
ity thresholds of various models of random CSPs and study
the difficulty of random instances with constraint density
close to that threshold. (See [27] for a survey of several
such studies; see also [9] for some studies from the statisti-
cal physics community.) The reasons for the study of these
generalizations include: (1) the generalizations are interest-
ing and beautiful problems in their own right, and (2) the
study of these generalizations can often yield insights into
random 3-SAT. (See [6] for a very fruitful instance of (2)).

Thresholds for models where the domain size grows with
� [20, 25, 48, 49, 50] and where the constraint size grows
with � [22, 24] have been studied. Such models seem to, at
heart, be substantially different than random 3-SAT. For one
thing, the satisfiability thresholds occur when the number of
clauses/constraints is superlinear in the number of variables,
and this produces a structure that is very different than that
of random 3-SAT when the number of clauses is near the
satisfiability threshold and, hence, is linear. Models where



the domain and constraint sizes are both constant seem to
be much closer to random 3-SAT; for example, in [39] it is
shown that the satisfiability thresholds of such models oc-
cur at a linear number of clauses (see also [16] and [40]).

It is often speculated (see eg. [46]) that the nature of
random 3-SAT near its satisfiability threshold may be re-
lated to the fact that it is NP-complete. For this reason,
along with the fact that many look to these random prob-
lems for difficult instances, there is particular interest in
determining the satisfiability thresholds for NP-complete
problems with constant sized domain and constraints. The
threshold is known for a few such problems, eg. 1-in-

�
-

SAT[3], ��� 	 �  -SAT for �$� � � ! [45] and Theorem 5 of
[42], but these problems don’t shed much light on 3-SAT.
In each case, the proof illustrated that these problems are, at
least near the satisfiability threshold, very similar to 2-SAT
(whose threshold behavior is very different from that of 3-
SAT). Furthermore, the proofs involve (at least implicitly)
the analysis of fairly simple algorithms. This analysis im-
plies that random instances of the problems are fairly easy
to solve, algorithmically.

Dubois and Mandler[19] determined the exact satisfiabil-
ity threshold for random 3-XOR-SAT, confirming a conjec-
ture that came from the statistical physics community[36].
3-XOR-SAT is in P as it can be solved by Gaussian elimina-
tion modulo 2. Nevertheless, it seems to be much more rel-
evant to random 3-SAT than any of the NP-hard problems
from the previous paragraph. Statistical physicists study
XOR-SAT (e.g. [13, 36]) because it is exactly the � -spin
model, the simplest non-trivial spin-glass like model over
random graphs at zero temperature, a family of models
which includes random

�
-SAT[33, 34]. These studies sug-

gest that XOR-SAT has many of the same threshold charac-
teristics of SAT though it is easier to analyze. Furthermore,
the proof of the satisfiability threshold for 3-XOR-SAT is
non-algorithmic, in that it uses the second moment method
and doesn’t involve in any way the Gaussian elimination
algorithm. It seems to be highly relevant that 3-XOR-SAT
does not have a polytime resolution based algorithm (i.e.
a DPLL algorithm), even for random instances where the
number of clauses is near the satisfiability threshold (see
Theorem 2 below). Thus, while 3-XOR-SAT is in P and 1-
in-

�
-SAT is NP-hard, as far as random instances are con-

cerned, 1-in-
�

-SAT is algorithmically much simpler as it
can be solved with a DPLL algorithm.

In this paper, we present an NP-complete constraint sat-
isfaction problem which generalizes XOR-SAT. The prob-
lem is called UE-CSP and is defined in the next section.
We use � -UE-CSP to refer to UE-CSP with domain size � ,
and we use � ��� �  -UE-CSP to refer to UE-CSP with domain
size � and where all constraints have size

�
. � ��� �- -UE-CSP

is
�

-XOR-SAT, and thus is in P; so is � ��� �  -UE-CSP. But
� ��� #  -UE-CSP is NP-complete. We designed this problem

so that we could apply the techniques from [19] to prove:

Theorem 1 The satisfiability threshold for random � ��� #  -
UE-CSP is ��� �$� 	*��
�	-� ! � � �

.

We emphasize that our proof, on both sides of the thresh-
old, is non-algorithmic. Unlike XOR-SAT, we do not know
of any efficient algorithm that will a.s. solve instances with
clause density slightly less than � � , nor do we know of any
efficient algorithm that will a.s. solve instances with clause
density slightly greater than ��� . The following theorem im-
plies that there is no resolution-based algorithm (i.e. DPLL
algorithm) of the latter type.

Theorem 2 For any constant ��� &
, and any

� � ��� � � � ,
the resolution complexity of a uniformly random instance
of � ��� �  -UE-CSP with � variables and ��� clauses is a.s.
�������� .

