CSC 364H Notes Summer, 2004
Dynamic Programming Algorithms

The setting is as follows. We wish to find a solution to a given problem which optimizes
some quantity () of interest; for example, we might wish to maximize profit or minimize
cost. The algorithm works by generalizing the original problem. More specifically, it works
by creating an array of related but simpler problems, and then finding the optimal value of
Q for each of these problems; we calculate the values for the more complicated problems by
using the values already calculated for the easier problems. When we are done, the optimal
value of () for the original problem can be easily computed from one or more values in the
array. We then use the array of values computed in order to compute a solution for the
original problem that attains this optimal value for ). We will always present a dynamic
programming algorithm in the following 4 steps.

Step 1:

Describe an array (or arrays) of values that you want to compute. (Do not say how to
compute them, but rather describe what it is that you want to compute.) Say how to use
certain elements of this array to compute the optimal value for the original problem.

Step 2

Give a recurrence relating some values in the array to other values in the array; for the
simplest entries, the recurrence should say how to compute their values from scratch. Then
(unless the recurrence is obviously true) justify or prove that the recurrence is correct.

Step 3:

Give a high-level program for computing the values of the array, using the above recur-
rence. Note that one computes these values in a bottom-up fashion, using values that have
already been computed in order to compute new values. (One does not compute the val-
ues recursively, since this would usually cause many values to be computed over and over
again, yielding a very inefficient algorithm.) Usually this step is very easy to do, using the
recurrence from Step 2.

Step 4:
Show how to use the values in the array (computed in Step 3) to compute an optimal solution
to the original problem. Usually one will use the recurrence from Step 2 to do this.



Scheduling Jobs With Deadlines, Profits, and Durations

In the notes on Greedy Algorithms, we saw an efficient greedy algorithm for the problem of
scheduling unit-length jobs which have deadlines and profits. We will now consider a gener-
alization of this problem, where instead of being unit-length, each job now has a duration.

More specifically, the input will consist of information about n jobs, where for job i we
have a nonnegative real valued profit g; € R2%, a deadline d; € N, and a duration ¢; € N.
It is convenient to think of a schedule as being a sequence C = C(1),C(2),---,C(n); if
C(i) = —1, this means that job 7 is not scheduled, otherwise C'(i) € N is the time at which
job ¢ is scheduled to begin.

We say that schedule C' is feasible if the following two properties hold.
(a) Each job finishes by its deadline. That is, for every i, if C(:) > 0, then C(i) + ¢; < d;.

(b) No two jobs overlap in the schedule. That is, If C'(¢) > 0 and C(j) > 0 and 7 # j, then
either C(i) +t; < C(j) or C(j)+1t; < C(i). (Note that we permit one job to finish at exactly
the same time as another begins.)

We define the profit of a feasible schedule C' by P(C) = -5 9i-
We now define the problem of Job Scheduling with Deadlines, Profits and Durations:
Input A list of jobs (di,t1,91),-, (dn, tn, gn)

Output A feasible schedule C' = C(1),...,C(n) such that the profit P(C) is the maximum
possible among all feasible schedules.

Before beginning the main part of our dynamic programming algorithm, we will sort the
jobs according to deadline, so that d; < dy < --- < d,, = d, where d is the largest deadline.
Looking ahead to how our dynamic programming algorithm will work, it turns out that it
is important that we prove the following lemma.

Lemma 1 Let C be a feasible schedule such that at least one job is scheduled; let i > 0
be the largest job number that is scheduled in C. Say that every job that is scheduled in C
finishes by time t. Then there is feasible schedule C' that schedules exactly the same jobs as
C, and such that C'(i) = min{t, d;} — t;, and such that all other jobs scheduled by C' end at
or before time min{t, d;} —t;.

Proof: This proof uses the fact the the jobs are sorted according to deadline. The details
are left as an exercise.
We now perform the four steps of a dynamic programming algorithm.

Step 1: Describe an array of values we want to compute.
Define the array A(i,t) for 0 <i<n,0<t<d by
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A(i,t) = max{P(C)|C is a feasible schedule in which only jobs from {1,--- i}
are scheduled, and all scheduled jobs finish by time ¢ }.

