CSC364 Summer 2004 — Homework 4

The following questions are assigned each week. None of the questions are for hand in, but you are encouraged to try them.

Week 12

1. Let 2-CNF-SAT be the set of satisfiable boolean formulas in CNF with exactly 2 literals per clause. Show that 2-CNF-SAT \in **P**. Make your algorithm as efficient as possible.

Hint: Observe that $x \vee y$ is equivalent to $\neg x \rightarrow y$. Reduce 2-CNF-SAT to a problem on directed graph that is efficiently solvable.

2. We define the following three related problems.

5-CLIQUE

Instance: $\langle G \rangle$ where G is an undirected graph.

Acceptance Condition: Accept iff G contains a 5-clique.

CLIQUE

Instance: $\langle G, k \rangle$, G is an undirected graph, k an integer in binary. Acceptance Condition: Accept iff G has a k-clique.

MAX-CLIQUE

Instance: $\langle G \rangle$ where G is an undirected graph. Output: Return the size of the largest clique of G.

- (a) Give a polynomial time algorithm that solves 5-CLIQUE.
- (b) Prove MAX-CLIQUE \xrightarrow{p} CLIQUE. This proves we can solve MAX-CLIQUE with a polynomial number of calls to CLIQUE.
- (c) Prove CLIQUE \xrightarrow{p} MAX-CLIQUE. This shows that MAX-CLIQUE is likely not in **FP** since CLIQUE is **NP**-complete.
- (d) Consider the following algorithm for MAX-CLIQUE:

```
MAX-CLIQUE(G):
for i \leftarrow 1 to n do
if not i-CLIQUE(G) then
return i-1
```

We proved in part (a) that i-CLIQUE is in P, and we only make a polynomial number of calls to i-CLIQUE. Why does this not prove MAX-CLIQUE is in \mathbf{FP} ?

Week 13

3. Linear programming when we restrict the variables to be zero or one is called **0-1 integer programming**. Specifically, the 0-1 integer programming problem asks, when given an integer $m \times n$ matrix A and an integer m-vector b, whether there exists an n-vector whose elements are selected from $\{0,1\}$ such that $Ax \leq b$.

Prove that 0-1 integer programming is **NP**-complete.

Hint: Try a reduction from 3-SAT.

4. Prove 2-COLOR $\in \mathbf{P}$.

2-COLOR is given a graph G, can we color the vertices of G with 2 colors such that adjacent vertices get different colors?