� ��� #  -UE-CSP is the first NP-hard constraint satisfac-
tion problem with constant sized domain and constraints
for which (a) Theorem 2 holds and (b) the exact satisfi-
ability threshold is known. Similar results are known for
some models whose constraint- or domain-sizes grow with
� . In [50] Xu and Li prove that some such models, for
whom the satisfiability threshold is known, exhibit high
tree-resolution complexity. They also note that the model
whose satisfiability threshold is determined in [24] is eas-
ily shown to exhibit high resolution complexity.

Another important open question concerns � � 	 �  -SAT,
a model introduced by [44] with a mixture of clauses of size
2 and 3. The threshold for 2-SAT is 1[11, 28, 21], and in [4],
it is proven that a SAT instance with � �����  � 2-clauses and� � 3-clauses will be a.s. satisfiable of � + �� and a.s. un-
satisfiable if � � � � ��� . It is conjectured that this instance is
a.s. unsatisfiable for any � � �� . Besides being a tantaliz-
ing conjecture in it’s own right, this also has some interest-
ing implications regarding the behavior of many DPLL al-
gorithms on random 3-SAT (see [2]).

We prove the analogue of the ���"	��  -SAT conjecture
for UE-CSP. In [14], the first author proved that the thresh-
old for � � � �  -UE-CSP ( � � � ) is �� , and that a � -UE-CSP
instance with � �� ��� � � 2-clauses and ! � 3-clauses will
be satisfiable with probability bounded away from zero if!�+ �" and a.s. unsatisfiable if !�� �� 	 �

. In this paper, we
close the gap.

Theorem 3 For any � � � and for any constant # � &
there exists a constant

� � &
such that a uniformly ran-

dom instance of � -UE-CSP with � �� ���$� � 2-clauses and� �" 	%# � � 3-clauses is a.s. unsatisfiable.

The proof in [4] and in [14] for satisfiability are by show-
ing that the simple greedy algorithm Unit Clause will suc-
ceed with probability bounded away from zero. What is



conjectured for ��� 	 �� -SAT and now proven for XOR-
SAT, and more generally, � -UE-CSP is that, in a sense,
Unit Clause is the best we can do on these mixed formu-
lae. That is, more sophisticated algorithms cannot handle
any increase in the proportion of 3-clauses if the number of
2-clauses is ��� where � is allowed to be arbitrarily close to
the threshold for ��� � �  -UE-CSP, as such a problem will a.s.
not even be satisfiable.

In summary, the main contribution of this paper is that
we determine the exact satisfiability threshold of a problem
that is in many ways similar to random 3-SAT. Furthermore,
it is hoped that additional study of this problem, for exam-
ple a better understanding of how its structure changes near
that threshold, will provide some insights into the thresh-
old for random 3-SAT.

2. ��������� -UE-CSP

2.1. The problem

If we consider XOR-SAT as a constraint satisfaction
problem with constraints on

�
vertices, the key property

of XOR-SAT which permits the technique of [19] to deter-
mine the precise threshold of satisfiability is that each con-
straint is uniquely extendible. That is, for each possible as-
signment to

� � �
variables of a constraint, there is a unique

legal value for the
�

th variable. The NP-complete problem
considered is the generic uniquely extendible constraint sat-
isfaction problem UE-CSP.

In � -UE-CSP, each constraint is over a tuple of vari-
ables, each variable must take a value from the domain	 &�� ��� �$� � � ��


, and every constraint is uniquely extendible.
Furthermore, we denote the problem � ��� �  -UE-CSP if ev-
ery constraint has size

�
. Note that

�
-XOR-SAT is exactly

� ��� �- -UE-CSP.
It is easy to verify that � ��� �) -UE-CSP �� for all

�
as

every uniquely extendible constraint must be a parity con-
straint and so the problem reduces to solving a system of
linear equations modulo 2. Similarly, � ��� �  -UE-CSP �� ,
since it reduces to solving a set of linear equations mod-
ulo 3. However:

Theorem 4 � ��� #  -UE-CSP is NP-complete.

The proof is a reduction from 3-coloring a graph and is
placed in the appendix. We note that � ��� #  -UE-CSP is NP-
complete even when restricted to inputs where no two con-
straints intersect on more than one variable.

2.2. The random model

For each appropriate � ���
, we define � � ��� � �� � � to be the

set of � ��� �  -UE-CSP instances with
�

constraints on vari-

ables
	�� � � � � � � � � 
 . We define � � ��� � �� � � to be a uniformly ran-

dom member of � � ��� � �� � � . When
�

is defined to be some func-

tion � � �  , we often write � � ��� � �� � ����� � ��� . As is common in the
study of random problems of this sort, we will be most in-
terested in the case where

� � ��� for some constant � .
We will define � � precisely in the next section. With that

definition, a more formal statement of Theorem 1 is that it
is the union of the following 2 lemmas:

Lemma 5 For every ��� � � , � � � � � �� � ��� � � is a.s. satisfiable.

