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In this thesis we investigate a deductive reasoning procedure that can
handle incomplete first-order knowledge bases which contain disjunctive in-
formation. Mainly, the expressiveness of the underlying first-order logic and
the large amount of supported data (> 10° terms) are the essential features
of the logical sound reasoning procedure of concern.

We discuss several properties of the reasoning procedure itself and ap-
ply some changes that are also used in our implementation. Besides imple-
menting the evaluation-based reasoning procedure, our work investigates the
efficiency of this kind of deductive reasoning when employing large datasets.

The ability to apply deductive reasoning efficiently on a first-order knowl-
edge base that consists of a large set of facts, rules, incomplete knowledge
and disjunctive information is the main topic discussed in this work.






Chapter 1

Introduction

1.1 The Trade-Off between Expressiveness
and Efficiency

Knowledge in the sense of Al requires more than knowledge about the world
that is sufficient to allow acting in the domain of discourse in an appropriate
way. In Al a knowledge-based system additionally should behave and act like
it does because it makes use of the representation of that knowledge (e.g.,
world-knowledge) [41]. In other words, it is required that an intelligently
interacting computer system needs a large body of knowledge about the
world known as common sense [48]. The idea to provide computer systems
with such kind of knowledge by representing knowledge explicitly is known
as the Knowledge Representation Hypothesis [66].

It has been argued that at least first-order logic is necessary to represent
world-knowledge [50]. Especially, the ability to handle incomplete knowl-
edge like disjunctive information plays a major role to model the suggested
knowledge in an appropriate way. Since it is necessary that a knowledge-
based system must be able to infer implicit knowledge and it is a well-known
fact that classical logical implication is undecidable in the first-order case
there is a problem. There exist various approaches that deal with that prob-
lem, but none of them can satisfy both expressiveness and efficiency. Note
that while reasoning in first-order knowledge bases is intractable in general
humans can reason very effectively on extremely large and complex datasets,
although, of course, they cannot draw all possible conclusions.

In the context of knowledge representation reasoning is in general a formal
manipulation of the symbols that represent the facts and believed proposi-
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4 CHAPTER 1. INTRODUCTION

tions! to produce representations of new propositions [41].

In this work we apply deductive reasoning in incomplete first-order knowl-
edge bases that is logical sound. Deduction is in some sense the direct appli-
cation of knowledge in the production of implicit knowledge [69].

Until now only the query evaluation over databases supports deductive rea-
soning on very large first-order knowledge bases efficiently [40, 36]. But a
classical database is a knowledge base that allows no incomplete knowledge
since it makes use of the closed world assumption (CWA) [56]. In general, a
database is equivalent to a maximally consistent set of function-free ground
literals [36].

For example, if we have a database that contains information about students
at a university, we could ask if there is a student from Argentina. Then this
query would be answered positively only if the database would contain a fact
or an entry that supports the query explicitly. If the facts are not explicitly
contained in the database the query is answered negatively because of the
CWA. In fact, no further reasoning takes place at all.

Now suppose the following terms to be contained in a knowledge base:

(isArgentinan(Mary) V isArgentinan(John)).
isStudent(Mary).
isStudent(John).

This kind of disjunctive information cannot be handled by the relational
algebra used in classical database. But we would like to be able to answer
queries like ”Is there a student from Argentina?”, which would require the
ability to handle disjunctive information.

In our work we use a deductive reasoning procedure that supports incom-
plete knowledge and in particular disjunctive information contained in the
knowledge base. For instance, the just mentioned query would be answered
positively by the reasoning procedure of concern even while we do not ex-
plicitly know whether Mary or John are from Argentina. The only thing
we know is that one of them is from Argentina, but this fact is sufficient to
answer the query positively.

At this point it is important to mention that we are interested in large knowl-
edge bases, say more than 10° terms. This guarantees that relatively complex
knowledge can be modeled since we support both a huge set of terms and
the necessary expressiveness introduced by the underlying first-order logic.
At the same time the deductive reasoning procedure should be tractable.

Since logical sound and complete deductive reasoning is undecidable in gen-
eral, the used deductive reasoning procedure is logical sound, but not com-
plete to preserve tractability [36]. The trade-off between the properties of the

'An idea that is expressed by a simple declarative sentence [41].
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reasoning procedure and the tractability of the procedure is the main key to
maintain efficiency while supporting logical sound reasoning on incomplete
knowledge as well on disjunctive information.

In fact, the deductive reasoning procedure that is of concern here places

itself between the efficient databases that support only very restricted rea-
soning capabilities and the undecidable and intractable reasoning procedures
that are used in theorem provers for example.
In this work we discuss the efficiency of the reasoning procedure. Therefore,
we determine how efficient reasoning with incomplete first-order knowledge
bases that contain disjunctive information is when using the given reasoning
procedure. In other words, we determine if the underlying logic and the rea-
soning procedure itself are too expressive to maintain efficiency at the same
time.

We will implement a logical sound and decidable reasoning procedure
named X that can handle disjunctive information in first-order knowledge
bases. The reasoning procedure itself was introduced in [36]. In addition,
we will prove several properties of the reasoning procedure concerning its
efficiency and present experimental results.

1.2 Related Work

1.2.1 Reasoning with Incomplete First-Order Knowl-
edge Bases

In [46] the tractability for reasoning with incomplete first-order knowledge
bases is discussed. It could be shown, that the efficiency of deductive reason-
ing with incomplete first-order knowledge bases is comparable with classical
query evaluation in databases if the knowledge base is of a specific format.
Note that this result does not hold for arbitrary first-order knowledge bases.

The general idea was to reduce a deductive reasoning procedure to
database query evaluation. To reach this result a bottom-up database query
evaluation algorithm was adapted. The underlying query evaluation algo-
rithm is mainly based on work introduced and extended by [3, 29].

The reader is referred to the original paper. At this moment, the reader
should only be aware of the fact that there exists a tractability result for rea-
soning with incomplete first-order knowledge bases. Note that no disjunctive
information is contained in the knowledge base.
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1.2.2 Limited Reasoning

There exists various work that presents limited forms of reasoning in both
the propositional case and the first-order case.
In the propositional case the classical logical entailment is restricted most
frequently by only allowing a limited use of Modus Ponens or by not sup-
porting it at all [45]. For limited reasoning there exist two logical languages in
general. Namely, the classical language with a adapted semantic or a modal
language with a belief operator. The belief operator leaves the classical sub-
language that deals with the classical semantic unchanged, but implements
at the same time an entailment that is weaker than that of the classical
language [45]. For instance, suppose a belief operator named B. Then entail-
ment corresponds to the validity of formulas like (Ba D Bf3) in contrast to
the classical entailment based on the validity of formulas like (o D /).
In [12, 14, 15, 24] the classical language is used with a non-standard semantic
to provide a decidable reasoning procedure. For instance, [12] implements a
tractable proof system that is based on a non-deterministic truth table and
whose entailment consists mainly of unit propagation. On the other hand
in [33, 39] reasoning is accomplished within a newly introduced logic of be-
lief. The proposed belief implication in [39] that uses two modal operators
to handle implicit and explicit belief is tractable for formulas in conjunctive
normal form (CNF). The reasoning is mainly based on tautological entail-
ment, a fragment of relevance logic [2].
But especially the reasoning based on tautological entailment could not be
transferred in an appealing way from the propositional case into the first-
order case [36] which will be explained in the next chapter. In [35, 55] the
first-order case was discussed and it could be shown that the reasoning re-
quired not only considerable machinery, but additionally the expressiveness
was decreased at the same time [36, 45].

In conclusion, these approaches are not a solution yet since they are
inefficient or support only an inadequate expressiveness or both. Further
details concerning limited reasoning can be found in [45].

1.2.3 Datalog

In contrast to limited reasoning there also exist approaches that allow full
inference, but restrict the underlying logical language at the same time. One
example for this kind of approach is Datalog which we will discuss here
briefly. In general, the family of knowledge representation languages known
as description logics belong to this approach. For an in-depth survey on
description logics the reader is referred to [4].



1.2. RELATED WORK 7

Datalog is a simplified logical programming language that is integrated in
database management [22]. The term Datalog refers to PROLOG-like rules
without function symbols that are treated like logic programs [70]. Recall,
that rules are equivalent to Horn-clauses. From a database point of view,
Datalog is an extension to the relational algebra that allows recursion [22].

In general, the used predicates can be divided into two groups. The first

group consists of the extensional predicates that are relations contained in
the database and the second group consists of intensional predicates or rules
contained in the Datalog program [70, 22].
Hence, a relational database is identified with a set of ground clauses or facts
[17]. The Datalog program - consisting of a set of rules - uses the relational
database as input to answer queries [17]. In fact, an answer to a query is a
resulting database that contains ground clauses gained by the corresponding
Datalog program applied on the original database.

There exist several extensions to the original Datalog like presented in
[71], but this issues are not further addressed here. The computational com-
plexity was examined in [1]. It could be shown that Datalog only captures
queries that can be answered in polynomial time.

At this point it is only important to note that Datalog is restricted to Horn-
clauses and the CWA is still used. Therefore, the expressiveness of Datalog
is not as powerful as the one that is supported by the underlying logic of the
reasoning procedure presented here.

An extensive overview concerning the entire relationship between logic and
databases is given in [49].

1.2.4 Propositional Satisfiability

The following sections give a brief introduction to the Satisfiability Problem
(SAT), its solutions and why it is essential to take a look at the algorithms
that solve SAT albeit we deal with first-order logic here.

The aim of this section is to show how much research is done in the
propositional case and how difficult it is to validate the efficiency of a new
algorithm in this area even while there exist a lot of benchmarks and compe-
titions [57]. In contrast, there do not exist any benchmarks and results that
correspond to knowledge bases and deductive reasoning procedures as they
are suggested in this work here.

