CSC 364H Notes Summer, 2004

Greedy Algorithms

Simple Knapsack Problem

“Greedy Algorithms” form an important class of algorithmic techniques. We illustrate the
idea by applying it to a simplified version of the “Knapsack Problem”. Informally, the
problem is that we have a knapsack that can only hold weight C, and we have a bunch of
items that we wish to put in the knapsack; each item has a specified weight, and the total
weight of all the items exceeds C'; we want to put items in the knapsack so as to come as
close as possible to weight C'; without going over. More formally, we can express the problem
as follows.

Let wy,...,wqg € N be weights, and let C € N be a weight. For each S C {1,...,d} let
K(S) =>,cswi. (Note that K(#) =0.)
Find:

M= max {K(S)|K(S)<C}

SC{1,0d}

For large values of d, brute force search is not feasible because there are 2¢ subsets of

(1,....d}.

We can estimate M using the Greedy method:
We first sort the weights in decreasing (or rather nonincreasing order)

Wy > Wy > ... > Wy

We then try the weights one at a time, adding each if there is room. Call this resulting
estimate M.

It is easy to find examples for which this greedy algorithm does not give the optimal solution;
for example weights {501, 500, 500} with C' = 1000. Then M = 501 but M = 1000. However,
this is just about the worst case:

Lemma 1 M > 1M

Proof:
We first show that if M # M, then M > %C’; this is left as an exercise. Since C' > M, the
Lemma follows.

The notion of a polynomial-time algorithm is basic to complexity theory, and to this course
(see definition below). Roughly speaking, we regard an algorithm as feasible (or tractable) if
and only if it runs in polynomial time. The above greedy algorithm runs in polynomial time
(see below) and is feasible to execute for values of d in the thousands or even millions. On

the other hand, the blind search algorithm takes more than 2¢ steps, is not polynomial-time,
and will never run on any physical computer (now or in the future) for values of d as small
as 200 — the universe will expire first.

Unfortunately the greedy algorithm does not necessarily yield an optimal solution. This
brings up the question: is there any polynomial-time algorithm that is guaranteed to find
an optimal solution to the simple knapsack problem? This question will be studied in the
next part of the course. The answer is that this knapsack problem is “NP hard” (assuming
that the weights are given using binary or decimal notation), and hence is very unlikely to
be solvable by a polynomial-time algorithm.

Definition 1 An algorithm is polynomial-time iff there erists a k such that the running
time T'(n) of the algorithm satisfies T'(n) € O(n¥), where n = input “size”.

The notation “T'(n) € O(f(n))” is defined in CLR (that is, Cormen, Leiserson, Rivest) in
Section 2.1, and in the more recent version of the text (CLRS) in Section 3.1 . It means
that for some positive constants ¢ and ng, 0 < T(n) < ¢f(n) for all n > ny. Instead of
“T'(n) € O(f(n))”, we sometimes say “I'(n) is O(f(n))”, or “T'(n) = O(f(n))”.

The running time (i.e. 7'(d)) for the knapsack problem with the above greedy algorithm
is O(dlogd), because first we sort the weights, and then go at most d times through a
loop to determine if each weight can be added. So this particular greedy algorithm is a
polynomial-time algorithm.

Lemma 2 For any constant ¢ > 0 and positive integer k, n* € O(2°) but 2°™ ¢ O(n*).

Proof:

It is sufficient to show that lim,_,. 27:—: = oo. This can be proved using L’Hospital’s rule.
The derivative of 2°° with respect to z is (clog, 2)2°*. So if we differentiate any number of
times, the resulting function still approaches co as x approaches oco. On the other hand, if
we differentiate z* just k times, the result is the constant k!.

Minimum Spanning Trees

An undirected graph G is a pair (V,E); V is a set (of vertices or nodes); E is a set of
(undirected) edges, where an edge is a set consisting of exactly two (distinct) vertices. For
convenience, we will sometimes denote the edge between v and v by (u,v) or uv, rather than
by {u,v}.