Lemma 6 For every ��� � � , � � � � � �� � ��� � � is a.s. unsatisfiable.

3. The 2-core of the underlying hypergraph

Given an instance ! of � � � �  -UE-CSP, we define the un-
derlying hypergraph of ! to be the

�
-uniform hypergraph

whose vertices are the variables of ! and whose hyperedges
are those

�
-sets of variables which occur in the constraints

of ! .
The 2-core of a hypergraph is the largest (possi-

bly empty) subgraph which has no vertices of degree
less than 2. The 2-core is unique, and it can be found us-
ing the following procedure:

CORE: While the hypergraph has any vertices of
degree less than � , choose an arbitrary such ver-
tex and delete it, along with all hyperedges con-
taining it.

It is easy to see that the order in which vertices are cho-
sen to be deleted is irrelevant, in that it does not affect the
final output of the procedure. We define the 2-core of an in-
stance ! of � � � �  -UE-CSP to be the instance induced by
the 2-core of the underlying hypergraph of ! ; i.e., the in-
stance formed by the variables and constraints of ! whose
corresponding vertices and hyperedges are in that 2-core.

Lemma 7 If ! is an instance of � ��� �  -UE-CSP, then ! is
satisfiable iff the 2-core of ! is satisfiable.

Proof Clearly, if the 2-core of ! is unsatisfiable then
so is ! . So assume that the 2-core of ! is satisfiable. Con-
sider running CORE on the underlying hypergraph of ! ,
and suppose that the deleted variables are " � � "
� ��� � � � "$# in
that order. Start with any satisfying assignment of the 2-
core. Now restore the deleted variables in reverse order, i.e." # � " #&% � ��� � ��� " � , each time adding the variable along with
the at most one constraint that was deleted when the variable
was deleted. Because that at most one constraint is uniquely
extendible, there is a value that can be assigned to the vari-
able which does not violate the constraint. This will result
in a satisfying assignment for ! . '



2-cores of random hypergraphs are well-understood (see,
for example, [32, 41]). Given � , define " to be the largest so-
lution to

� � "� � � ��� %��  � �
and define

� � �� � " � � ��� %�� � � � ��� %�� � � 	 "  
�

From [41] (see also [19] for something a bit weaker but suf-
ficient for our purposes) we can glean the following fact:

Fact 8 A.s. the 2-core of � � � � � �� � ��� � � has
� � �  variables and� ���� 	�� � �  times as many constraints as variables.

Thus we define � � to be the solution to � � �� � �
.

Let � � � � denote the subset of � � � � � �� � � in which every vari-
able lies in at least 2 constraints, and let � �� � � denote a uni-
formly random member of � � � � .

Fact 9 For any � ��� � �
	 � � 	 , if we condition on the event
that the 2-core of � � � � � �� � ��� � � has ��	 variables and

� 	 con-
straints, then that 2-core is a uniformly random member of� �� � � � .

Proof This is an easy variation of the proof of Claim
1 in the proof of Lemma 4(b) from [41], which is itself a
very standard argument; we omit the details. '

All this implies that Lemmas 5 and 6 are equivalent to:

Lemma 10 For every ��� �
, � �� � � ��� � is a.s. satisfiable.

Lemma 11 For every ��� �
, � �� � � ��� � is a.s. unsatisfiable.

The second of these lemmas is straightforward, and we
close this section with its proof. The first requires much
more work, and we present its proof in the next section.

Proof of Lemma 11 We apply what is, in this field, a
very standard and straightforward first moment argument.
Consider a random instance ! chosen from � � � ��� � � and
let � denote the number of satisfying assignments of ! . We
will show that � ���  � � � �  ; this implies that a.s. � � &

;
i.e., that a.s. ! is unsatisfiable.

Consider any assignment � of values to the variables of! . The probability that a particular constraint is satisfied by� is �� . Since there are # � choices for � , this yields

� ���  � # � # % � � # % � � % � � � � � � �  �
since ��� �

. '

4. A Second Moment Argument

In this section, we prove Lemma 10, the hardest part of
Theorem 1. Inspired by the proof of the corresponding the-
orem in [19], we apply the second moment argument. Un-
fortunately, the fact that we have a larger domain size and
larger set of constraints to choose from makes these calcu-
lations more complicated than those in [19].