The Satisfiability Problem (SAT)

SAT is the problem of deciding if there is an assignment for variables in a
propositional formula that makes the formula true. Even if we deal with first-
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order logic here, it is clear that propositional satisfiability (SAT) is closely
related to deductive reasoning in first-order logic. Simply, because of the
fact that the propositional case is a sub-problem of first-order logic. The
border between propositional and first-order reasoning is often blurred [26].
One example are problems that make use of quantified formulas but are
constrained to finite domains with explicitly named domain elements.

SAT was the first problem shown to be NP-complete [10] and therefore
intractable in general. Since then - 1971 - there has been a large amount of
research concerning the satisfiability problem. Moreover it could be shown
that there are many practical instances of SAT that can be solved very effi-
ciently.

There are several huge groups of researchers involved into SAT like the
Al research and the theorem proving group. Many Al problems like planning
[31] are encoded into SAT quite naturally. Theorem proving is for example
concerned with satisfiability since the question if a formula ¢ is inferable
from a set of formulas & can be answered by showing that & U —¢ is not
satisfiable and vice versa.

Solving the Problem

There exist two essential different goals for methods that solve SAT - methods
that claim to be complete and those which are incomplete or approximate.
A complete algorithm is the famous David-Putnam algorithm [18]. Unfor-
tunately, all complete algorithms are exponential in space or time. As long
as P # NP holds, it is not feasible to overcome this intractability in gen-
eral, but researchers all over the world are highly motivated to improve their
algorithms as far as possible.

Many complete algorithms are based on the David-Putnam algorithm
and implement extensions like branching heuristics, intelligent backtracking,
parallelization, etc. [26]. An upper bound for the original David-Putnam
algorithm is O(1.696") where N is the number of variables. But extensions
like presented in [5] can solve problems easy which are beyond the scope of
the normal David-Putnam algorithm and it is furthermore suggested that it
performs as good or better than stochastic SAT algorithms in most of the
cases.

While [58] and the improvement made in [60] introduce an algorithm with
the best known running time for randomized 3-SAT to date, [16] actually
presents a deterministic algorithm for k-SAT based on local search that runs
in time 1.481" up to a polynomial factor. Additionally, these bounds seem
to be better than all previous deterministic k-SAT algorithms could obtain.

Aside from complete algorithms there are many approximate algorithms



1.2. RELATED WORK 9

[26]. Firstly, [34] presents a greedy algorithm that chooses truth assignment
at random. It is greedy in the following sense: it flips the truth value of a
variable that increases the number of satisfied clauses. Flipping the truth
assignment of a variable without raising the number of satisfied clauses is
called a sideway move.

While in [34] no sideway moves are allowed and flipping is repeated
until no improvement is possible, [61] comes up with an algorithm called
GSAT that allows sideway flips. Starting with a random truth assignment,
it changes the variable assignment via hill climbing to the largest possible
number of satisfied clauses. If there is no assignment that does not change
the number of satisfied clauses, sideway moves are allowed. Without side-
way moves the performance of GSAT degrades immensely. [28] shows that a
huge part of search is concerned with exploring large plateaus where sideway
flips predominate. GSAT guarantees relatively good performance even on
large instances of SAT [61]. But note that no deductive tasks are accom-
plished by GSAT and it works only on problems that can be formulated in a
propositional language [40].

There are a lot of implementations that are based on GSAT. Some algo-
rithms make use of clause weights [51] and can achieve good improvements
when applied to certain classes of problems. GSAT with random walk [63]
flips a variable with probability p and otherwise hill-climbs normally. Walk-
SAT [63] makes the idea of GSAT with random walk even more central to
the algorithm. Hill Climbing returns the variables in an unsatisfied clause,
and the next flip of a variable is based on random or greediness [26].

Although simulated annealing is a famous local search algorithm it is not
that popular for solving SAT even when [68] says that it works better than
GSAT on hard random 3-SAT problems. Surprisingly, other approaches that
use neural networks and genetic algorithms to solve SAT are comparably rare
[26]. In [67] there is a Hopfield Network introduced that works very well on
hard 3-SAT problems. One further interesting approach are hybrid methods
that make use for example of GSAT and the Davis-Putnam algorithm to
solve special classes of SAT [72].

The Benchmark Problem

As shown above there are lots of algorithms that solve SAT. The problem
is to classify those algorithms by there efficiency, because some algorithms
might work very well on some instances of SAT but underlie an exponential
blow up on other instances.

Besides there are many different opinions on how to characterize a hard
and easy instance of SAT. The conventional picture drawn is like easy-hard-
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easy. Formulas with few clauses are under-constrained [easy to solve] and
hence have many satisfying assignments. Therefore it is easy to find a sat-
isfying assignment. Formulas with very much clauses are over-constrained
[easy to solve] and usually unsatisfiable which will lead to a fast search too
[64].

Formulas lying in between are the so called critical constrained [hard to solve]
formulas and much harder to solve, because they have relatively few satisfy-
ing assignments if they have any at all. ’...the hardest area for satisfiability
is near the point where 50% of the formulas are satisfiable’ as said in [64].
Empirical concluded in [64] is that the region of 50% satisfiable clauses occurs
at a fixed ratio of the number of clauses to the number of variables.

Very hard instances of SAT outcrop when the number of clauses is 4.3
times the number of variables . This phenomena is called a phase transition.
Recent research has shown that if the computing time grows polynomially
with problem size a continuous transition is found, but a discontinuous tran-
sition is observed when exponentially much time is required [52].

In [27] it is said that this conventional drawn picture is inadequate. There
are problems not lying in the classical phase transition region that can be
even harder than those lying in the median of the transition. Relying on
experimental data it is suggested that there are regions which underlie a
constraint gap, where the number of constraints on variables is minimal while
simultaneously the depth of search required to solve the problems is maximal.

Hence, while it is not obvious where the hardest instances of SAT are
hidden and it seems that satisfiability testing might be quite easy on average
[64], this section should emphasize how difficult it is to verify having an
efficient algorithm developed.

Last thing to be mentioned is that there is a suggested general format
(like from [19]) to save SAT instances so that researchers can easily exchange
for example hard instances and do not overcome the fault to choose instances
at random, because a randomly chosen instance of SAT will be easy to solve
with utmost probability. This has the advantage that algorithms can be
compared in a fair and broad sense.

As we will see later on we are not able to compare our results with
other approaches, because there do not exist incomplete first-order knowledge
bases of this type and reasoning procedure of this expressiveness as suggested
here [36]. We do not even have the opportunity to make use of an existing
knowledge base. Simply, because of the fact that appropriate test knowledge
bases do not exist. For instance, it would be of considerable advantage if we
could make use of the Cyc knowledge base [13] or a suitable subset.
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1.3 Thesis Structure

This thesis is structured as follows:

In Chapter 1 we motivate our work, introduce deductive reasoning
informally and present related work while we concentrate especially on
research done in the propositional case.

Chapter 2 introduces the required notations and elementary defini-
tions to enable a deeper understanding of the reasoning procedure. Ad-
ditionally, all main features of the reasoning procedure are explained
here.

In Chapter 3 we discuss several properties of the reasoning procedure
itself. Especially, the use of inequalities plays a major role in this
chapter.

In Chapter 4 we present the implementation of all major features
included in the reasoning procedure. This chapter also contains various
examples to clarify the proceeding of the algorithms presented.

Chapter 5 contains several results concerning the efficiency of our
approach. We show that the characteristic of the knowledge base has
a major influence on the efficiency of the reasoning procedure.

In Chapter 6 we assess the work that was done during this project
and present ideas for future research.

Additionally, we like to mention that we assume that the reader is fa-
miliar with basic first-order logic and PROLOG, or any other similar logical
programming language.
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Chapter 2

Fundamentals

2.1 Introduction

In this chapter we introduce the basics required to enable a complete un-
derstanding of the reasoning procedures presented some subsections later.
Furthermore the logical language corresponding to the reasoning procedure
is introduced briefly.

But we will not only discuss notation and definitions here, but we will
additionally present V - the precursor of the reasoning procedure X which
is of concern here. We do so, because we would like to provide a step by step
introduction.

While V' can handle some incomplete knowledge by not using the CWA [56],
X is even able to handle disjunctive information additionally. Since both
procedures operate on first-order knowledge bases it is a known fact that
a complete logical reasoning procedure would be undecidable when allowing
incomplete knowledge. Therefore both procedures are incomplete but de-
cidable and can handle incomplete knowledge and disjunctive information
respectively.

At the end of this chapter we will introduce X itself.

While it is not necessary to follow each detail of the procedure V, it is
crucial for the following chapters to get in touch with the notations, defini-
tions and the equations of X. Especially, the features Unit Propagation and
Reasoning by Cases introduced by X should be understood very well since
they belong to the main topics of the entire work. So, even if the reader is
only interested in the practical part of this work he or she has to go through
this.

We use the same notations and definitions as presented in [40, 36]. Read-
ers that are common with this literature may skip the entire chapter.

13
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Here, we only summarize the main ideas underlying the work by Lakemeyer
and Levesque. For an in-depth survey the reader is referred to the original
papers [40, 36].

2.2 First-Order Knowledge Bases

The reasoning procedure is based on a standard first-order language £ with-
out function symbols except constants and an equality predicate. While
making use of the unique name assumption [25] an infinite set of constants
C={cy,¢a,...} is assumed.

Notation

First of all elements of £ are called formulas and formulas without free vari-
ables are called sentences. The standard symbols for quantifiers, negations,
etc. are used while only —, Vv, J belong to the logical language. In some
examples we will use A, V and D as an abbreviation. In addition, V is for
instance used as an abbreviation for Vz.