The degree of a vertex v is the number of edges touching v. A path in G between v; and vy, is
a sequence v, Ve, ...,V such that each (v;,v;41) € E. G is connected if between every pair
of distinct nodes there is a path. A cycle is a closed path vy, ..., vg, v1 with & > 3; if vy, ..., v
are all distinct we say it is a simple cycle. A graph is acyclic if it has no cycles. A tree is a
connected acyclic graph. A spanning tree of a connected graph G is a subset 7" C E of the
edges such that (V,T) is a tree. (In other words, the edges in 7" must connect all nodes of
G and contain no cycles.)

If a connected G has a cycle, then there is more than one spanning tree for GG, and in general
G may have exponentially many spanning trees, but each spanning tree has the same number
of edges.

Lemma 3 FEvery tree with n nodes has exactly n — 1 edges.

The proof is by induction on n, using the fact that every (finite) tree has a leaf (i.e. a node
of degree one).

We are interested in finding a minimum cost spanning tree for a given connected graph G,
assuming that each edge e is assigned a cost c¢(e). (Assume for now that the cost c(e) is a
nonnegative real number.) In this case, the cost ¢(T") is defined to be the sum of the costs
of the edges in T. We say that T is a minimum cost spanning tree (or an optimal spanning
tree) for G if T is a spanning tree for G, and given any spanning tree 7" for G, ¢(T) < ¢(T").

Given a connected graph G = (V, E) with n vertices and m edges eq,es, ..., ey, where
c(e;) = “cost of edge e;”, we want to find a minimum cost spanning tree. It turns out
(miraculously) that in this case, an obvious greedy algorithm (Kruskal’s algorithm) always
works. Kruskal’s algorithm is the following: first, sort the edges in increasing (or rather
nondecreasing) order of costs, so that c(e;) < ¢(ez) < ... < ¢(en); then, starting with an
initially empty tree T', go through the edges one at a time, putting an edge in 7' if it will
not cause a cycle, but throwing the edge out if it would cause a cycle.

Kruskal’s Algorithm:

Sort the edges so that: c(e1) < c(eg) < ... < c(em)
T+ 0
fori:1.m
(*) if T'U {e;} has no cycle then
end if
end for

But how do we test for a cycle (i.e. execute (*))? After each execution of the loop, the set T’
of edges divides the vertices V into a collection V; ...V} of connected components. Thus V'
is the disjoint union of Vi ... V%, each V; forms a connected graph using edges from 7', and
no edge in 7" connects V; and Vj, if 7 # 5.

A simple way to keep track of the connected components of T is to use an array D[l..n]
where D[i] = D[j] iff vertex i is in the same component as vertex j. So our initialization
becomes:

T+ 0
forz:1.n

D[i] < i
end for

To check whether e; = [r, s] forms a cycle with 7', check whether D[r] = D[s]. If not, and
we therefore want to add e; to 7', we merge the components containing r and s as follows:

k < Dir]
| + D]
forj:1.n
if D[j] = [then
Dj]
end if
end for

The complete program for Kruskal’s algorithm then becomes as follows:

Sort the edges so that: c(e1) < c(eg) < ... < c(em)
T+ 0
fori:1.n
Dl[i] < i
end for
fori:1.m
Assign to r and s the endpoints of e;
if D[r] # D]s] then
T+ TuU {61}
k < Dir]
[+ DIs]
forj:1..n
if D[j] = [then
D[j] « k
end if
end for
end if
end for

We wish to analyze the running of Kruskal’s algorithm, in terms of n (the number of vertices)
and m (the number of edges); keep in mind that n — 1 < m (since the graph is connected)
and m §(3)< n?. Let us assume that the graph is input as the sequence n, I, I, ..., I,
where n represents the vertex set V = {1,2,...,n}, and [; is the information about edge e;,
namely the two endpoints and the cost associated with the edge. To analyze the running
time, let’s assume that any two cost values can be either added or compared in one step.
The algorithm first sorts the m edges, and that takes O(mlogm) steps. Then it initializes
D, which takes time O(n). Then it passes through the m edges, checking for cycles each time
and possibly merging components; this takes O(m) steps, plus the time to do the merging.
Each merge takes O(n) steps, but note that the total number of merges is the total number
of edges in the final spanning tree 7', namely (by the above lemma) n — 1. Therefore this
version of Kruskal’s algorithm runs in time O(mlogm + n?). Alternatively, we can say it
runs in time O(m?), and we can also say it runs in time O(n?logn). Since it is reasonable
to view the size of the input as n, this is a polynomial-time algorithm.