As in the proof of Lemma 11, we consider a random in-
stance ! chosen from � � � ��� � � and let � denote the num-
ber of satisfying assignments of ! . The main step of this
proof will be to compute the second moment of � , obtain-
ing:

Lemma 12 � ��� �  � ��� ���   � � � 	�� � �  
Chebychev’s Inequality implies:

Pr ��� � &  � � ���  �� ��� � 
�

and so Lemma 12 implies Lemma 11.
We remark that unique extendibility is crucial. It is not

hard to show that if the underlying constraints of a random
problem are not uniquely extendible, then Lemma 12 does
not hold for that problem.

We will compute � ��� �  by putting
� ��� � �� ��� � � into the form

�����
� �
��� �
� �
�����
� � ��� " � � " � � " �  � �! �� � � � � � � � � � � " � � " � � " �

where " has a unique maximum in the range of the integrals
and then applying the Laplace Method.

Suppose that the # � possible assignments are � � ��� � ��� �$�$#
and let �&% be the indicator variable that ��% is a satisfying as-
signment. Then � � � � 	 � � � 	�� � # and so, using the fact
that � �% � � % , we have � � � ��	(' %�)��* � % � * . Since� % � * �$�

iff ! is satisfied by both � % and � * , this indicates
that we must focus on counting the number of instances sat-
isfied by two different assignments to the variables.

Let � and + be arbitrary assignments to the variables, let,.-
be the total number of instances in � � � � , and let

,.-0/ � 1
be the total number of instances in � � � � which are satisfied
by both � and + . Then,

� ��� �  �
�,.-32/ )��1

,.-4/ � 1 �

It is easily seen that there are � � #  � possible uniquely
extendible constraints for each triple of variables. We can
think of the

�
constraints as inducing a distribution of

� �
“places” to the � variables such that each variable receives
at least 2 “places”. So,

,5- � ���'#  � �76 � � � � � � �- �98 where6 �;: �=<�� �- counts the number of ways to partition : elements
into

<
sets such that each set has at least 2 elements.



To count the number of instances satisfied by a pair of
assignments, consider a triple of variables and 2 assign-
ments to those variables, and count the number of uniquely
extendible constraints which are satisfied by both assign-
ments. For all three variables assigned the same value:�� � � #  � , for two of the three variables assigned the same
value: 0, for one of the three variables assigned the same
value: �� � � � #  � , and for all three variables are assigned dif-
ferent values: ���� � � #  � .For each integer � , we define

� � � 	 &�� �� � �� ����� � � � % �� ����

.

Let � � � � be the proportion of variables having the same
value in both assignments, let � � � � � be the propor-
tion of

� �
“places” in the list of triples that receive one of

those � � variables, and let � � be the number of triples with�
of those � � variables.
To enumerate all pairs of assignments, we must count

the possible assignments to the variables and count
the number of choices for the � � variables. This gives'��	��
 # # � � � � % � � � � �� � � pairs of assignments.

To enumerate all satisfied instances for one pair of as-
signments and for each choice of �� � � � � � � , we need to
(a) count the ways to choose the triples for �� � � � � � � :� ���� � � � % ���� � �

; (b) for each triple, count the number of pos-

sible constraints:
� � � � � ������ � � � � � � � �� � � � � � � � � � �� � � � ; (c) for

each triple in � � , count the 3 possible positions for the one
of those � � variables:

� � �
; (d) finally, distribute the vari-

ables amongst the “places”.
In total, we have

� ��� �  � �
��� #  � � 6 � ��� � � � �- �98� 2�	��
 # 2� ��
 ��� 2������ � ��� � � �� � � � � � � � � � # � � � � % � � ��� �� ���
� � �� � � � � � � �� � � � ��� #  �� � �

��� � ���'#  �� � �
� �

� � ��� #  �# �
� � � � � 6 �!� ��� � � � � �-�� � �  8� 6 � � � � �' � � � � � � �  � � �) � � � � �  �  8 �

Following the technique of [19], we use the approxima-
tion

6 �;: ��< � �)#" �< 8 � :$ � � � % � ��% � ��� � $ �  *�& ��: ��< 
based on results in [30] where $ � is the positive real solu-
tion of the equation

* % $ � �('*) � % � % % �' ) � % � and where & �;: �=<  �+ % *% � * � % % * � % % � % %�� * � . The proof is omitted.