The symbol [ will range over literals and [ will express its complement. 6
will range over substitutions of all variables by constants, so that a# is the
result of applying the substitutions to a.

Furthermore, o denotes v with all occurrences of the variable = substi-
tuted by the domain constant d. The symbol p will range over atoms whose
arguments are distinct variables, so that pf will range over ground atoms.
Note that neither atoms nor literals include equalities.

Finally, e will mean quantifier-free formulas whose only predicate is equality.

Furthermore it is assumed that quantification is interpreted substitution-
ally with regard to C. This assumption is founded on the fact how standard
interpretations of £ are defined:

Definition A standard interpretation I of £ is one where equality (=) is
interpreted as identity, and the denotation relation between C and the domain
of discourse is bijective.

This kind of standard interpretation can be described by the following
set of axioms about equality given that the considered logical theory only
considers a finite number of constants. Of course finite knowledge bases will
always fulfill this restriction.
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Definition The set ¢ is the axioms of equality, which includes equivalence
relation and substitution of equals of equals, and the set of formulas {¢; =

¢ li#j}

On those definitions and assumptions the interrelationship between the
satisfiability of equality and a closed formula and the existence of a standard
model was proven [40]. The following theorem states this coherence:

Theorem 1 Suppose S is any set of closed formulas, and that there is an
infinite set of constants that do not appear in S. Then ¢ U S s satisfiable iff
it has a standard model.

Since we now introduced the essential properties of the logical language L, we
are able to present the definition of the form of the used first-order knowledge
bases. The following definition belongs to knowledge bases where V operates
on.

As you will see the definition does not allow clauses and thereby no dis-
junctive information at all. When introducing X later on the definition is
extended to contain disjunctive information.

Definition A knowledge base is called proper if ¢ U KB is consistent and
K B is finite and of the form V(e D p) or ¥(e D —p).

For example the following term would be a valid entry in a proper KB:

V(X #a > —P(X))

In contrast, V(X # a D P(X) V Q(X)) is not a valid entry since clauses are
not allowed (yet). Please note that equality terms may consist of any kind
of logical combination like negations, disjunctions and conjunctions.

2.3 A Deductive Reasoning Procedure

While deductive reasoning was introduced briefly in the last chapter, we now
get step by step in touch with the deductive reasoning procedures to be used
in first-order knowledge bases that are of concern in this work here.

As already said in the introduction we think that there exists an high
demand in Al to work with extremely large knowledge bases that hold more
than 10° facts [36]. Currently there are very few deductive reasoning proce-
dures that can handle such kind of sets. As seen in the introduction GSAT
(28] and other methods are capable to perform good results on huge data
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sets, but can not achieve deductive tasks and are restricted to propositional
languages [40]. Again, the following sections are mainly based on [40, 36].
In the following sections reasoning procedures are introduced that are
capable of working on large knowledge bases. Although the knowledge bases
are large they are restricted in their expressiveness.
While the first procedure presented handles quantifiers, equality and incom-
plete knowledge and a knowledge base (K B) that consists of function-free
ground literals, the second procedure introduced allows function-free ground
clauses in a knowledge base in addition. By supporting clauses the last
mentioned decision procedure is able to handle disjunctive information.

2.3.1 The V-Procedure

Introduction

V is a deductive reasoning procedure that works on proper first-order knowl-
edge bases by evaluating the query. In contrast to a normal database the
knowledge base may contain both complete and incomplete knowledge. In
fact this is the one and only difference to common databases - the closed world
assumption (CWA)[56] does not hold anymore. Even though this might be
interpreted as no big difference - only allowing incomplete knowledge - the
price to pay is high.

This increase in expressive power makes complete logical reasoning unde-
cidable in the first-order case. For example, the knowledge base that is
equivalent to an empty set of literals requires that all valid formulas must
be known when the CWA is not longer assumed. This problem is already
co-NP hard in the propositional case and undecidable in the first-order case
[40]. Therefore V is an incomplete but decidable and logical sound reasoning
procedure that can handle incomplete knowledge.

As said before it is not necessary to read the following subsections, but
it is recommended to get a better feel for deductive reasoning and on the
proceeding of such a procedure if you are not common to it. In the following
subsection we glimpse at V' when presenting the corresponding equations as
defined in [40] and give some further explanations and examples.

The Equations

As can be seen from the following equations the reasoning procedure de-
termines the return value of a query by evaluating it. When evaluating an
existential we make use of the set H," that contains the union of constants,
that appear in the knowledge base and the query and k£ new constants that
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are not mentioned in the knowledge base or the query.
V uses a 3-valued answer from {0, %, 1). Returning 0 means known to be
false, % means unknown and 1 means known to be true.

Note that we do not say that the procedure decides if a query is true or false.
The return values only state answers that are implied by the reasoning mech-
anism used in V which is due to the fact that the reasoning accomplished by
V' is not complete for arbitrary queries. We give a simple example to show
incompleteness some lines later.

The first step in the reasoning procedures consists of the recursive decom-

position of the query by the matching equations of the reasoning procedures
provided that the query is composed one.
For example the query P(z) V Q(z) is decomposed by V to V[P(z)] and
V[Q(z)] (see equation 2.4). Besides negation also the existential is decom-
posed by using the set H;" to substitute the free variables in the query by
constants (see equation 2.5).

As can be seen in the equations, decomposition has an quite intuitive
impact on the return value of V. For example, when handling a disjunctive
query the maximum value of the disjunctive parts is returned, a negation
simply causes the inverse return value.

After decomposing a formula « the single parts of the formula are reduced
to ground atomic formula by substituting free variables by domain constants
(p0).

In general the knowledge encoded in a query - respectively a formula - will
be reduced to knowledge of ground atomic formulas.

1 if there is a V(e D p) € KB such that V]ef] =1
Vipdl=<¢ 0 if there is a V(e D —p) € KB such that V[ef] =1 (2.1)
1 otherwise
V[t =t/] = 1if t is identical to ¢/, and 0 otherwise. (2.2)
Vimal =1 - V]al. (2.3)
ViV 8] = max{V]a], V[{]}. (2.4)
V{3z.a] = max{V]ag]}. (2.5)

deH;

At this point the procedure determines the return value by deciding if the
term (e D p) is contained in the knowledge base whereby the substitution
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6 is applied on e also and the return value of V[ef] is tested (see equation
2.1). If the query consisted of a composed formula this return value may be
modified as described before and as defined within the procedure.
Comprising, the answer of V is acquired by decomposing the query, reduc-
ing the knowledge encoded in the query to the knowledge of ground atomic
formulas and deciding if this knowledge is contained in the actual knowledge
base.

For example, if we assume V[p] = 0 and V(¢ = 1, KB = {p,q}, V[p V q|
would return 1. To show incompleteness we can give a simple example. Sup-
pose V[p] to be £ then V[pV —p] = 7 and not the wanted answer 1.

Levesque proved logical completeness if the query is in a certain normal
form named N F [40]. In general N'F is an extension to the Blake Canonical
Form (BCF)[7]. In addition to the properties that hold for formulas in BCF,
formulas that are in A'F are also closed under negation and may contain
arbitrary combinations of V and A.

It is said in [40] that every query can be equivalently transformed into this
special normal form. However, this property was only proven in the propo-
sitional case, but not in the first-order case.

Anyway, transforming the query into this normal form is intractable in
general [40]. Hence, if the reasoning procedure efficiently returns logical
correct answers, the query has to be transformed in an computationally in-
tractable way. In [40] there are applications like problem solvers and planners
suggested that depend on very large knowledge bases and in which the trans-
formation of the query could be done offline. Then the application could be
sure of a logical sound and complete answer evaluated by the reasoning pro-
cedure.

It was also shown in [36] that V is complete for arbitrary queries when
only tautological entailment [2] and not the classical logical entailment is
considered. In general the propositional tautological entailment allows be-
sides the standard two-valued assignment, that formulas can additionally be
assigned neither true nor false or both values. Consequently, the connection
between the falsity and truth of a sentence is not existent anymore [36]. For
example, p A (p D ¢) does not tautologically entail ¢, because p as well as —p
can be supported by some setup'.

Therefore tautological entailment is a much weaker notion than implication
as known in standard logic due to the four-valued setups which include the
set of two-valued assignments [11]. This weaker kind of entailment enables
V' to be sound as well as complete for tautological entailment and arbitrary

LA setup was originally defined by using the four truth values true, false, neither or
both [20].
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queries [36].

While we will not discuss the implementation of V' in our work here we
would like to mention that it could be shown in [46] that V itself can be
implemented efficiently in some cases. Here the word ”efficient” means that
queries can be evaluated in a comparable complexity as they can be evalu-
ated in classical databases. Since it is assumed in [46] that a given query is
in N'F the reasoning accomplished is also logical correct.

The general idea was to reduce V to database query evaluation and to gain
this result a bottom-up database query evaluation algorithm was adapted.
The underlying query evaluation algorithm is mainly based on work intro-
duced and extended by [3, 29].

This is a very important result since we would like to implement the succes-
sor of V' that introduces additional expensive features to handle disjunctive
information and if V would be intractable then it would be of no question
that X would be intractable too.

To give a more practical insight concerning V suppose you would imple-
ment V in PROLOG as function with two parameters, v(Query,ReturnValue)
namely. Then you could depict the existential for example as:

v(exists(Variable,Query), ReturnValue) :-
isSingleFormula(Query),
member (Constant, DomainConstants),
substitute(Variable, Constant, Query, GroundFormula),
inKnowledgeBase (GroundFormula, ReturnValue).

This is of course a very simple and shortened version of the implemen-
tation, but it is just to emphasize the fact that there are only few features
in V that would prevent an efficient implementation. The amount of terms
and especially constants is one of the antagonists to efficiency.