This running time can be improved to O(mlogm) (equivalently O(mlogn)) by using a more
sophisticated data structure to keep track of the connected components of 1'; this is discussed
on page 570 of CLRS (page 505 of CLR).

Correctness of Kruskal’s Algorithm

It is not immediately clear that Kruskal’s algorithm yields a spanning tree at all, let alone
a minimum cost spanning tree. We will now prove that it does in fact produce an optimal
spanning tree. To show this, we reason that after each execution of the loop, the set T
of edges can be expanded to an optimal spanning tree using edges that have not yet been
considered. Hence after termination, since all edges have been considered, 7" must itself be
a minimum cost spanning tree.

We can formalize this reasoning as follows:

Definition 2 A set T of edges of G is promising after stage i if T' can be expanded to a op-
timal spanning tree for G using edges from {€;11, €12, .. .,em}. That is, T is promising after
stage i if there is an optimal spanning tree T,y such that T C Top C TU{€i41,€i12,- -, €m}-

Lemma 4 For 0 <1 < m, let T; be the value of T after i stages, that is, after examining
edges e1, .. .,e;. Then the following predicate P(i) holds for every i, 0 < i < m:

P(i) : T; is promising after stage i.

Proof:

We will prove this by induction. P(0) holds because T is initially empty. Since the graph is
connected, there exists some optimal spanning tree T,;, and

Ty C Tope CToU{er,9,...,€m}-

For the induction step, let 0 < i < m, and assume P(i). We want to show P(i + 1). Since
T; is promising for stage ¢, let Ty, be an optimal spanning tree such that

T; CTopt CT;U{€it1, €19, - -, em}. If €;41 is rejected, then T; U {e;41} contains a cycle and
Tiy1 =T;. Since T; C T, and Ty is acyclic, €41 ¢ Topr. SO

CFi—|—1 g Topt g ﬂ+1 U {ei+2a LK) em}-

Now counsider the case that T;U{e;;1} does not contain a cycle, so we have T; 1 = T;U{e;41}-
If e;+1 € Topt, then we have Tj1 C Tope € Tipq U {€iga, ..., em}

So assume that e;11 ¢ Ti,. Then according to the Exchange Lemma below (letting 7 be
Topt and Ty be T; 1), there is an edge e; € T, — 154y such that T, , = T, U {eir1} — {6}

op
is a spanning tree. Clearly T;1; C T, , C Ti11 U{€ito,- .., €n}. It remains to show that 7T}

opt
is optimal. Since T,y C T; U {€it1, €it2; ..., em} and e; € Top — Tiiq, we have j > i+ 1. So
(because we sorted the edges) c(ei11) < c(e;), so ¢(Th,,) = c(Topt) + cleir1) — clej) < e(Topr)-

opt
Since T, is optimal, we must in fact have ¢(7},,) = ¢(Top), and Ty, is optimal.

This completes the proof of the above lemma, except for the Exchange Lemma.

Lemma 5 (Ezchange Lemma) Let G be a connected graph, let Ty be any spanning tree of
G, and let T, be be a set of edges not containing a cycle. Then for every edge e € Ty, — T}
there is an edge € € Ty — Ty such that Ty U {e} — {€'} is a spanning tree of G.

Proof:

Let T} and T, be as in the lemma, and let e € T, — T}. Say that e = (u,v). Since there is
a path from u to v in T}, T U {e} contains a simple cycle C, and it is easy to see that C
is the only simple cycle in 77 U {e}. Since T5 is acyclic, there must be an edge ¢’ on C' that
is not in T3, and hence ¢’ € T} — T». Removing a single edge of C from 77 U {e} leaves the
resulting graph acyclic but still connected, and hence a spanning tree. So Ty U {e} — {€'} is
a spanning tree of G.

We have now proven Lemma 4. We therefore know that 7, is promising after stage m;
that is, there is an optimal spanning tree 7, such that 7,, C T, C T,, U ¢ = T,,, and so
Ty = opt-

Discussion of Greedy Algorithms

Before we give another example of a greedy algorithm, it is instructive to give an overview of
how these algorithms work, and how proofs of correctness (when they exist) are constructed.