Setting � � �-, �
, � � � � � � � ��, �

, � � � � ��� � � 	
� , � ,

� � ��� , noting that � � � &
implies � + ,

and � � � &
implies

, � � � % �� , letting
� �� � � � � �/.10 � � % �� � ��2 , using Stir-

ling’s Approximation that :$8�" : % � % %43 �65 : , and simplify-
ing, we obtain:

� ��� � #" 2�7��
 # 2� ��
 �98 # 2# ��
;:8 # ��� � � � ��,  � ��<�� � � � � # �
where

� � � � � ��,  � & � � � ���  % � & �!� � � � � � & � � � � �' � � � � � � �  ����65 �  % � � � % �� � � � � � � �� � � � � 	 � ,  � � � � ��,  ,  % ��= � � � � ��,  � ��� � � � � � � 	�� , ��7>@? �
	 � � � � � �'� 	 � � � �A, � B>@? �� � >C? � � � � � � 7>@? � � � � � � � � � � 	 � ,  � >C? � � � � � 	�� , � �D� �E,  � � >C? �D� �1,  � � , >C? ,
	F� � � >C?�� 	 � � � �' � � >@? � � � �'
	 � >C? � � % ��� � $  � � � � >C? $
	 � � � � 7>@? � ��G � � �1H � � � � �' � � >C? H� >@? � � � ��� � "  	 � � >@?�"

where " ��H�� $ � &
and� � � � � "� � ��� � "� �

� � G � � �AH� G � � � H � � � � � �'� � � � � � % ��� � $� % � � � $ �� �I� ��&*�
(1)

And thus,

� ��� � � ���  � "2�	��
 # 2� ��
 �98 # 2# ��
;:8 # � � � � � ��,  � �! �� � � � � # �
where " � � � � ��,  � = � � � � ��,  � #
� � � ��7>@? � .

Checking partial derivatives, it is straightforward to ver-
ify that � � �� � � � �� ��, � �� " , " �JH � $ is a local
maximum for

=
and satisfies (1), and Lemma 16 in the ap-

pendix proves that this is, indeed, the only maximum of
=

on the relevant interval.
Next, we replace the summations with integrals:

� ��� � � ���  � " � � � �
�

� � �� � �� � �KML�N�O � � � :�P ��RQ � � � � � ��,  � �! �� � � � � # � � , ��� � � �
The Laplace Method for a triple integral (see, for ex-

ample, [8] and [17] for descriptions of the method) can be
stated as follows.

Lemma 13 Let

! � �  �
� � �
� �
� ���
� �
� � �
� � � � " � � " � � " �  � �! �� � � � � � � � � � � " � � "
� � " �

where



(a) " is continuous in � % +�" % +�� % ,
(b) " ��� � � � � � � �  �$&

for some point � � � � � � � � �  with � % �
� % ��� % and " � " � � "
� � " �  � &

for all other points in
the range,

(c) " � " � � " � � " �  � � ��
�
2 % � �

�
2* � �

� % * " % "4* 	 � � " � � 	 " �� 	 " �� 
with � " � � 	 " �� 	 " ���� &  , and

(d) the quadratic form ' ' � % * " % " * is positive definite.

Then,
! � � #" ���65  ���� % �� � % �� � � � � � � � � � � 

where � is the determinant of the matrix � �4% *  .
By our choice of " , points (a) and (b) are satisfied. Point

(c) is satisfied if we approximate " by the Taylor expansion
about the point � � �� , � � �� ,

, � �� " and the �4% * ’s are from
the second partial derivatives of " . This approximation also
satisfies (d) and the determinant � of � �4% *  is � ���	�
 � where


 � � � '� % � � �� ' � % � � � � � � � ' � %�� ' � % � � . (See the appendix for details.)
Applying the Laplace Method and using the fact that

��� �� � �� � �� " 
� 


�� � " � %�� � % � � �D5 �  �� we obtain

� ��� � � ���  � " � � � �
�
��� 5  � � � � ���	 
 � � %

��
� % �� � � �# � �

#
� �
� ( " ���

as desired. (See the appendix for a more detailed deriva-
tion.) '
5. Resolution complexity

We next give a brief outline of the proof of Theorem 2.
Proof of Theorem 2: The proof follows along the same

lines as the techniques of [37] and [42], using the trivial fact
that if " is a variable that lies in at most one constraint, then
any satisfying assignment for the CSP obtained by delet-
ing " can be extended to a satisfying assignment for the en-
tire formula. We omit the details which should be straight-
forward to anyone familiar with [37], [42] or one of many
similar papers. '
6. Proof of Theorem 3

We close the paper with a proof of Theorem 3. Simi-
lar to Section 3, we reduce a formula ! with a mixture of
clauses of size 2 and 3 to its 2-core. By the same arguments
as the proof of Lemma 11, if the 2-core has � 	 vertices and
����	 constraints for � � �

, it is a.s. unsatisfiable, and thus !
is a.s. unsatisfiable.