The decomposition of formulas accomplished by the recursive definition of
V' can be intuitively transferred into PROLOG. This is of course true for X,
too.

Although even with V as it will be with X the question arises how to store
and how to manage more than 10° proper terms. But before we go into
deeper detail now we leave this topic for a later chapter to come.

In conclusion, V is a decidable and logical sound reasoning procedure
that infers if a query is known to be true, known to be false or unknown
by evaluating it while supporting knowledge bases that can contain both
complete and incomplete knowledge.
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2.3.2 The X-Procedure

proper™ Knowledge Bases

While [40] presented a deductive reasoning procedure that operates on
function-free ground literals in [36] an extension is drawn that handles dis-
junctive information.

This extension was motivated by the fact that incomplete knowledge about
some individuals has various applications. While proper knowledge bases
and V allow reasoning in huge sets of predicates, including positive as well
as negative instances and handling predicates that are left open for certain
individuals it is for example not possible to include the following term in the
knowledge base:

(isStudent(Mary) V isStudent(John))

But especially this kind of terms that contain incomplete knowledge about
some individuals and the corresponding reasoning are of great interest as
stated in the introduction.

Since X can handle clauses among other things we have to extend the
proper knowledge bases used with V to include clauses. Therefore the fol-
lowing definitions are introduced:

Definition If ¢ is a disjunction of literals whose arguments are distinct vari-
ables, V(e D ¢) is called a ¥V — clause.

Definition Then a K B is called a proper™ KB when the K B is a finite and
non-empty set of V — clauses. Given a propert KB, gnd(K B) is defined as
{ch V(e Dc) € KB and ¢ = ef}.

In regard to the definition of standard interpretations some sections ago, this
means that a proper™-KB is a finite representation of the normally infinite
set gnd(K B). The set is usually infinite because in gnd(K B) every formula
of the KB is included with all possible substitutions of variables. Note that
we have an infinite set of constants.

To give an example for a valid proper™ KB the following knowledge base
would be one:

KB ={¥(x #a> P(x)),Y(x=y>-P(z)vVQ(y))}

Since clauses have many applications in general, they have two predom-
inate ones [36]. First they can be used to represent rules and secondly in-
complete knowledge about individuals.
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KB1 KB2

P(a) v Pb)V P(f) | P(a)VQ(e)VQ(c)
P(a) Vv P(e) VQ(f) | Q(d) VvV P(b) VQ(a)
P(a) v Q(e) VvV P(c) | P(a)V P(e) vV P(f)
P(a) v Q(e) VQ(c) | P(c)V Q(e)V P(a)
Q(a) v P(b) vV P(d) | Q(a) vV Q(b) vV Q(g)
Qa) vV P(b) VvV Q(c) | P(a)V Ple)VQ(f)
Qa) vV QD) vV Q(g) | Q(b) VQ(a) V P(g)
Qa) v QD) vV Q(g) | Qa) vV P(d) vV P(b)

Table 2.1: Two knowledge bases that contain incomplete knowledge about indi-
viduals

As discussed in [36] the first application of clauses can be fulfilled by X, but
the second which requires solving a combinatorial puzzle is nearly given up
for the sake of efficiency.
To give you a brief impression what kind of complexity occurs when incom-
plete knowledge about individuals is involved, consider the following example.
In the table 2.1 two different knowledge bases are depicted containing the
two predicates P and ().
If you now try to answer the query 3X.(P(X)AQ(X)) you will observe that
is quite hard to determine that only one of the two knowledge bases supports
the query.

As we will see, X deals with incomplete knowledge introduced by clauses
in a limited way.

Unit Propagation

Next we present one of the main features that is included in the reasoning
procedure X:

Definition If S is a set of ground clauses, then UP(S) is the least set which
contains S and if {/} U c and [ are in UP(S), then so is ¢. In other words
UP(S) is simply the application of Unit Propagation to the set S.

X uses UP(S) to decide if a literal can be inferred or not.
While we introduced unit propagation formally, we would like to give some
explanations and examples at this point, because it is important to under-
stand how unit propagation works and when it can be applied successfully.
As said in the introduction unit propagation is an often used method in
the propositional case. There exist various efficient implementations of unit
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propagation for the propositional case like presented in [73], [44] and [30].
In fact the complexity of the appliance of unit propagation is linear in the
propositional case [73].

The use of unit propagation ensures simple applications of Modus Ponens as
shown in the following example that consists of literals only:

KB = {p,~s,(=pV q), (g VsVr)}
After applying unit propagation (first time):
KB ={p,=s,q,(~qVr)}
After applying unit propagation (second time):
KB ={p,~s,qr}

Since X makes use of unit propagation (see equation 2.6) the answer to
X[KB,r] will equal 1. As you can see in the example the unit clauses p and
—s are propagated along the disjunctions in a way that new unit clauses arise
- like ¢ - what consequently causes r to be known to X.

Note that X while using unit propagation supports simple applications of
Modus Ponens in contrast to tautological entailment, for example.

While the use of literals only makes unit propagation similar to applying
unit propagation in the propositional case we must be aware of the fact that
we have to consider the equality terms when using unit propagation with
properT-terms in general.

At this point we again present a simple example that shows what is necessary
to apply unit propagation successful:

KB ={(X =0a) D> P(X),(X =0) D (-P(X)VQ(X))}

Here we can not apply unit propagation because of the mutual exclusive
equalities. And even if equalities match the equality term of the resulting
term must be adapted accordingly.

This means that in contrast to the propositional case we do not only have to
propagate unit clauses and delete the inverse predicate from the disjunctions,
but additionally have to take care of the corresponding equality terms. This
will belong to the main topics in the chapters to come.

While it is not necessary at this point to know everything about the conse-
quences on equality terms when applying unit propagation in a propert —
K B, you should be aware of the difference to the propositional case.

When we investigate the interaction of equality terms and unit propagation
later on (chapter 3) we will see that this particular difference calls the use of
unit propagation in connection with proper*-terms into question - at least
for some specific types of proper™-terms.
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Reasoning by Cases

As we mentioned before, X deals with incomplete knowledge introduced
by disjunctive information. X handles such kind of knowledge by using
reasoning by cases.

Hence, besides unit propagation the application of reasoning by cases is a
further main feature contained in X. And because this feature will play a
major role in our work we will introduce the principle of it here briefly and
will examine it more closely when presenting our implementation.

Suppose the following knowledge base:

KB = {(P(a) vV Q(b), (=P(a) VQ(b))}

Since reasoning by cases assumes every part of a disjunction each by

each as to be true and then testing a given formula or query, it follows that
3X.Q(X) would be true.
Simply because of the fact that adding P(a) to the knowledge base would
cause Q(b) to be true by unit propagation and the effect of adding Q(b) will
of course support the query. Accordingly we will see that X answers in the
same way.

If reasoning by cases with more than one level is supported, the process
is started again while the added terms of the previous levels remain.

At this point the reader should be aware of two facts. First reasoning by
cases is a much more complicated method than unit propagation since it
makes use of unit propagation as sub-process for example.

Second in general the complexity of reasoning by cases grows exponentially
with the level that is defined, because we do not have a criteria that pre-
vents the growth of the search space sufficiently. In the next chapter we will
introduce the criteria we used in our implementation.

The Equations

Until now we described which features the reasoning procedure uses and at
this point we present X itself in the following equations as defined in [36].
In the next section we determine in which equations the main features are
applied.

xigB,=| L ¢ 1€ UP(gnd(KB)),Laliteral 26
0 otherwise
1 : if t is identical to t/
X|KB,t =] = { 0 : otherwise (2.7)
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X[KB,~(t=t)]=1- X|KB,t = t]. (2.8)

X[KB, ~—a] = X[KB, . (2.9)

1 thereisaV(e Dc)€ KB and af € H;
such that X[K B, ef| = land for all [ € ¢,
X[KB,aV (] = X[KBU{l0},a] =1 or X[KBU({I#}, 5] =1,
where k is the number of free variables in ¢

0 otherwise
(2.10)

X[KB,-aV ] = min{X[KB,-al, X[KB, -]} (2.11)

1 thereisa V(e Dc) € KB andaf € H;
such that X[K B, efl] = land for all [ € ¢,
X[KB,3z.a] = there is a d € H,", such that X[KBU {18}, a%] =1,
where k is the number of free variables in ¢

0 otherwise
(2.12)

X[KB,-3z.a] = min {X[KB, ~aj]}. (2.13)
deH;

Properties of X

We begin this section by presenting the case where the reasoning of both
introduced procedures is equivalent. The following proof was given in [36]:

Corollary 2 If KB is proper then for any sentence «,
X[KB,a]=1iff VIKB,a| =1

Hence, when X is used on proper K Bs its reasoning is equivalent to that of
V.

In contrast to its precursor X returns only 0 and 1 and is therefore not a
three-valued procedure anymore. Nevertheless it is possible to gain the same
answers like V' does because of the fact that using the query and its negation
together yields the same response in total.

V answers a single query « by returning if « is known to be true, known to
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be false or unknown. To reach the same result with X we have to use two
queries, namely a and —«a. Hence, the return value 0 here means unknown
and not known to be false anymore.

The major differences to V can be found in equations 2.7, 2.10 and 2.12.
In fact those are the lines that are concerned with literals, disjunctions and
the existential.

The first mentioned equation uses UP(S) to decide if a literal can be inferred
or not.

Equations 2.10 concerning disjunctions and 2.12 concerning existential quan-
tifiers allow reasoning by cases, but only with respect to a single clause in S.
Note that the number of applications of reasoning by cases is limited by the
structure of the query. In fact, reasoning by cases is allowed exactly once for
each appearance of a disjunction and existential in the query.