A Greedy algorithm often begins with sorting the input data in some way. The algorithm
then builds up a solution to the problem, one stage at a time. At each stage, we have a
partial solution to the original problem — don’t think of these as solutions to subproblems
(although sometimes they are). At each stage we make some decision, usually to include or
exclude some particular element from our solution; we never backtrack or change our mind.
It is usually not hard to see that the algorithm eventually halts with some solution to the
problem. It is also usually not hard to argue about the running time of the algorithm, and
when it is hard to argue about the running time it is because of issues involved in the data
structures used rather than with anything involving the greedy nature of the algorithm. The
key issue is whether or not the algorithm finds an optimal solution, that is, a solution that
minimizes or maximizes whatever quantity is supposed to be minimized or maximized. We
say a greedy algorithm works if it is guaranteed to find an optimal solution.

Most greedy algorithms do not work! The method we use to show that a greedy algorithm
works (when it does) is as follows. At each stage i, we define our partial solution to be
promising if it can be extended to an optimal solution by using elements that haven’t been
considered yet by the algorithm; that is, a partial solution is promising after stage 7 if there
exists an optimal solution that is consistent with all the decisions made through stage ¢
by our partial solution. We prove the algorithm works by fixing the input problem, and
proving by induction on ¢ > 0 that after stage ¢ is performed, the partial solution obtained
is promising. The base case of i = 0 is usually completely trivial: the partial solution after
stage 0 is what we start with, which is usually the empty partial solution, which of course
can be extended to an optimal solution. The hard part is always the induction step, which
we prove as follows. Say that stage ¢ + 1 occurs, and that the partial solution after stage
1 is 9; and that the partial solution after stage ¢ + 1 is S;11, and we know that there is an
optimal solution S,y that extends .S; ; we want to prove that there is an optimal solution
S, . that extends S;11 . Si41 extends S; by making only one decision; if S,,, makes the same

opt
decision, then it also extends S;;1, and we can just let S}, = S, and we are done. The

opt

hard part of the induction step is if S,y does not extend S;41. In this case, we have to show
either that S,,: could not have been optimal (implying that this case cannot happen), or we
show how to change some parts of S,,; to create a solution S, such that

!
® Sopt €xtends S;iq, and

o S, has value (cost, profit, or whatever it is we're measuring) at least as good as Sy,

so the fact that S,y is optimal implies that Sy, is optimal.

For most greedy algorithms, when it ends, it has constructed a solution that cannot be
extended to any solution other than itself. Therefore, if we have proven the above, we know
that the solution constructed must be optimal.

A Greedy Algorithm for Scheduling Jobs with Deadlines and Profits

The setting is that we have n jobs, each of which takes unit time, and a processor on which
we would like to schedule them in as profitable a manner as possible. Each job has a profit
associated with it, as well as a deadline; if the job is not scheduled by the deadline, then
we don’t get the profit. Because each job takes the same amount of time, we will think
of a Schedule S as consisting of a sequence of job “slots” 1,2,3,... where S(¢) is the job
scheduled in slot ¢.

(If one wishes, one can think of a job scheduled in slot ¢ as beginning at time ¢t — 1 and
ending at time ¢, but this is not really necessary.)

More formally, the input is a sequence (d1, ¢1), (dz, g2), - - - , (dy, gn) Where g; is a nonnegative
real number representing the profit obtainable from job ¢, and d; € N is the deadline for
job 4; it doesn’t hurt to assume that 1 < d; < n. (The reason why we can assume that
every deadline is less than or equal to n is because even if some deadlines were bigger, every
feasible schedule could be “contracted” so that no job was placed in a slot bigger than n.)

Definition 3 A schedule S is an array: S(1),S(2),...,S(n) where
S(t) € {0,1,2,---n} for each t € {1,2,--- ,n}.

The intuition is that S(¢) is the job scheduled by S in slot ¢; if S(¢) = 0, this means that no
job is scheduled in slot ¢.

Definition 4 S is feasible if
(a) If S(t) =i > 0, then t < d;. (Every scheduled job meets its deadline)
(b) If t1 # toy and S(t1) # 0, then S(t1) # S(t2). (Each job is scheduled at most once.)