Note that the value of the profit of the optimal schedule that we are ultimately interested
in, is exactly A(n,d).

Step 2: Give a recurrence.
This recurrence will allow us to compute the values of A one row at a time, where by the
ith row of A we mean A(3,0),---, A(3, d).

e A(0,t) =0forallt, 0 <t<d.

o Let 1 <i<mn,0<t<d. Definet = min{t,d;} —t;. Clearly ¢’ is the latest possible
time that we can schedule job 7, so that it ends both by its deadline and by time ¢.
Then we have:

If ¢ <0, then A(i,t) = A(i — 1,¢).
If ¢ > 0, then A(4,t) = max{A(i — 1,t),g;: + A(G — 1,t')}.

We now must explain (or prove) why this recurrence is true. Clearly A(0,t) = 0.

To see why the second part of the recurrence is true, first consider the case where ¢’ < 0.
Then we cannot (feasibly) schedule job i so as to end by time ¢, so clearly A(i,t) = A(i—1,1).
Now assume that ¢ > 0. We have a choice of whether or not to schedule job i. If we don’t
schedule job i, then the best profit we can get (from scheduling some jobs from {1,---i} so
that all end by time ¢) is A(i — 1,¢). If we do schedule job 7, then the previous lemma tells
us that we can assume job 7 is scheduled at time ' and all the other scheduled jobs end by
time ¢', and so the best profit we can get is g; + A(i — 1,1').

Although the above argument is pretty convincing, sometimes we want to give a more rig-
orous proof of our recurrence, or at least the most difficult part of the recurrence.

THIS ARGUMENT CAN BE OMITTED ON THE FIRST READING.

Say that 1 < i < n, 0 <t < d, and ¢ = min{t,d;} —t; > 0; we want to prove that
A(i,t) = max{A(i—1,t),g;+ A(i —1,¢') }. To prove such an equality, it is usually convenient
to prove two inequalities:

A(i,t) > max{A(: — 1,t),9; + A(: — 1,%')} and

A(i,t) <max{A(i —1,t),9; + A(i — 1,¢)}.

e To prove A(i,t) > max{A(i — 1,%),¢; + A(i — 1,t')}, we prove that both
A(i,t) > A(i — 1,¢) and A(i,t) > g; + A(i — 1, ) hold.

— To show that A(i,t) > A(i—1,t), consider a feasible schedule C' of profit A(i—1,t)
that schedules only jobs from {1, --- ,i—1} so that all jobs finish by time ¢. Clearly
C schedules only jobs from {1, - i} so that all jobs finish by time ¢, so C’s profit

is less than or equal to the best such profit, so
Al —1,t) <A@, t).



— To show that A(i,t) > g; + A(i — 1,¢"), Consider a feasible schedule C of profit
A(i — 1,t') that schedules only jobs from {1,---,i — 1} so that all jobs finish
by time ¢'. Let C' be the feasible schedule that extends C by scheduling job i
beginning at time #'. Then C” is a feasible schedule that schedules only jobs from
{1,---,i}, all ending by time ¢, and P(C") = ¢g; + A(i — 1,t'). C' has a profit that
is less than or equal to the best such profit, so g; + A(i — 1,t) < A(i, ).

e To prove that A(7,t) < max{A(i —1,%),9; + A(i — 1,¢')}, we prove that either
A(i,t) < A(i — 1,t) or A(i,t) < g; + A(3 — 1,t') holds. Let C be a feasible schedule
that only schedules jobs from {1, --- ,i} such that all jobs end by time ¢, and such that
P(C) = A(i, t). We consider two cases:

— Case 1: C does not schedule job i. Then C' schedules only jobs from
{1,---,i— 1} so that all jobs finish by time ¢, so C’s profit is less than or equal
to the best such profit, so A(i,t) < A(i — 1, ¢1).