In our implementation we allow a user-defined level of reasoning by cases.
This difference to X was inspired by a slightly different version of X - namely
W presented in [37].

This means for example that the user can define that the query 3X.P(X)
should be answered by using two levels of reasoning by cases.

In the procedure there is nothing said on how to choose the next clause
for reasoning by cases - the choice is a non-deterministic one. This of course
must be changed in the practical implementation since our algorithm must
have some criteria at least to choose the next clause to enable an efficient
implementation. It is obvious that we can not try every clause of the 10°
possible ones. The criteria used is presented in the next chapter.

While we will not talk about every detail of X we would like to say some
words on the role that H,™ plays.

First of all writing § € H,” means that the substitutions may only range over
the constants included in H,'.

As denoted in equations 2.10 and 2.12 X does not allow case splitting for any
clause included in the knowledge base, but is restricted to split substitution
instances over H; of a clause in the knowledge base only. So the choice of a
clause is restricted by H,'.

Both V and X accomplish logical sound reasoning, but are not logical
complete. Note again that X only supports reasoning by cases when an
existential or a disjunction is included in the query. Suppose the following
terms to be contained in the knowledge base:

(P(a) v P(b)) (=P(a) v P(b))

Although it is obvious that the query P(b) is supported by the given knowl-
edge base, X will return "unknown”, because of the reasons described before.
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Another example to show incompleteness of X is contained in the example
presented earlier (table 2.1). X is not able to handle this kind of knowledge
bases, because it is simply not sufficient to apply reasoning by cases to only
one clause when solving an existential or a disjunction.

Although the knowledge base K B2 entails the given query «, X would re-
turn the value unknown” (X[K B2, «] = 0). The solving of the puzzle would
require noticeable more levels of reasoning by cases than one - in fact 8 are
required. Note that the required number of levels is equal to the number of
clauses contained in the knowledge base.

The property that X is not able to solve this kind of combinatorial puzzles is
a desired effect since the reasoning accomplished by X was planned to stay
tractable [36]. For instance, tautological entailment is able to solve such kind
of puzzles, but at the same time it is a subject to cause intractability [36].
Note that tautological entailment is tractable in the propositional case [39],
but [35, 55] showed that this result could not be transferred in the first-order
case.

One other interesting fact that could be shown in [36] is that even if the
query is converted to the earlier mentioned normal form N F the question
if the query is entailed by a proper™ knowledge base stays undecidable in
general. As showed before this was different when only proper knowledge
bases were considered and therefore no clauses were of concern.

Furthermore the following important property of X was proven in [36]:

Theorem 3 X is decidable.

The proof is mainly founded on the reasons that both the knowledge base
and the set H, are finite and that it is always possible to decide if a literal
[ is a member of gnd(UP(KB)) due to the fact that no full Resolution is
applied.

All in all it is quite obvious that the two features unit propagation and
reasoning by cases are also the main difference in complexity to the reasoning
procedure V. As described in an earlier section V' does not make use of such
kind of rather complex methods. Details on this topic are presented in the
subsequent chapters.

Consequently, it remains to be shown whether X is efficient computable.

2.4 Summary

In this chapter we introduced two deductive reasoning procedures - V and
X namely - as they were presented in [40, 36]. Before the design and the
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features of each procedure were presented, we gave a brief introduction to
the notation and definitions and the underlying logic.

While the importance of Unit Propagation and Reasoning by Cases was
described, both are consequently of special regard in the subsequent chap-
ter since they are crucial for the reasoning procedure itself and therefore
extremely relevant for an efficient implementation of X.

Besides Lakemeyer and Levesque presented a new version of the reasoning

procedure in [37] named W which is very similar to X except the fact that
the depth of reasoning by cases is user-defined. In our implementation we will
concentrate on X mainly, but will allow the user-defined level of reasoning
by cases.
There is not only a new variant of the reasoning procedure presented but
there is also a new logic introduced to give a more predictable and intuitive
insight on how those rather complex and recursive procedures answer. For
further details please refer to [37].

In conclusion, X is decidable and performs logical sound reasoning as V'
does. But in contrast to V it can also handle disjunctive information by
using the main features unit propagation and reasoning by cases.
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Chapter 3

Exploring Properties of the
Decision Procedure

3.1 Introduction

In this chapter we will discuss two properties introduced by the decision
procedure. The first section will investigate the growth of the equality terms
that takes place when unit propagation is applied. Concerning this topic
recall the following example knowledge base:

KB ={(X #a> P(X)),(X#b> (-P(X)VQ(X))}
If we apply unit propagation this results in the following proper™ term:
(X #aAX #bD QX))

Note the growth in the equality term.

We show that inequality causes an exponential growth of the equality terms
with regard to the number of unit propagations applied. This is one of the
main reasons why we will exclude inequality from the equality term in general
when we implement X later on.

Second we will show the interchangeability in the order of the generation
of ground terms and the application of unit propagation. This is necessary
to allow the application of unit propagation without generating all possible
ground instances first as it was defined in the reasoning procedure X.
Additionally, we will present in this section the essential difference between
unit propagation in the propositional case and the first-order case.

29
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Equality Term Restriction
Variable Not Restricted
Variable # Constant || Semi Restricted
Variable = Constant || Fully Restricted

Table 3.1: The partitioning of equality-terms relating to the assigned value of a
variable

3.2 The Growth of Equality-Terms

3.2.1 When growth takes place

In this section we will determine the growth of the equality terms ’e’, when
we apply unit propagation. First, we recall why there is any growth of e in
a proper term. Since we discussed in the last chapter how unit propagation
works, it is quite easy to realize that there are cases when applying unit
resolution causes e to grow, because the equalities of the resulting proper
term have to be updated.

Note that we can apply unit propagation only if there exists a proper term
that contains more then one predicate and another proper term that contains
exactly one predicate ("Unit Clause or Unit Term’).

Additionally a matching unit term must contain the negated version of a
predicate which is one of the predicates from the proper term with multiple
predicates. Furthermore the equalities of both proper terms must match,
that is equalities may not be mutually exclusive.

Our first step to determine when growth takes place and when the number
of equality terms stays constant is that we divide equality terms into three
categories. Those categories are based on restrictions relating to variables.

As shown in table 3.1 a variable can be assigned three different kinds of
values: all possible values (domain constants), all possible values except one
or exactly one value. For each of those assignments exist different kinds of
properties when unit propagation is applied and therefore we will proceed
through them each by each.

The three classes can also be interpreted in a hierarchical way since every class
describes an explicit level of restriction. Then the highest level of restriction
would be assigning a variable to a constant and the lowest level would be no
restriction at all.

We will call the propert term which contains more than one predicate the
disjunctive term and the other proper term as before unit term. Note that
at this point we deal only with proper terms where unit propagation can be
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€1
Not restricted | Semi restricted || Fully restricted
Not restricted €1 — ey e1 e1
eo  Semi restricted || ey e1 N e e
Fully restricted || e € e1 = ey

Table 3.2: The resulting equality term depending on the classes e; and ez belong
to

successfully applied to.
We assume for now that an equality term e contains only one variable and
one corresponding assignment. Furthermore, e; corresponds to the equality
term of the disjunctive term and e, to the unit term.

Concerning the equalities we observe the following when unit propagation
is applied:

e If e; restricts a variable not at all, it will be overwritten by e; in any
case, since e restricts a variable on a higher level of restriction or at
least at the same level. It is obvious that no growth of equalities will
take place if we only replace e; by es.

e If ey restricts a variable to have any value except one, it will be replaced
by e, only if ey restricts a variable to a constant.

e If ey semi-restricts a variable, the equality term of the resulting dis-
junctive term will be of the following form ey A es, if e5 # e;. We note
a growth in this case.

e If e; does not restrict the variable in any way, e; just remains the
equality term of the resulting proper term.

e If e; restricts a variable to be exactly one constant, then e, = e, hence
e1 resides and so there is again no growth at all.

All these observations between the equality term of the disjunctive term and
the unit term are depicted in the table 3.2.

So there is only one case where growth takes place - namely if e; and
es both semi-restrict a variable. For example, X # a D P(X) V Q(X)
and X # b D —P(X) will resolve to X # a A X # b D Q(X). All other

combinations will resolve in a replacement of e; by e; or e; simply remains.
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3.2.2 The interaction between Growth and Unit Prop-
agation

So far we discovered that in this kind of constellation there is only one type
of growth possible.

But the considered equality terms contained only one variable each. This
simple configuration allowed us to determine the worst case of growth on
the lowest level. We will use that result while now equality terms can now
include any number of variables.

In our implementation that we will present in the subsequent chapter
we assume that all equality terms are in Disjunctive Normal Form (DNF).
We decided in favor of the DNF, because we depend on a fast comparison
between equality terms of two proper™ terms when implementing X. Since
DNF allows us to split the equality term into the conjunctions of single as-
signments of variables and test the equalities one by one we can easily decide
if equality terms are compatible or not.

In contrast, if we would not use DNF we would trade off time for space. At
this point the reader will realize that the growth caused by unit propagation
presented in the last section and the use of the DNF will cause an exponen-
tial growth. We will return to the topic concerning the choice of the normal
form later on.

In this and in the subsequent section we will make use of the following defi-
nitions and properties.

Definition Two equality terms e; and e; match if there is at least one
substitution # for which the following holds:

€ = e10 and € | exf

In other words two equalities match if they are not mutually exclusive.

Now we present an equivalent representation of propert KBs {(e D ¢)}
when e in DNF and e contains no inequalities. Therefore, we need the fol-
lowing notations. Given e, let 6. be a substitution which maps only variables
occurring in e to constants. In a similar way 6|, restricts # to the variables
contained in e.