We define the profit of a feasible schedule S by
P(S) = gsqa) + 9s@) + -.- + gsm), where go = 0 by definition.

Goal: Find a feasible schedule S whose profit P(S) is as large as possible; we call such a
schedule optimal.

We shall consider the following greedy algorithm. This algorithm begins by sorting the
jobs in order of decreasing (actually nonincreasing) profits. Then, starting with the empty
schedule, it considers the jobs one at a time; if a job can be (feasibly) added, then it is added
to the schedule in the latest possible (feasible) slot.

Greedy:

Sort the jobs so that: g1 > g0 > ... > g,

fort:1..n
S(t) < 0 {Initialize array S(1),S5(2),...,S(n)}

end for

fori:1..n
Schedule job 7 in the latest possible free slot meeting its deadline;
if there is no such slot, do not schedule 1.

end for

Example. Input of Greedy:

Job i: ‘1‘2‘3‘4‘Commen‘cs
Deadline d;: | 3|2 | 3 | 1| (when job must finish by)
Profit g;: 97| 7]2]| (already sorted in order of profits)

Initialize S(t):
t 112|134
S@o0lo0]0]0

Apply Greedy: Job 1 is the most profitable, and we consider it first. After 4 iterations:

112134
SO 3210

Job 3 is scheduled in slot 1 because its deadline t = 3, as well as slot t = 2, has already been
filled.

P(S)=gs+ g+ =7+7+9=23.

Theorem 1 The schedule output by the greedy algorithm is optimal, that is, it is feasible
and the profit is as large as possible among all feasible solutions.

We will prove this using our standard method for proving correctness of greedy algorithms.
We say feasible schedule S’ eztends feasible schedule S iff for all ¢ (1 <t < n),
if S(t) # 0 then S'(¢) = S(¢t).

Definition 5 A feasible schedule is promising after stage i if it can be extended to an optimal
feasible schedule by adding only jobs from {i+1,--- n}.

Lemma 6 For 0 < i < n, let S; be the value of S after i stages of the greedy algorithm,
that is, after examining jobs 1,--- i. Then the following predicate P(i) holds for every i,
0<s<n:

P(i) : S; is promising after stage i.

10

This Lemma implies that the result of Greedy is optimal. This is because P(n) tells us
that the result of Greedy can be extended to an optimal schedule using only jobs from §.
Therefore the result of Greedy must be an optimal schedule.

Proof of Lemma: To see that P(0) holds, consider any optimal schedule S,p;. Clearly So
extends the empty schedule, using only jobs from {1,---,n}.

So let 0 <4 < n and assume P(i). We want to show P(i + 1). By assumption, S; can be
extended to some optimal schedule S, using only jobs from {i +1,--- ,n}.

Case 1: Job i + 1 cannot be scheduled, so S;;; = S;.
Since S,y extends S;, we know that S,,: does not schedule job 7 4+ 1. So S, extends Sjiq
using only jobs from {i +2,---,n}.

Case 2: Job i + 1 is scheduled by the algorithm, say at time ¢y (so S;y1(tp) =4+ 1 and ¢,
is the latest free slot in S; that is < d;41).

Subcase 2A: Job ¢ + 1 occurs in S,y at some time ¢; (where ¢; may or may not be equal
to t())

Then t; <ty (because S,y extends S; and tg is as large as possible) and S,p(t1) =i+ 1 =
Si+1(to)-

If t, = t1 we are finished with this case, since then S,,; extends S;;; using only jobs from
{i +2,---,n}. Otherwise, we have t; < ty. Say that S,(t) = j # ¢ + 1. Form S,
by interchanging the values in slots ¢; and ty in S,y Thus Sy, (t1) = Sop(to) = j and
Sgpt(0) = Sopt(t1) = i+ 1. The new schedule Sy, is feasible (since if j # 0, we have moved
job j to an earlier slot), and S, extends S;; using only jobs from {i +2,--- ,n}. We also

have P(S.) = P(S,,;), and therefore Syt 18 also optimal.

Subcase 2B: Job ¢ + 1 does not occur in Spp;.

Define a new schedule S/, p+ 10 be the same as S, except for time #,, where we define

Sopi(to) =i+ 1. Then S, is feasible and extends S;;; using only jobs from {i +2,--- ,n}.