— Case 2: C schedules job 7. Then by the previous lemma, there is a feasible
schedule C' such that C' schedules the same jobs as C', C" schedules job i beginning
at time ¢, and C' schedules all its other jobs so that they end by time ¢'; we have
P(C") = P(C) = A(i,t). Let C" be the feasible schedule that is the same as ",
except that C” doesn’t schedule job i; so P(C") = A(i,t) — ¢;- Since C” is a
feasible schedule such that only jobs from {1,---7 — 1} are scheduled and such
that all jobs end by time #', its profit is less than or equal to the best such profit,
so A(i,t) —gi < A —1,¢"), 0 A(i,t) < g; + A(i — 1,1').

Step 3: Give a high-level program.

We now give a high-level program that computes values into an array B, so that we will have
Bli,t] = A(i,t). (The reason we call our array B instead of A, is to make it convenient to
prove that the values computed into B actually are the values of the array A defined above.
This proof is usually a simple induction proof that uses the above recurrence, and so usually
this proof is omitted.)

for every t € {0,---,d}
B[0,t] + 0
end for
forz:1..n
for every t € {0,--- ,d}
t min{t, dz} —1;
if # < 0 then
Bli, t] « Bli — 1,1]
else
Bli, t] < max{B[i — 1,t],¢; + Bli — 1,#']}
end if
end for
end for



Step 4: Compute an optimal solution.

Let us assume we have correctly computed the values of the array A into the array B. It
is now convenient to define a “helping” procedure PrintOpt(i,t) that will call itself recur-
sively. Whenever we use a helping procedure, it is important that we specify the appropriate
precondition/postcondition for it. In this case, we have:

Precondition: ¢ and t are integers, 0 < i <mnand 0 <t <d.

Postcondition: A schedule is printed out that is an optimal way of scheduling only jobs from
{1,--- 4} so that all jobs end by time t.

We can now print out an optimal schedule by calling

PrINTOPT(n, d)

Note that we have written a recursive program since a simple iterative version would print
out the schedule in reverse order. It is easy to prove that PrintOpt(i,t) works, by induction
on i. The full program (assuming we have already computed the correct values into B) is as
follows:

procedure PRINTOPT(i,?)
if 2 = 0 then return end if
if B[i,t] = B[i — 1,t] then
PRINTOPT(i — 1,1)
else
t min{t, dz} —
PrINTOPT(i — 1,1)
put “Schedule job”, 7, “at time”, ¢’
end if
end PRINTOPT

PrINTOPT(n, d)

Analysis of the Running Time

The initial sorting can be done in time O(nlogn). The program in Step 3 clearly takes time
O(nd). Therefore we can compute the entire array A in total time O(nd + nlogn). When
d is large, this expression is dominated by the term nd. It would be nice if we could state
a running time of simply O(nd). Here is one way to do this. When d < n, instead of using
an nlogn sorting algorithm, we can so something faster by noting that we are sorting n
numbers from the range 0 to d; this can easily be done (using only O(n) extra storage) in
time O(n). Therefore, we can compute the entire array A within total time O(nd). Step 4
runs in time O(n). So our total time to compute an optimal schedule is in O(nd). Keep in
mind that we are assuming that each arithmetic operation can be done in constant time.

Should this be considered a polynomial-time algorithm? If we are guaranteed that on all
inputs d will be less than, say, n?, then the algorithm can be considered a polynomial-time
algorithm.



More generally, however, the best way to address this question is to view the input as a
sequence of bits rather than integers or real numbers. In this model, let us assume that all
numbers are integers represented in binary notation. So if the 3n integers are represented
with about k& bits each, then the actual bit-size of the input is about nk bits. It is not hard
to see that each arithmetic operation can be done in time polynomial in the bit-size of the
input, but how many operations will the algorithm perform? Since d is a k£ bit number, d can
be as large as 2¥. Since 2* is not polynomial in nk, the algorithm is not a polynomial-time
algorithm in this setting,.

Now consider a slightly different setting. As before, the profits are expressed as binary
integers. The durations and deadlines, however, are expressed in unary notation. This
means that the integer m is expressed as a string of m ones. Hence, d is now less than the
bit-size of the input, and so the algorithm is polynomial-time in this setting.