Definition Let KB be a propert KB {(e D ¢)} and e in DNF and contain
no inequalities. Then K Be_ e = { V()| there exists a V(e; V...Ve, D ¢) €
K Bso that there is a e; and 6., and € = ¢,0,, and ¢ = cf,,}

Note that every proper™ knowledge base can be modified to a e-free knowl-
edge base in this way, if equality terms are in DNF and contain no inequali-
ties.
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Lemma 4 For all standard interpretations I the following equation holds:

I EKBiff I = KBe_fpe.

Proof ”"=": Let I = KB and let V(') € KB._. Hence, there exists
V(e V...Ve, D c¢) € KB, so that there exists an e;0,, and € = e;0,, and
d =cb,. Now I =V(e; V...Ve, D c)and by the assumption follows that
I |=e;0 for some i. Then I = (e, V...Ve,)0,,. Hence, I =Vcb,,,ie. I =Vc.
"<": Let I = KB, free and let V(e; V... Ve, D ¢) € KB. We show that
I EV(e1V..Ve, Dc). Suppose, I [= e;0 for some substitution 6. It suffies
to show I |= cf. Then there exists a 0., = 0|,, so that I = e;0,, i.e. € = e;0,,.
By definition of K B,_ e there is a ¢/ € KB,_free with ¢ = cf,,. Hence,
since I = V¢ holds by the assumption we have I |= Vcf,, and therefore,

I'E=cd. n
From Lemma 4 the next theorem follows immediately.

Theorem 5 For every propert KB {¥(e D ¢)} with e in DNF and e con-
tains no inequalities and the corresponding equality free K Be_tree {V(c)} the
following holds:

KB E a iff KBe_free =«

Note that the original representation is more compact, but the representation
used here is equivalent and causes only a minor growth of the KB. Suppose
that the maximal number of disjunctive equality terms is k. Then the growth
lies in O(m x k) while m denotes the size of the original KB.

Before we continue the observations of the special case mentioned at the
beginning of this section we first of all present a result given by [47].

Theorem 6 (Liu, [47])

Let KB be an e-free knowledge base {¥(c)} when |KB| =n and Cxp denotes
the set of constants contained in KB while |Cxp| < n. In addition, k denotes
the mazimal number of variables in one clause c.

Then the closure under unit propagation applied to the entire KB results in
a knowledge base K B' while |KB'| < n*F+L,

Proof-Sketch Let 0¢, , range over substitutions of all variables by constants
¢; while ¢; € Cxp and gnde,.,(KB) = {clc., | V(c) € KB}.

Then |[UP(KB| < |gnde,.,(UP(KB))|. By an extension of Theorem 12
it would be possible to show |gndc,,(UP(KB))| = |UP(gnde.,(KB))|.
Since unit propagation applied to ground instances corresponds to unit
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propagation applied in the propositional case the following equation holds:
|Up(gndc;c3(KvB))|S |gndcl<iB(KB)|'

While we have maximally & variables in each of the n clauses contained
in KB and have maximally n constants the maximal number of possible

ground instances equals n * n*. Hence, |gndc,.,(K B)|< nF*1. Consequently,
UP(KB| <n*l. g

At this point we return to the case where inequalities are supported and
examine the growth caused by the application of unit propagation.

While again e; and ey represent the equalities of the disjunctive term
and the unit term respectively, |e;| will denote the total number of single
equalities in e;. In addition, e;; will indicate the i-th clause of an equality
term. Furthermore, |ey;| holds the number of conjunctive equality terms that
are contained in the i-th clause while n (m) stands for the total number of
disjunctive equality terms in e; (ey).

Since we do not restrict an equality term to hold exactly one variable any-
more, the growth will now additionally increase by all possible combinations
between disjunctive equality terms in e; and e,.

For example, if we have the following equality terms:

61I(X#Cl/\Y#CQ)V(X#CQ/\Y#Cl)
621(X#Cg/\Y#CZ)\/(X?éC;L/\Y#Cg)

If we would apply unit propagation now we had to adept e; in the way

we determined before. Since this is not a matter of replacing or keeping a
equality term, the single equality terms from e; and e; add up, but not in a
linear way.
The growth is not linear because disjunctions cause as much combinations
of e1; and ey; as there are disjunctions in e; and ep. This is in general the
well known drawback of a conversion of a formula to DNF. In our case we
have to convert two formulas that only consist of disjunctions connected by
a conjunction to a formula in DNF. This causes the mentioned growth.

In our example one part of the resulting equality term which only regards
the first part of e;, namely ey, would be:

(X # C1AY # ConNX # C3AY # Cy)V(X # CL1AY # ConX # CUAY # C3).

We count 8 single equality terms for this part of adaption and the final
resulting equality term would hold 16 single equality terms in total, so that
the number of equality terms in this case doubles in total.

We again observed a worst case scenario here since besides using semi-
restricted equalities only, we also assumed that every variable which is con-
tained in e; is also contained in every single term in e; which is normally
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not the case; recall that e; is the equality term of a proper term that holds
different predicates and ey constraints variables that belong to exactly one
predicate only.

When we assume that we only use semi-restricted equalities and every clause
from e; has to be combined with every clause from ey, then we can deter-
mine the number of single equality terms in the resulting equality term in
the following way.

First we write e; and e, in detail as defined:

e1:e11VenV..Ven,
€9 . €91 V €929 V..V €oam

So the number of single equality terms (|e;]) in e; can be calculated by
>i1 |ewl; |e2| analogous.
Consequently the resulting equality term is of the following form:

eresultmg : ((611 A\ 621) V (611 A\ 622) V..V (611 A\ 62m) V (612 A\ 621) V..V (612 A\
62m) V..V (61n A 621) V..V (61n VAN 62m))

Since we are interested in the total number of single equality terms in
Eresulting, We can determine |€,cguiting| by the following equation:

n

m
|eresulting| = Z(m * |61i| + Z |62j|) (31)
i=1 j=1
While we recognize |e;| and |ey| in equation 3.1 and |ey| is added up
n-times the equation can be simply rewritten as:

|eresulting| =mx* |@1| +nx |62| (32)

Consequently the growth of equality terms is determined by |€,esuiting| —
le1| and hence:

Maximum Growth of Equality Terms = (m — 1) % [e;| + nx |es|  (3.3)

As we can observe in equation 3.1 the growth of equality terms is the
composition of the growth of semi-restricted variables and the combination
of disjunctive terms in |e;| and |es|. We decreased the number of equality
terms by e; in this equation, because we determined the growth and not the
total size of the resulting equality term.

Notice that we assumed that there are only semi-restricted variables as
well in |e;| as in |es] and every |ej;| has its counterpart in every |es;| which
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is quite unusual as said before.

In that we showed that only semi-restricted variables cause any growth at all
and maximised the number of combinations of single equality terms equation
3.3 marks out the maximum possible growth of equality terms.

To describe the size of the resulting equality term in a more simple way we
assume that n = m and |e;| = |es| so that we get the following equation:

|eresulting| =nx* (2 * |€1|) (34)

With the assumptions made we notice that the number of single equality
terms doubles if we have no disjunctive equality terms at all (n = 1). If
n > 1, |e1] is additionally multiplied by the number of disjunctions in |e;|.
This might give a more intuitive feel of the growth of equality terms.

As we showed before the resulting equality term will hold as much as
single equality terms as denoted in 3.1.
If we assume again that |e;| = |ez], n = m and additionally |ey;| = |eg;| =1
for all 4, j (consequently |e;| = |es| = 1) and we apply unit propagation now
not only once, but several times the number of single equality terms will
increase dramatically. The number of unit propagations applied is denoted
as |UPs|.

From 3.4 and since Y1, |e;;|=n because |ej;| = 1 we derive the size of
the resulting equality term when we apply unit propagation the first time:

|eresulting| =mn* (2 * TL) = 2% n? (35)

At the same time the number of disjunctive equality terms will be determined
by keeping in mind that m = n:

|edisjunctive—terms| =n*xm= TL2 (36)

If we combine the following equality terms for example where n = 3, we
will have the denoted values for the number of single equality terms and
number of disjunctive equality terms:

€1 €11 V €12 V €13
€9 . €91 V €99 V €93

|6resulting| =18 |6disjunctive—terms| =9

Note again that a disjunctive equality term (e.g. eq;) consists of single
equality terms.

If we now apply unit propagation a second time with a unit term that has
as before m (in our example is m = 3) disjunctive equality terms in total, we
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must be aware of the actual number of disjunctive equality terms and single
equality terms of the disjunctive term generated by the first application of
unit propagation.

Now n in equation 3.1 will be equal to |€gisjunctive—terms| (€.8. 9) and since
the number of single equality terms simply add up when |e|] = 1 in each
disjunctive equality term and by each application of unit propagation, we
can rewrite 3.1 in the following way:

‘edisjunctive—terms ‘

|6resultingg| — Z (m * (|61’i| + |62’i|) + Z |62j|) (37)
i=1 j=1

Equation 3.7 denotes the number of single equality terms after applying
unit propagation twice. We add |ei;| and |es;| because now each of the dis-
junctive equality terms of the disjunctive term consists of the addition of the
old number of single equality terms and the single equality terms of the first
used unit term.