To finish the proof for this case, we must show that S, is optimal. If S, (ty) = 0, then
we have P(S;;) = P(Sopt) + gi+1 > P(Sopt)- Since Sy is optimal, we must have P(S ;) =
P(Sop) and Sy, is optimal. So say that Sopt(to) =7,7>0,7 # ¢+ 1. Recall that S,y
extends S; using only jobs from {i +1,---,n}. So j > i+ 1, so g; < giy1. We have

P(Si,1) = P(Sopt) + git1 — gj > P(Sopt)- As above, this implies that Sipt 18 optimal. O

We still have to discuss the running time of the algorithm. The initial sorting can be done in
time O(nlogn), and the first loop takes time O(n). It is not hard to implement each body
of the second loop in time O(n), so the total loop takes time O(n?). So the total algorithm
runs in time O(n?). Using a more sophisticated data structure one can reduce this running
time to O(nlogn), but in any case it is a polynomial-time algorithm.

11

Greedy Summary: In general, greedy algorithms are very fast. Unfortunately, for some
kinds of problems they only do not always yield an optimal solution (such as for Simple
Knapsack). However for other problems (such as the scheduling problem above, and finding
a minimum cost spanning tree) they always find an optimal solution. For these problems,
greedy algorithms are great.

Scheduling Jobs with Deadlines and Profits, on Multiple Processors

The input to this problem, as before, is a sequence of n (unit duration) jobs
(d1,91),(da,92),- -, (dn, gn) Where d; and g; are the deadline and profit of job i. The differ-
ence is that we may now have more than one processor on which we are allowed to schedule
jobs, so that our optimal profit may be higher. Of course, we are not allowed to schedule
the same job on more than one processor.

We therefore also have as input a positive integer m denoting the number of processors,
where m < n. A schedule is now defined to be a function

S:{1,2,---,m} x{1,2,--- ,n} — {0,1,2,--- ,n}. The intuition is that S(k,t) is the job
scheduled on processor k in slot t; S(k,t) = 0 means that no job is scheduled in slot ¢ of
processor k. We say S is feasible if the following two properties hold:

(a) If S(k,t) =14 > 0 then ¢ < d;; that is, no job can be scheduled after its deadline.

(b) If S(k,t) = S(k',t') > 0, then k = k' and ¢ = t'; that is, no job can be scheduled more
than once.

We define the profit of a (feasible) schedule S by

P(S)= > gswy

1<k<m, 1<t<n

where go = 0 by definition. The goal is to find a feasible schedule with as high a profit as
possible.

12

Exercise: Give a polynomial time Greedy algorithm for this problem. Prove that your
algorithm works. Analyze the running time of your algorithm.

“Activity” Scheduling

(This development will be similar to that in CLR.)

An activity is defined to be a pair (s, f) of nonnegative integers such that s < f; the intuition
is that s is the starting time of the activity and f is the finishing time of the activity. We will
be given a sequence of activities, and we wish to schedule as many of them as possible (on
one processor) so that no two scheduled activities overlap. If (s, f) and (&', f') are activities,
we say they do not overlap if f < s' or f' <s.

More formally, the input is a sequence of n activities, (s1, f1), (s2, f2), -+, (Sn, fn)- A schedule
is defined to be a set A C {1,2,--- ,n} such that for all 7,5 € A, if i # j then (s;, fi) does
not overlap (s;, f;). The goal is to find a schedule A such that |A| (the size of A) is as big
as possible. (Since we are only interested in how many activities are in A, we are in effect
treating each activity as if it yields unit profit. More complicated versions of this problem
allow different activities to yield different profits.)

Our greedy algorithm will work as follows. First, we will sort the activities according to
nondecreasing finish times. Then we will go through the activities, one at a time, scheduling
each activity if possible. Before formally stating the algorithm, we give the following exercise.

Exercise: Prove that if, instead of sorting by nondecreasing finish times, we sort by nonde-
creasing start times, then the algorithm would not work.
Prove that if, instead of sorting by nondecreasing finish times, we sort by nondecreasing job
size (that is, f — s), then the algorithm would not work.