Before giving the proof for Theorem 3, we need the fol-
lowing theorem which gives the size of the 2-core of a ran-
dom hypergraph with a mixture of edges of size 2 and edges

of size 3. The proof of the theorem closely follows the proof
of the theorem for

�
-cores in random uniform hypergraphs

in [39] and so is omitted.

Theorem 14 Let � � � � � � &
. Let " be the largest solution to

" � � � ��� %��  � � � � 	 � � � � %��  �'��� �
If " � &

, then a uniformly random hypergraph with � � n 2-
edges, � � n 3-edges and no other edges has a 2-core with� ��� � � � �  � 	 � � �  vertices, ! �-� ��� � � �  � 	 � � �  2-edges and! � � � � � � �  � 	 � � �  3-edges where � � ��� � � �  � � ��� %�� �
" � %�� , !
�)� � � � � �  � ���)� � ��� %��  � , and ! � � ��� � � �  � � � � � �� %��  � .

Proof of Theorem 3: Consider a random � -UE-SAT
formula ! , � � � , on � variables with ���� ��� � � con-
straints of size 2 and ���" 	 # � � constraints of size 3 for
some # � � � � � #' � &

where # is arbitrary and
�

will be
chosen later.

Take the underlying hypergraph � of ! , and assume �
has a 2-core � 	 with � � vertices and ! � hyperedges. Con-
sider the subformula !.	 of ! which corresponds to � 	 . By
the same argument as Fact 9, !.	 is uniformly random con-
ditional on the number of variables, constraints of size 2 and
constraints of size 3, and if we choose an assignment, that
assignment satisfies each constraint of ! 	 , regardless of the
size of that constraint, with probability �� . Thus by the same
argument as as the proof of Lemma 11,

� � # of satisfying assignments  � � � � � �� � � �� � � �  if !�� � .

Thus, if ! � � , ! 	 is a.s. unsatisfiable and so ! is a.s. un-
satisfiable.

Now we prove ! has a 2-core with more edges than
vertices by applying Theorem 14 with � � � �� � �

and
� � � �" 	 # . Lemma 15 proves that for all # � &

there ex-
ists an

� � &
such that the " of Theorem 14 is positive and! � ! �-� ��� � � �  	 ! � ��� � � � �  � � � � � � � �  � � . Thus, we

pick an
�

which satisfies Lemma 15 and complete the proof.'
Lemma 15 For any #"� &

, there exists
� � &

such that the
largest solution to

" � � � ��� %��  � � � �( 	 # � 	�� � ��� %��  � � �� � � � (2)

is greater than 0 and

� � � %�� � " � %�� �� �� ��� � � � � � %��  � 	 � �( 	%# � � � ��� %��  � � (3)



Proof. Solving (2) for � � � � �  gives

� � � � �  � � " � � � ��� %��  � � � 	 ( #'
�*� � � � %��  (4)

and solving (3) for � � � � �  gives

� � � � �  �( � � � � %�� � " � %��  � � � � � %��  � � � 	 ( #'� � � ��� %��  � �
(5)

If the rhs’s of (4) and (5) are equal, we have

# � " 	 " � %�� 	 � � %�� � �
� � ��� %��  � � �

( � (6)

Let "�� be the positive solution to (6). Plotting (4) and (5)
shows that for all " ��"�� , the � � � � �  value from the equal-
ity (4) always satisfies the inequality (5).

Now, prove that for any # � &
, there exists

� � &
such

that " ��" � . From (2) we have

# � " � � � � � %�� �� � ��� � � � ��� %��  � � �
( � (7)

Consider the # of (6) as a function of " , # " � "� , consider the# of (7) as a function of " and
�
, #��-� " � �  , and let #���� "  �> ��� �	� � #
�-� " � �  . Plotting #�� � "  and # " � "  , we see that for

any " � &
, #�� � "  � # " � "� . If we let > ��� �	� ��" � # % �� � #'

and " � � # % �" � #' , then for any # � &
, > ��� �	� � " � " � and

thus there exists
� � &

such that " ��" � . '
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A. Proof of Theorem 4

Here we present a proof that � ��� #  -UE-CSP is NP-
complete.

Proof. Clearly the problem is in NP. We will prove it is
NP-hard by showing 3-COLOR + � � ��� #  -UE-CSP. For 3-
COLOR, we are given a graph

�
with � vertices and

�
edges, and we wish to color

�
with three colors such that

any two vertices joined by an edge cannot receive the same
color. Now given

�
, we will create an instance of � ��� #  -UE-

CSP with � 	 � variables and
� �

constraints such that
�

is
3 colorable if and only if there is a valid assignment to the
variables of the CSP. For each edge

� ��� �
of
�

, we will
have three variables,

� � � � �
, and we will add 3 uniquely ex-

tendible constraints to
	 � � � �$� 


. These constraints are listed
in Figure 1.