Taking into account the assumptions made above and since we con-
tinue applying unit propagation this will result in the recursive definition

Of |6disjunctivefterms| while |€disjunctiveftermsl| =n*xm:

|€disjunctiveftermswps| =mx* |6disjunctivefterms‘Ups‘,l| (38)

While we assumed that n = m we have:

— n|UPs‘+1 (39)

In fact this equation already states the exponentially growth of equality
terms with regard to the number of applications of unit propagation very
clearly. Note that we always use |edisjunctive,terms‘UPSH| when determining

| 6disjunctivefterms‘ UPs|

|6resulting|Ups|
Furthermore, we can rewrite the increase in size of a single equality term in

a disjunctive term in the following way since |e;;| = |eg;| = 1:
|UPs|
|6growth‘UpS‘| = Z 1= |UPS| (310)
i=1

Consequently, we can rewrite while we now also substitute m by n since
m =n and |ey;| = |ey;| by 1:

nlUPs|

|eresulting|Ups|| = Z n * (|UPS| + 1) (311)

i=1
If we now apply unit propagation (n — 1)-times this will result in the
following equation:
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nn—l
|eresultingn,1| = Z n2 (312)
i—=1

Theorem 7 Let e,,,, denote the equality term contained in the KB so that
|emaz| > |ei| for every e; € KB.

Then there exist proper™ KBs {¥(e D ¢)} with e in DNF such that the closure
under unit propagation results in a KB so that €., grows exponential in the
size of emaz -

Proof Equation 3.12 determines the number of equalities contained in the
resulting equality term after unit propagation is applied n — 1-times while n
is the length of the equality term of the original disjunctive term. We now
construct a general example knowledge base which meets the assumptions
underlying the equation.

Suppose a KB that contains a disjunctive term that has an equality term
€maz With |€m4.| = n while the disjunctive term is of the following form:

(X#aVX#cV..VX #c,) DP(X)V..VP,(X)

Note that ¢; # ¢; if i # j. Hence, we need at least |C},.,] = n constants in
the disjunctive term.

Additionally, the knowledge base contains n — 1 unit terms while the comple-
ment of every predicate is contained in the disjunctive term and a predicate
is not contained twice in the n — 1 unit terms. At least the following n — 1
unit terms must be contained in the knowledge base:

(X?éCLlVX#aQ\/\/X?éan)D_'Pl(X)

(X;éul\/X;éuQ\/...“\‘/X;éun) D —P,o1(X)

Note that the equalities correspond to the same variable as they do in the
disjunctive term and we have n equalities each. However, none of the equal-
ity terms contains a constant from the set C,,,, nor a constant that is used
in another equality term of the unit terms of concern. This prevents that
identical equalities are contained in the equality terms of the disjunctive term
and the corresponding unit terms.

Thereby we fulfill the assumption underlying Equation 3.12, especially
lemaz| = |€unit| = - = |eunit,_,| = n. In addition, unit propagation can
be applied successfully since we only deal with inequalities and there exist
n — 1 matching predicates.

Therefore, we can apply unit propagation n — 1-times. Consequently, as de-
picted in Equation 3.12 we notice an exponential growth in the size of |€,,44|
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concerning the equality term e,,,,. Hence, the closure under unit propagation
can cause an equality term to grow exponentially in its size. ]

It is quite obvious that this can not be handled efficiently even if the number
of the equalities, predicates and applications of unit propagation are rather
small. As said before this is one of the reasons why we excluded inequalities
from equality terms. More reasons are discussed in the following chapter.

Now we return to the topic concerning the use of DNF. The reader might
think at this point that the presented growth of equality terms is mainly
caused by the conversion to DNF and this is in fact true.

If we would not convert the equality terms to DNF we conjecture that the
growth would not be exponential anymore since we would not have to take
care of the huge number of possible combinations of the single equalities. In
fact, after a successful application of unit propagation we would simply add
the corresponding equalities of the unit term to the equalities of the original
disjunctive term and no further processing (e.g., normal form conversion)
would take place.

But as mentioned before we haven chosen in favor of DNF, because it allows
us to compare equalities in a efficient way. And as also said before if we do not
store equality terms in DNF a rather complex satisfiability test is required.
For example, we would then have to take care of the above mentioned possible
combinations and the connections between the single variables when testing
a single equality.

We need the following notations for the next observations concerning the
satisfiability test of equality terms. In this context, o denotes an arbitrary
propositional formula and p an atomic formula. Then we construct a formula
o 0 that the following holds: « is satisfiable iff e, is satisfiable. In e, every
p € « is replaced by X, = ¢, respectively where X is a variable and ¢; a
constant. In addition, V= e iff ¢ |= 6UX(B.(.£§7U(Xn) for all X; in e.

Lemma 8 Let I be a truth assignment of the the atoms p € a. Additionally,
Vr is a variable mapping so that Vz(X,) = ¢, if I(p) = true and Vz(X,) = ¢*
if I(p) = false when c* # c,.

Then I = « iff VI eq

Proof The proof is by induction on the structure of a. In the base case we
have I = p iff V7(X,) = ¢, iff VIE X, = ¢,.

T Vag)": TE (g Va)iff T = ag or I |E ay iff VZE e,, or VI e, iff
VrE (éa, V €a,)-
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T Aa)”: T (an Aaw) iff T =« and T = s iff VIFE= e,, and V= e,
iff Vrl= (€ay A €ay)-

7(ma)”: T E —aiff T o iff Vo e, iff VIE —e,. Note that it is sufficient
to choose one constant c¢* so that c¢* # ¢, for all p € a. |

Lemma 9 Let V be a variable mapping for e,. Additionally, I, is a truth
assignment for every p € « so that I,(p) = true if V(X,) = ¢, and

I,(p) = false if V(X,) # c,.

Then VE e, iff I, E «

Proof Similar to the proof of Lemma 8. ]
Theorem 10 The satisfiability problem for the formulas e is NP-hard.

Proof Let a be a propositional formula, e, as in Lemma 8 and Lemma 9.
It is obvious that we can convert « in linear time to e,. Then we show that
« is satisfiable iff e, is satisfiable. "=": Let I = « then V7= e, by Lemma
8. "<": Let V= e, then I, =« by Lemma 9. g

If for example, SAT instances would be in DNF, then it would be rather

simple to determine if a formula is satisfiable or not. But the conversion to
DNF itself would be very complex. In fact, if we would give up the conversion
to DNF we would shift the complexity from space to time, but would stay
exponential in both cases. Note that the conversion to DNF applies to each
proper™ term separately which seems practical assuming that proper™ terms
are very small compared to the size of the entire knowledge base.
Since inequalities are seldom in general and not used in our implementation
at all we think that it was the right choice to use DNF since it allows us
the very important feature to compare equalities fast. But also note at this
point that the use of no inequalities would also cause the satisfiability test
to be rather simple.

In this section we showed that there are three types of equality terms on
which unit propagation has different effects. In particular we could show that
the combination of two inequalities causes a growth in the equality terms.
Furthermore, we presented the equation 3.9 that described the coherence
between the size of an equality term and the number of applications of unit
propagation very clearly. In fact, we could show that the size of the resulting
equality terms grows exponentially in its size with regard to the number of
unit propagation applied.
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Additionally, we discussed the use of DNF since it is the main factor that
causes exponential growth in space. Due to the fact that we can only shift
this complexity from space to time, we think that the use of DNF is the right
choice with regard to the requirements introduced by X.

Finally, this section contains one of the main reasons that causes inequal-
ities to be excluded from the equality term in general.

3.3 The Interchangeability in the order of the
generation of Ground Terms and the ap-
plication of Unit Propagation

In this section we show the interchangeability in the order of the generation
of ground terms and the application of unit propagation.

To introduce this topic we will first of all present an example to clarify an
essential difference between unit propagation applied in the propositional
case and the first-order case.

3.3.1 Unit Propagation in the Propositional Case and
the First-Order Case

As we showed in the last chapter the application of unit propagation is iden-
tical in both cases when only the predicates are of concern, but there is a
crucial difference concerning the result of a successful applied unit propaga-
tion.

To clarify this we can choose for instance the following set of literals:

{l, (=l vm)}

After applying unit propagation the set will contain the two literals [ and
m only. This is due to the fact that we can delete the clause (=l V m)
after applying unit propagation since this clause represents only one ground
instance. Consequently, the set is decreased in its size.

If we now turn to a knowledge base that contains the following proper™
terms, we will see that we are not allowed to delete any proper™ terms.

(X #¢) D P(X)VQ(X))
(X =a > =P(X))
(X =bD =Q(x))

Instead of generating all ground instances, we first apply unit propagation
which has the following effect on the example knowledge base:
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(X =aD QX))
(X = a > ~P(X))

(X =02 =Q(z))

And this result is achieved, because unit propagation updates the equality
term of the disjunctive term with the equality term of the unit term and the
original disjunctive term is deleted. In consequence no further applications
of unit propagation are possible.

On the other hand we can apply unit propagation twice on the same
knowledge base if we first generate all possible ground instances. In this case
one term represents exactly one ground instance and not a set of ground
instances anymore. Note the similarity to the propositional case which would
allow us to delete single literals and not to keep the original disjunctive term.

(P(a) v Q(a))
(P(b) v Q(b))
(P(d) v Q(d))

(+P(a))
(=Q(b))

In this set of ground instances we can apply unit propagation twice and gain
the following set of ground instances:

(P(a) v Q(a))
(P(b) vV Qb))
(P(d) v Q(d))

(+P(a))
(—Q(b))
(P(b))
(Q(a))

Note the crucial difference. The literal P(b) is contained in this last set,
but not in the set that was generated when we first applied unit propaga-
tion. Hence, if we delete proper™ terms after applying unit propagation the
suggested interchangeability does not hold.

At the same time this depicts the essential difference between unit prop-
agation applied in the propositional case and the first-order case. We are not
allowed to delete any proper™ terms of the knowledge base except when they
are redundant'. Consequently, the set of terms will not decrease as in the

! Proper® terms are called redundant if they represent the identical set of ground
instances.
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propositional case after applying unit propagation, but will increase.
And this is a major difference to the propositional case. This implies that a
knowledge base grows in a different way than examined before when we apply
unit propagation. We will return to this topic in the subsequent chapter.
Additionally, note that this is not caused by the use of inequalities. The
same result is for example gained when we replace the first term of the orig-
inal knowledge base by the term ((X =aV X =b) D P(X) V Q(X)).
In this case there would not be an infinite number of possible ground in-
stances, but exactly two. But again this set of ground instances would allow
us to apply unit propagation twice and as before one additional literal would
be generated in comparison to the approach when applying unit propagation
first.