We now give code for the algorithm. We will use a variable e to keep track of the last finish
time of an activity added to A, where e = 0 if A is empty. That is, since the jobs are sorted
according to finish time, e is the earliest start time at which we can add an activity to A.

13

Greedy:
Sort the activities so that: f;1 < fo < ... < f,
A+
e+ 0
fori:1..n
if s; > e then
A— AU{i}
e < fi
end if
end for

Analyzing the running time of the algorithm, we see that the nlogn time for the sort
dominates the linear time for the loop, so the total time is O(nlogn).

We now want to prove the algorithm works.

Theorem 2 This Greedy algorithm outputs an optimal (that is, largest possible) schedule.

We will prove this using our standard method for proving correctness of greedy algorithms.
Let A; and e; be the values of A and e after the body of the ‘for’ loop has been executed
times. It is easy to prove by induction on 7 that for all 7, 0 <7 < n:

(*) A; € {1,2,---,i} and

(**) e; = max{f; |j € A;} (where max() = 0).

The Theorem clearly follows from the following Lemma.

Lemma 7 For 0 < i < n, A; is promising after stage v, that is, there exists an optimal
schedule Ay such that A; C Agpr € A;U{i+1,--- ,n}.

Proof of Lemma: Clearly A is promising after stage 0.

So let 0 < i < n and assume that A; is promising after stage i. We want to show A;,; is
promising after stage ¢ + 1. Let A, be an optimal schedule such that

A CAp CAU{i+1,---,n}. Clearly (*) and (**), together with the fact that the finish
times are in sorted order, imply that e; < fi 1.

Case 1: s;11 < e;, 50 A1 = A,
Then, since e; is the finish time of an activity in 4; and e; < f;11, we see that activity ¢ + 1
overlaps an activity in A;, so ¢ +1 ¢ Agp. So Aip1 C Agpr € Aia U{i+2,--- ,n}.

Case 2: s;.1 > ¢€;,80 Ajyg = A, U{i + 1}

Subcase 2A: i+ 1€ Agyy.
Then Ai+1 g Aopt g Ai+1 U {’L + 2, tee ,TL}.

14

Subcase 2B: i + 1 ¢ A,

Since s;+1 > €;, (**) implies that activity ¢ + 1 does not overlap any activity in A;. A,y
cannot equal A;, for then A, U{i+ 1} would be a larger schedule than A,,. Solet v > i+2
be the activity in A, — A; with the smallest finish time. Consider the activities in A, — A;
other than u: since these all have start times > f,, and since f, > f;11, we see that none of
these activities overlap activity 7+ 1. Let A[,, = (Aqp — {u}) U {i +1}. A}, is a schedule,
and since it has the same size as A,y, it is an optimal schedule. We also clearly have
Ai—l—l g Ai)pt g Ai—l—l U{Z+2, ,TL}. I

Activity Scheduling on Multiple Processors

For this problem, the input will consist of a positive integer m in addition to
(s1, f1), (82, f2), -+, (8n, fn), Wwhere m < n denotes the number of processors. Of course, we
are not allowed to schedule overlapping jobs on the same processor.

More formally, a schedule is now defined to be a sequence A = (A;, As, -+, A,,) where each
A C{1,2,---,n} and where the following two properties hold:

(a) For all k, 1 < k < m, and for all i,j € Ay, if i # j then activity ¢ does not overlap
activity j.

(b) For all]i'l, kz, 1 S kl, k‘g S m, if]{11 75 kz then Akl N Akg = @

The size of schedule A is defined to be |A;|+ |As|+---+|A.,|. The goal is to find a schedule
with as large a size as possible.

Exercise: Give a polynomial time Greedy algorithm for this problem. Prove that your
algorithm works. Analyze the running time of your algorithm.

Making Change

Canadian coins come in the following denominations: 1, 5, 10, 25, 100, 200. Let’s assume
that when we give somebody change we want to use as few coins as possible. For example,
if we wanted to create the value 143, we could use:

3 quarters, 6 dimes, 1 nickel and 3 pennies,

for a total of 13 coins. A better way would be to use a greedy algorithm where we make
change by, at each stage, using as big a coin as possible to make change for the remaining
amount. For example, to create the value 143, we first use a loonie, followed by a quarter,
followed by a dime, followed by a nickel, followed by 3 pennies, for a total of only 7 coins.
It turns out that this greedy algorithm always yields an optimal solution, for the case of
Canadian coins.