Note that
�

,
�

, and
�

may be set any permutation of	 &������ � 
 . However, no variable can receive a value of 3
without violating one of the constraints. Likewise,

�
and�

can not be assigned the same value without violating the
constraints. If we let the colors for

�
be

	 &���� � � 
 , the proof
follows. '
Remark: This proof can be extended to show � ��� #  -UE-
CSP is NP-complete even when restricted to inputs where
no two constraints intersect on more than one variable. We
omit the details.



Constraint 1 Constraint 2 Constraint 3
u v e u v e u v e
0 0 0 0 0 3 0 0 3
0 1 2 0 1 2 0 1 2
0 2 1 0 2 1 0 2 1
0 3 3 0 3 0 0 3 0
1 0 2 1 0 2 1 0 2
1 1 3 1 1 1 1 1 3
1 2 0 1 2 0 1 2 0
1 3 1 1 3 3 1 3 1
2 0 1 2 0 1 2 0 1
2 1 0 2 1 0 2 1 0
2 2 3 2 2 3 2 2 2
2 3 2 2 3 2 2 3 3
3 0 3 3 0 0 3 0 0
3 1 1 3 1 3 3 1 1
3 2 2 3 2 2 3 2 3
3 3 0 3 3 1 3 3 2

Figure 1. The constraints used in the proof of
Theorem 4. Each row of a constraint lists the
ordered triples of values which the constraint
permits to be assigned to the 3 variables.

B. Proof of Lemma 12

Here we present more details of the proof of Lemma 12.
As justified in Section 4, we have

� ��� � � ���  � "
2�	��
 # 2� ��
 ��8 # 2# ��
 :8 # ��� � � � ��,  � �  �� � � � � # �

where " � � � � ��,  � = � � � � ��,  � # � � � ��B>C? � and= � � � � ��,  � ��� � � � � � � 	 � , ��B>C? �
	�� � � � � �-� 	 � � � �1, ��B>C? �� � >@? � � � � � � B>C? � � � � � � � � � � 	�� ,  � >@? � � � � � 	�� , � �!� �1,  � � >@? �!� �A,  � � , >C? ,
	 � � � >C?�� 	 � � � �' � � >C? � � � �'
	 � >@? � � % � � � $  � � � � >@? $
	�� � � � B>C? � ��G � � �EH � � � � �' � � >@? H� >C? � � � � � � "  	 � � >C?�" � (8)

� � � � � ��,  � & � � � ���  % � & �D� � � � � � & � � � � �' � � � � � � �   ��� 5 �  % �� � % �� � � � � � �  � � � � � 	�� , �� � � � � ,  ,  % �� �
To use the Laplace Method to approximate this sum, we

must find the maximums for
=

. If we differentiate
=

with

respect to � � � ��, and apply (1), we get
� =

� � � � >@? � � >@? � 	 >C? � � � �  	F>@? � � % � � � $ � >C? � ��G ��� �1H 
� =

� � � � � � >C? � 	 � � >@? � � � � >C? �D� �A,  	 � � >@? �� � � >C? � � � �' 	 � � >C? � � � � � 	�� ,  � � � >C? $
	 � � >C? H� =

� , � �'� >C? � � � >C? � 	 � � >@? �!� �A,  � � >C? ,� �'� >C? � � � � � 	�� ,  �
Setting the partial derivatives to 0 implies� � �

� � � � G � � �AH� % � � � $ (9)� � �� � �
� �

H $ � � � � � � 	�� , 
�D� �1,  (10)

�D� �1,  �
� � � � � 	�� ,  � � ��,

#
�

(11)

From (9), (10) and (11) it is straightforward to verify
that � � �� � � � �� ��, � �� " , " � H�� $ is a local maxi-
mum for

=
and satisfies (1),

= ���� � �� � �� " 
� # >@? � � # � >@? � ,

and Lemma 16 in Section B.1 proves that this is, indeed, the
only maximum of

=
on the relevant interval.

Next, we replace the summations with integrals:

� ��� � � ���  � " � � � �
�

� � �� � �� � �KML�N�O � � � :�P ��RQ � � � � � ��,  � �! �� � � � � # � � , ��� � � �
To approximate the value of the integrals with the

Laplace Method, we will approximate " by the Taylor ex-
pansion about the point � � �� , � � �� ,

, � �� " . The second
partial derivatives of

=
are:= � � � � �

� � �
� � � 	

� % � �� % ��� � $ � $
� �

� � G � �� G ��� �1H � H
� �= � � � � % ���� % � � � $ � $

� � � � G � �� G ��� �1H � H
� �= � # � &= � � � � � �$ � $

� � 	
� �H � H

� �= � � � � � �� �A, 	 � �� 	
� �� � � � 	 �� � � � 	 � ,� � �$ � $

� � 	
� �H � H

� �= � # � � �� �A, 	 ( �� � � � 	�� ,= # � � &= # � � � �� �A, 	 ( �� � � � 	�� ,= # # � � � �� �A, � � , � #)�� � � � 	 � , �



Where, from (1),
� $

� � � � $ � � % � �  �� � � % ���  � 	 � � �'� � % � $ � % ��� 
� $
� � � � $ � � % ���  �� 0 � � � % � �  � 	 � � �-� � % � $ � % � � 42 � H

� �
� H � � G � �  �

� � � �  � � G � �  � 	 � � � � �' �'� � G �1H4� G � � � H
� � �

� � � � �  H � � G � �  �
� � � �  0 � � � � �� � G ���  � 	 � � � � �' �'� � G �AH4� G � � 42 �

We approximate " by a Taylor expansion about its max-
imum, and the matrix �!�4% *  is formed from the value of the
second partial derivatives of

=
at this point. Since " � H �$ at the maximum and if we let 
 � � � '� % � � �� ' � % � � � � � � � ' � %�� ' � % � � ,

�!� % *  � �� � "� 	 � ( 
 � � ( 
 &� � ( 
 � # � 	 � ( 
 � � �'�& � � �'� � � �� �

��
�

Using (1) and the fact " � &
gives 
 � &

which implies
the quadratic form of �!�4% *  is positive definite (see, e.g., [7]

p. 142), and the determinant � of �!� % *  is � � �	 
 � .
Now, we can apply the Laplace Method of Lemma 13

and get,

� ��� � � ���  � " � % " � � �D5 � �  � � 
 % �� ��� �# � �
#
� �� (  �

Note that & � � : � � <  � & �;: �=<  for any value
�
. Using this

fact, we can simplify ��� �� � �� � �� "  .
� �
�
#
� �
#
� �
� (  � & � � � ���  � " � % � � % � �D5 �  % �� � (12)

From (1),
� � �$� 	

� � �� � %�� , we can simplify 
 .


 � �'� & � � � ���   � � (13)

Thus,

� ��� � � ���  � " & � � � ���  � �� 
 % �� by (12)" �-�
by (13)

B.1. Proof that � has only one maximum

Lemma 16 The only maximum of (8) when � � 0 &�� � 2 , � �0 &���� 2 , , � 0 ����� 	 &�� � � % �� 
 � � � ? 	 ��� � 
 2 occurs where
H"� $ .

Proof. Let 	 � � % � �
and let 
 � � G � �

. Now, we com-
bine the partial derivatives of

=
with (1) to create a single

polynomial.

From (10), , � � $ � � � � �' � � H � 	 	 H � �( H � 	�� $ � � � �' �
(14)

From (1),

� � $ � 	� �'��	 � $  � (15)

From (9),

� � 	 � $
	 � $ 	 � 
 � � H � (16)

From (1) plugging in (15) for � and (16) for � ,

	 � � � $ 	 � 
 H � 	 ��
 	 	 � H� � � $ �
(17)

From (11) and plugging in (14) for
,
, (15) for � , (16) for� , and (17) for 	 gives a polynomial of degree 3 in $ which

we place into canonical form.$ � 0 ( ��
 � �
 � 2
	 $ � 0 	 � � H 	 � �)� H 
�	 	 H 
 � ��� �-� � 
 � ( ��
 � 2

	 $ 0 ! #)� � H � 	 � �-��
 H � � � & �-� � H 
 � �-( � H 
 � 	 �)( � � 
 � 2
	 � � � � H � 	 ! #)� H � 
 	 	 H � 
 � � � & �-� � H � 
��! #)� H � 
 � 	 � ( �-� � H 
 � � &*�

Since we know there is a solution when $ �RH
, we will

divide out the root � $ �AH  which gives the polynomial$ � 0 ( ��
 � �
 � 2
	 $ 0 	 � � H 	�� # � H 
 	 
6H 
 � � � �-� � 
 � ( ��
 � 2

	 ()� � � H � 	 # �'� H � 
 	 
�H � 
 �� � � ( � � H 
 � # �-� H 
 � 	 �-( � � 
 �
and the remainder

� #-#)� � H � 	 	)( � H � 
 	 � (�H � 
 � � ��� �-� � H � 
� 	)( � H � 
 � 	 � #-# � � H 
 � �
Since � $ � H  is a root, we can set the remainder to 0 and

solve for
H

which givesH � � ��
� � 	�
 �

Now, we can plug the value for
H

back into (17) which
gives $ � � ��	� � 	�	 �

Thus, we must have y=z. '