Actually, in order to decide if this algorithm should be used in a specific application, all
you really have to know is that it performs about nd arithmetic operations. You can then
compare it with other algorithms you know. In this case, perhaps the only other algorithm
you know is the “brute force” algorithm that tries all possible subsets of the jobs, seeing
which ones can be (feasibly) scheduled. Using the previous lemma, we can test if a set of jobs
can be feasibly scheduled in time O(n), so the brute-force algorithm can be implemented to
run in time about n2". Therefore, if d is much less than 2" then the dynamic programming
algorithm is better; if d is much bigger than 2" then the brute-force algorithm is better; if
d is comparable with 2", then probably one has to do some program testing to see which
algorithm is better for a particular application.

The (General) Knapsack Problem

First, recall the Simple Knapsack Problem from the notes on Greedy algorithms. We are
given a sequence of nonnegative integer weights wy,--- ,w, and a nonnegative integer ca-
pacity C, and we wish to find a subset of the weights that adds up to as large a number as
possible without exceeding C. In effect, in the Simple Knapsack Problem we treat the weight
of each item as its profit. In the (general) Knapsack Problem, we have a separate (nonnega-
tive) profit for each job; we wish to find the most profitable knapsack possible among those
whose weight does not exceed C. More formally, we define the problem as follows.

Let wy,--- ,w, € N be weights, let g;,--- , g, € RZ? be profits, and let C € N be a weight.
For each S C {1,---,n} let K(S) =), gw; and let P(S) =", s gi- (Note that K(0) =
P(0) =0.) We call S C {1,---,n} feasible if K(S) < C.

The goal is to find a feasible S so that P(S) is as large as possible.

We can view a Simple Knapsack Problem as a special case of a General Knapsack Problem,
where for every i, g; = w;.

However, we can view a General Knapsack Problem as a special case of a Scheduling With
Deadlines, Profits and Durations Problem, where all the deadlines are the same. To see this,



say that we are given a General Knapsack Problem with capacity C' and with n items, where
the ¢th item has weight w; and profit g;. We then create a scheduling problem with n jobs,
where the ith job has duration w;, profit g;, and deadline C'. A solution to this scheduling
problem yields a solution to the knapsack problem, and so we can solve the General Knapsack
Problem with a dynamic programming algorithm that runs in time O(nC).

All pairs Shortest Path Problem

We define a directed graph to be a pair G = (V, E') where V is a set of vertices and E C V xV
is a set of (directed) edges. Sometimes we will consider weighted graphs where associated
with each edge (7, j) is a weight (or cost) ¢(7,7). A (directed) path in G is a sequence of one
or more vertices vy, -+ , Uy, such that (v;,v;11) € E for every i, 1 < i < m; we say this is a
path from v; to v,,. The cost of this path is defined to be the sum of the costs of the m — 1
edges in the path; if m = 1 (so that the path consists of a single node and no edges) then
the cost of the path is 0.

Given a directed, weighted graph, we wish to find, for every pair of vertices v and v, the cost
of a cheapest path from u to v. This should be called the “all pairs cheapest path problem”,
and that is how we will refer to it from now on, but traditionally it has been called the
“all pairs shortest path problem”. We will give the Floyd-Warshall dynamic programming
algorithm for this problem.

Let us assume that V = {1,---n}, and that all edges are present in the graph. We are
given n? costs c(7,7) € R2® U {oc} for every 1 < i, < n. Note that our costs are either
nonnegative real numbers or the symbol “c0”. We don’t allow negative costs, since then
cheapest paths might not exist: there might be arbitrarily small negative-cost paths from
one vertex to another. We allow co as a cost in order to denote that we really view that
edge as not existing. (We do arithmetic on oo in the obvious way: oo plus oo is 0o, and oo
plus any real number is 00.)

For 1 <i,j < n, define D(3, j) to be the cost of a cheapest path from i to j. Our goal is to
compute all of the values D(3, j).

Step 1: Describe an array of values we want to compute.