It is important to realize that there are other currencies for which this greedy algorithm is
not optimal. For example, assume we modify our currency by getting rid of the nickel. Say
that we want to create the value 30. The greedy algorithm will use 1 quarter and 5 pennies,
whereas the optimal method uses 3 dimes.

We wish to discuss this greedy algorithm for an arbitrary currency. Say that we have k

15

distinct coin denominations of integer values C[1] = 1 < C[2] < ... < C[k]. (Note that
because we have a coin of value 1, it will be possible to create any nonnegative integer
amount.) We are given an input n € N, and we wish to create a sequence of coin values
S = uy,us,...,u, that adds up to n such that m is as small as possible. Here is code for
the greedy algorithm discussed above. In this algorithm we use o to denote concatenation of
sequences, and we assume the empty sequence adds up to 0. We use the variable s to denote
the amount of change that our algorithm has produced so far.

S < empty sequence; s< 0

while s < n do
u < the largest member of {1,2,...,k} such that Clu] <n—s
S+« SoClul; s+ s+ Clu

end while

Assuming the currency C' (and hence k) is constant, this algorithm clearly runs in time O(n).
(If C' as well as n is an input, then it is easy to implement this algorithm so that it runs
in time O(n + k).) As we have seen, it is not guaranteed to produce optimal outputs. The
following lemma shows one case of C' where the algorithm can be proven to be optimal.

Lemma 8 Let k = 4, and let C[1] = 1,C[2] = 7,C[3] = 13,C[4] = 19. Then the greedy
change-making algorithm above always produces an output (S) of coins summing to n using
as few coins as possible.

Proof: It is easy to see that at the end of each each stage 7, S is a sequence of ¢ coins adding
up to s < n. We claim, furthermore, that at the end of each stage S is promising in the
sense that there is a way of extending S to an optimal (in the sense of using as few coins as
possible) sequence for n. This is clearly sufficient for proving the Lemma.

We will prove this for every stage ¢ by induction on 7. It is trivial true initially, that is after
stage 0. So assume it is true at stage ¢, and that stage ¢ + 1 occurs; we want to prove it is
true after stage 7 + 1.

Let ay,as,...,a; be the sequence the greedy algorithm produces at the end of stage 7, and
say that they sum to s < n. By the induction hypothesis we can let a1, as,...,a;,bi11,...,by
be an optimal solution (to the problem of making change for n); assume that b; 1 > b0 >
... > by. Say that a;y; is the coin the greedy algorithm produces in stage 7 + 1; a;41 is
the largest denomination coin < n — s. If b;y; = a;41 then ai,a9,...,a4,0;41,...,by is an
optimal solution that extends a,as,...,a;,a;11 and we are done. So assume b; 11 < @;11-
Let ¢ be the smallest number such that b;11 4+ b;10+...4+b; > a;11. Note that if b, = 1, then
bir1 + biza + ...+ by = a;11; if we replaced the subsequence b;11,...,b0; by the single coin
ai+1, then we would obtain a shorter sequence summing to n, contradicting the optimality of
(1,09, -, 0, bir1,...,b,. SO we can assume that b;,,...,b; doesn’t contain a coin of value
1. Since 1 < bj11 < a;41, we have only two cases for a;1-

16

Case 1: a;+q1 = 19.

Case 1.0: bj11,...,b; doesn’t contain the coin 13. Then b; 1, ..., b; consists of exactly three
occurrences of the coin of value 7 and nothing else. We can replace these three coins by
(19,1,1), and have an optimal solution extending ai, as, ..., a;+1, namely

1,092y ..y Qjt1, 1,]_, bi—|—4: ceey bw-

Case 1.1: biyq,...,b; contains the coin 13 exactly one time. (Exercise)

Case 1.2: biyq,...,b; contains the coin 13 exactly two times. (Exercise)

Case 2: a;41 = 13. (Exercise) o

Exercise: Prove that the greedy change-making algorithm produces optimal results in the

case of Canadian currency:
k=6 and C[1] =1,C[2] = 5,C[3] = 10, C[4] = 25, C[5] = 100, C[6] = 200.

17