For 0 <k <nand1<1,j<n, define

A(k,i,j) = the cost of a cheapest path from i to j, from among those paths from i to j
whose intermediate nodes are all in {1,---,k}. (We define the intermediate nodes of the
path vy, -- -, v, to be the set {vq, - -+, v, 1}; note that if m is 1 or 2, then this set is empty.)

Note that the values we are ultimately interested in are the values A(n, 1, ;) for all
1<i,j<n.

Step 2: Give a recurrence.

e If k=0 and i = j, then A(k,14,j) =0.
If k=0 and i # j, then A(k,1i,7) = c(i, 7).
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This part of the recurrence is obvious, since a path with no intermediate nodes can
only consist of 0 or 1 edge.

o If k> 0, then A(k,i,5) = min{A(k — 1,i,5), A(k — 1,i, k) + A(k — 1, k, j)}.

The reason this equation holds is as follows. We are interested in cheapest paths from
i to j whose intermediate vertices are all in {1,--- ,k}. Consider a cheapest such path
p- If p doesn’t contain & as an intermediate node, then p has cost A(k—1,1, j); if p does
contain k as an intermediate node, then (since costs are nonnegative) we can assume
that k£ occurs only once as an intermediate node on p. The subpath of p from 7 to k
must have cost A(k— 1,14, k) and the subpath from & to j must have cost A(k — 1, k, j),
so the cost of pis A(k — 1,4, k) + A(k — 1,k, 7).

We leave it as an exercise to give a more rigorous proof of this recurrence along the lines of
the proof given for the problem of scheduling with deadlines, profits and durations.

Step 3: Give a high-level program.

We could compute the values we want using a 3-dimensional array B[0..n,1..n,1..n| in a very
straightforward way. However, it suffices to use a 2-dimensional array Bl[l..n, 1..n|; the idea
is that after k executions of the body of the for-loop, Bli, j|] will equal A(k,1,j). We will
also use an array B'[1..n,1..n| that will be useful when we want to compute cheapest paths
(rather than just costs of cheapest paths) in Step 4.

All Pairs_CP
fori:1..n do
Bli,i] < 0
B'[i,i] <0
for 7 : 1..n such that j # i do
Bli, j] « C(1, )
B'[i,j] + 0
end for
end for

for k:1..n do
forz:1..n do
for j : 1..n do
if B[i, k] + B[k, j] < Bli, j] then
Bli, j] « Bli, k] + B[k, j]
B'li,jl + k
end if
end for
end for
end for



We want to prove the following lemma about this program.

Lemma: For every k,1, 7 such that 0 < k£ < n and 1 <1,j < n, after the kth execution of
the body of the for-loop the following hold:

o Bli,j] = A(k,i,5)

e B'[i, 7] is the smallest number such that there exists a path p from i to j all of whose
intermediate vertices are in {1, ---, B'[7, j|}, such that the cost of p is A(k,4,j). (Note
that this implies that B'[i, j] < k).

Proof: We prove this by induction on k. The base case is easy. To see why the induction step
holds for the first part, we only have to worry about the fact that when we are computing the
kth version of B([i, j], some elements of B have already been updated. That is, B[i, k] might
be equal to A(k — 1,4, k), or it might have already been updated to be equal to A(k,i, k)
(and similarly for Bk, j]); however this doesn’t matter, since A(k —1,1i,k) = A(k,i,k). The
rest of the details, including the part of the induction step for the second part of the Lemma,
are left as an exercise. [J

This Lemma implies that when the program has finished running, B'[7, j] is the smallest
number such that there exists a path p from ¢ to j all of whose intermediate vertices are in
{1,---, B'[4, j]}, such that the cost of p is D(i, j).

Step 4: Compute an optimal solution.

For this problem, computing an optimal solution can mean one of two different things. One
possibility is that we want to print out a cheapest path from 7 to j, for every pair of vertices
(1,7). Another possibility is that after computing B and B’, we will be given an arbitrary
pair (i,7), and we will want to compute a cheapest path from ¢ to j as quickly as possible;
this is the situation we are interested in here.

Assume we have already computed the arrays B and B’; we are now given a pair of vertices
7 and 7, and we want to print out the edges in some cheapest path from ¢ to j. If 7 = j then
we don’t print out anything; otherwise we will call PrintOpt(i,j). The call PrintOpt(i,j)
will satisfy the following Precondition/Postcondition pair:

Precondition: 1 <1i,7 < n and 7 # j.

Postcondition The edges of a path p have been printed out such that p is a path from 7 to
j, and such that all the intermediate vertices of p are in {1,---, B'[4, j|}, and such that no
vertex occurs more than once in p. (Note that this holds even if there are edges of 0 cost in
the graph.)

The full program (assuming we have already computed the correct values into B’) is as
follows:



procedure PRINTOPT(4, )
k < B[, j]
if £ =0 then
put “edge from” i, “t0”,j
else
PrintOpt(i, k)
PrintOpt(k, j)
end if
end PRINTOPT

if i # j then PRINTOPT(7, j) end if

Exercise:

Prove that the call PrintOpt(i, j) satisfies the above Precondition/Postcondition pair.
Prove that if ¢ # j, then PrintOpt(i, j) runs in time linear in the number of edges printed
out; conclude that the whole program in Step 4 runs in time O(n).

Analysis of the Running Time

The program in Step 3 clearly runs in time O(n?), and the Exercise tells us that the program
in Step 4 runs in time O(n). So the total time is O(n®). We can view the size of the input
as n — the number of vertices, or as n? — an upper bound on the number of edges. In any
case, this is clearly a polynomial-time algorithm. (Note that if in Step 4 we want to print
out cheapest paths for all pairs i, j, this would still take just time O(n?).)

Remark: The recurrence in Step 2 is actually not as obvious as it might at first appear.
It is instructive to consider a slightly different problem, where we want to find the cost of
a longest (that is, most expensive) path between every pair of vertices. Let us assume that
there is an edge between every pair of vertices, with a cost that is a real number. The notion
of longest path is still not well defined, since if there is a cycle with positive cost, then there
will be arbitrarily costly paths between every pair of points. It does make sense, however, to
ask for the length of a longest simple path between every pair of points. (A simple path is
one on which no vertex repeats.) So define D(i, j) to be the cost of a most expensive simple
path from i to j. Define A(k,i,j) to be the cost of a most expensive path from ¢ to j from
among those whose intermediate vertices are in {1,2,...,k}. Then it is not necessarily true
that A(k,4,j) = max{A(k — 1,4,5), A(k — 1,4, k) + A(k — 1, k,j)}. Do you see why?

Activity Selection with Profits

The text CLR, as well as the Notes on Greedy Algorithms, considers the problem of Activity
Selection, and gives a greedy algorithm that works for this problem. We will now consider the
more difficult problem of of Activity Selection with Profits, and give a dynamic programming
algorithm for this problem.

The input is information about n activities; for the ith activity we are given three nonnegative
real numbers (s;, fi, g;) where s; is the start time of activity 4, f; is the finish time of activity
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i (and s; < f;), and g; is the profit we get if we schedule activity i. For 4,5 € {1,2,--- n},
1 # j, we say ¢ and j are compatible if the corresponding courses don’t overlap, that is, if
fi < sjor f; <s;. A (feasible) schedule is a set S C {1,2,---,n} such that every two
distinct numbers in S are compatible. The profit of a schedule S is P(S) = ), .c9;- We
want an algorithm for finding a schedule that maximizes profit. (Note that we are assuming,
for convenience, that s; < f; for every activity ¢, rather than merely s; < f;. This is no great
loss: if trivial activities — that is, activities of 0 duration — exist, we can always remove them,
find an optimal schedule S, and then add the trivial activities to S.)

Before starting the dynamic programming algorithm itself, we do some precomputation, as
follows. We first sort the activities according to finish time, so that f; < fo < --- < f,. Say

that the distinct finish times are u; < ug < --- < ug, where k& < n. For convenience, let
up = 0, so we have 0 = uy < --- < ug. We also compute, for every activity i, a number H (i)
defined to be the largest number [ € {0,1,---,k} such that u; < s;; such a number exists

since up = 0. We can compute each value H (i) in time O(logn) using binary search, so all
of the precomputation can be done in time O(nlogn).

We now perform the four steps of the dynamic programming method.

Step 1: Describe an array of values we want to compute.

For every integer 7, 0 < j < k, define

A(j) = the largest profit we can get by (feasibly) scheduling activities that all finish by time
’U,j.

The value we are ultimately interested in is A(k).

Step 2: Give a recurrence.

e A(0) =0.
This is true because all times are nonnegative and no activity is of 0 duration, and so
every finish time is greater than 0.

e Let 1 <j <k. Then
A(j) = max{A(j — 1), maxi<icn{gi + A(H(7)) | fi = us}}.

To see why this equality holds, consider a best possible schedule S among those in
which all activities finish by time w;. If no activity in S finishes at exactly time u;,
then P(S) = A(j —1). Otherwise, since there are no 0-duration activities, exactly one
activity in S finishes at time exactly u;; if this is activity ¢, then all the other activities
in S must finish by time s;, and hence by time uy;), and so S has profit g; + A(H (7)).

Step 3: Give a high-level program.

We leave it as an exercise to give a program for computing the values of A. The most obvious
method will take time about nk, which can be as big as n2. However, a better method spends
only a constant amount of time on each activity and takes time O(n).
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Step 4: Compute an optimal solution.
This is left as an exercise. If one is careful, then using the array A, one can compute an
optimal schedule in time O(n).

The total time used by this algorithm is O(nlogn). It is a polynomial-time algorithm.

Example

Activity¢: | 1 | 2 | 3 | 4
Start s;: 0|2 |3|2
Finish f;: | 3 | 6 | 6 | 10
Profit g;: | 20| 30 | 20 | 30
H(i): 010|110
VE 0o(11]2|3
u;: 03] 6 10
A(j): | 0|20 |40 |40

A(1) = max{0,20 + A(H(1))} = 20
A(2) = max{20,30 + A(H(2)),20+ A(H(3))} = 40
A(3) = max{40,30 + A(H(4))} = 40

The reader should note that the problem of scheduling activities with profits can be gener-
alized to multiple processors. This can also be solved in polynomial time by a generalization
of the above dynamic programming algorithm.

Finding a Longest Increasing Subsequence

Our input is a sequence of distinct integers @ = a1, as,...,a,. We wish to find a longest
increasing subsequence. More specifically, if 1 < 4; < iy < ... < 4, < n is a sequence of
integers such that a; < a;, < ... < a;,, we say a;,, a;,, ..., a; is an increasing subsequence

of @; our goal is to find such an increasing subsequence where k is as large as possible. We
will do a dynamic programming algorithm.

Step 1: Describe an array of values we want to compute.
For 1 <i <, let A(7) be the length of a longest increasing sequence of @ that end with a;.
Note that the length we are ultimately interested in is max{A(:) |1 < i < n}.

Step 2: Give a recurrence.

For 1 <1 <n,

A(i) =14+ max{A(j) |1 <j<iand a; < a;}.
(We assume max () = 0.)

We leave it as an exercise to explain why, or to prove that, this recurrence is true.
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Step 3: Give a high-level program to compute the values of A.
This is left as an exercise. It is not hard to design this program so that it runs in time O(n?).
(In fact, using a more fancy data structure, it is possible to do this in time O(nlogn).)

Step 4: Compute an optimal solution.

The following program uses A to compute an optimal solution. The first part computes a
value m such that A(m) is the length of an optimal increasing subsequence of @. The second
part computes an optimal increasing subsequence, but for convenience we print it out in
reverse order.

m <1
forz:2..n
if A(i) > A(m) then
m<—1
end if
end for
put a.,
while A(m) > 1 do
1+ m-—1
while not(a; < a,, and A(7) = A(m) — 1) do
141 —1
end while
m<41
put a,,
end while

The program in Step 4 runs in time O(n), so the entire algorithm runs in time O(n?).
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