3.3.2 The Coherence between Unit Propagation and
the Generation of Ground Terms

As said before we want to show in this section that the interchangeability
in the order of the generation of ground terms and the application of unit
propagation holds.

At this point we assume that every equality term in the given knowledge
base fully restricts a single variable to a single constant and that the equality
terms are in DNF. This proceeding allows us to introduce the topic in a
simplified way.

Since all equality terms are in DNF we can split the equalities and can create
a proper™ term for each of the equality terms.

As an example we observe the following proper™ term:

(X =aVX =b>P(X)VQ(X))

We can rewrite this term due to the fact that equalities are in DNF by
creating two distinct terms:

(X =a > P(X)V QX))
(X =b> P(X) v Q(X))

If we rewrite every term in the entire knowledge base a single proper™ term
represents exactly one ground instance and consequently |gnd(K B)| = |K B|.
And since gnd(KB) = {cf|V(e D ¢) € KB and € = ef} and there exists only
one possible substitution €, because there is only one fully restricted equality
for each variable, the suggested interchangeability holds since every proper™
term represents exactly one ground term in gnd(K B).
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Now we assume that the variables can also be restricted in any possible

way and the equality terms are not necessarily in DNF. For instance, this
implies that one proper™ term can represent as many ground instances as
there are constants.
To describe what effect unit propagation has when it is applied on this kind
of proper™ terms, we first introduce the condition that has to be fulfilled
from the equality term to apply unit propagation successfully. Note that
also the predicates must match, but this property will not change when we
generate the ground terms first or afterwards.

Since we do not delete any proper™ terms after applying unit propagation
we can apply unit propagation on a disjunctive term that contains variables
that are not restricted or semi restricted with regard to one predicate as
often as there are unit terms with a matching equality term. The fact that
proper™ terms are not deleted ensures that all possible ground terms can be
created later on.

Note that only variables are of concern that belong to the predicate that is
affected by the application of unit propagation.

Hence, there will be as many new proper™ terms as there are matching unit
terms since every applied unit propagation will cause the equality term of
the resulting disjunctive term to be adapted. Note that it is possible that
redundant terms are created.

Consequently, a single proper™ term will support as many successful appli-
cations of unit propagation as there are matching unit terms with regard to
the corresponding predicate.

The same number of applications of unit propagation will be applied
when the ground terms are generated first, because the generation of ground
terms will not affect the number of matching equalities. This property also
holds for the subsequent applications of unit propagation which are caused
by chaining in reasoning.

Note that when generating ground terms the variables in the proper™ terms
are simply replaced by all appropriate substitutions.

Before we show the interchangeability in the order of the generation of ground
terms and the application of unit propagation we first of all define unit prop-
agation when it is applied to a propert K B.

Definition Let KB be a proper™ knowledge base {V(e D ¢)} while ¢ = (I; V
ly V...V l,). Then UP(KB) is the least set which contains KB and if ¥(e; D
{l}Ue) € UP(KB) and Y(ey D {Z}) € UP(K B) with (6 = I'§ where 0 is an
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most general unifier (MGU) ? and (e; Aeg)f is satisfiable?®, then V((e; Aeg)d D
c) € UP(KB).

Lemma 11 For every proper™ knowledge base {¥(e D ¢)} and clause c the
following holds:

c € UP(gnd(KB)) iff ¢ € gnd(UP(KB))

Proof "=": Let ¢ € UP(gnd(KB)). We show this by induction on the
number n of applied unit propagations (UPs) used to generate ¢. Suppose
n = 0. Then there exists V(e D ¢') € KB and ¢ € gnd(¥(e D ¢')). Then
c € gnd(UP(KB)). Suppose, the Lemma holds for every clause ¢ that is
obtained by application of unit propagations so that the number of UPs is
< n. Then there exits ¢; = {l;} Uc and ¢s = {=l;}. ¢; and ¢, are obtained
by using at most n — 1 UPs each.

Hence, by induction, ¢; € gnd(UP(KB)) and ¢ € gnd(UP(KB)). Con-
sequently, V(e; D ¢)) and V(e D ¢),) are contained in UP(KB)) and
c; € gnd(¥(e; D ¢1) and Y(e; D ¢}). Then there exists ¢, = {l{} U
and co = {=l}}.

Thus there exists an MGU 6 so that [16 = [0 since [; is a ground instance of [
and [1 and (e; Aey)0 is satisfiable since both e; and e; are satisfiable for this in-
stantiation, with V(e;Aez)f D 0 € UP(K B)) and ¢ € gnd(V(e1Ae2)f D '6),
ie. ¢ € gnd(UP(KB)).

<" Let ¢ € gnd(UP(KB)). We show this by induction on the num-
ber n of applied unit propagations (UPs) used to generate c. Suppose
n = 0. Then there exists a V(e D ¢') € KB so that ¢ € gnd(¥(e D ¢)),
i.e. c € UP(gnd(KB)).

Suppose, the Lemma holds for every clause ¢ that is obtained by application
of unit propagations so that the number of UPs is < n. Let ¢ be a ground
instance of a clause in UP(K B) generated by n applications of unit propa-
gations. Then the two terms ¢; = V(ey D {l1} U ') and o = V(ea D {—l2})
are contained in UP(K B), so that [0 = [0 for some MGU 6, (e; A eq)f are
satisfiable and ¢ € gnd(¥(e; A e2)f D '6).

Hence, there are ¢| € gnd(c;) and ¢, € gnd(c), so that ¢, = {l}} U ¢ and
¢y = {=l}}. By induction, ¢; € UP(gnd(K B)) and ¢, € UP(gnd(K B)) and
consequently ¢ € UP(gnd(KB)). g

2In this context a MGU corresponds to simply renaming of variables. For instance,
assume the following two terms: VX.Y.((X = aAY = b V(X = aAY =a) D
P(X,Y)VQ(X,Y)) and VZ.(~P(Z, Z)). Then {X/X,Y/X,Z/X}is an MGU for P(X,Y)
and ~P(Z,Z). The resulting term is: VX.((X =aAX =b)V(X =aAY =a) D Q(X, X).
3Two equality terms are satisfiable if ¢ |= 30(e; A e2).
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Then the next theorem follows immediately from Lemma 11.

Theorem 12 For every proper™ KB {¥(e D ¢)} the following equation
holds:
UP(gnd(KB)) = gnd(UP(KB)) (3.13)

In consequence, we proved the interchangeability in the order of the genera-
tion of ground terms and the application of unit propagation.



Chapter 4

Implementation

4.1 On implementing X

In this chapter we will present an implementation of the reasoning procedure
X. Since we are interested in an efficient approach, some features of X and
the underlying definitions had to be changed.

First of all we will restrict the defined proper™ terms to contain no in-
equalities anymore. This proceeding is justified by various reasons. For
example, inequality causes a major drawback concerning efficiency as we
proved in the last chapter. At least if the equality terms are represented in
DNF.

This has of course several consequences concerning our implementation, but
further details are presented in the corresponding sections.

At this point we present the foundation of our implementation - namely

the encoding of proper + KBs. It is of great importance how the data is
represented, because we depend on a fast access of the data.
Because we would like to handle more than 10° terms we suppose that the use
of a standard database (MySQL [53]) should increase both - manageability
and efficiency. Our view is supported by the fact that efficient list handling
is only efficient in most of the PROLOG-systems as long as a list contains
not more than 10° elements. For example ECL*PS¢ PROLOG can handle
lists that contain about 40, 000 elements quite well, but efficiency decreases
rapidly when there are more elements of concern [32].

The proposed structure is optimized to implement one of the key features
introduced by X - Unit Propagation namely. We would like to use standard
database features for efficient handling of large data sets, but furthermore
we would like to use them to implement one part of the Unit Propagation-
algorithm as well. For example we will determine a matching unit clause by

47
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an easy SQL-statement.

We act in this way, because it is a common fact that databases include
features that can handle large data sets efficiently [23]. One example is the
method of indexing which allows us very fast search.

Since X is mainly based on unit propagation we are depending on a very
efficient implementation. All the more we can make use of database features,
the more the efficiency of our implementation of X increases.

We will not achieve to implement unit propagation as an SQL-Statement
only, but we will get close to that goal. The things left are done by a few
PROLOG-lines.

Then we will present how our implementation processes a given query.
This topic includes how a query that contains for example disjunctions and
conjunctions is decomposed and evaluated. For each of the different operators
of the logical language we will present a method to test if a query is known
to be true or is unknown.

In the main the efficiency depends on the implementation of unit propa-
gation and reasoning by cases in respect to a large set of terms. Additionally,
the implementation of the quantifiers is of special importance since quanti-
fiers are already expensive in general.

After we discussed unit propagation and the evaluation of a query, we
have to deal with one more key feature of X - namely reasoning by cases
(RhC).

Reasoning by cases is more difficult to implement than unit propagation,
because it is as said in the Chapter 2 a much more complex method that
makes use of unit propagation as a sub-process for example.

We will present a criterion that is rather simple but can be efficiently

applied. The criterion restricts the set of possible clauses that is going to
be used by reasoning by cases. Furthermore we again try to use as much
database features as possible to implement it.
When presenting the algorithm belonging to reasoning by cases this is in fact
the essence of the entire implementation, since the second main feature unit
propagation and the evaluation of a query are both involved. Consequently
all important features are contained in this algorithm.

After we introduced the two main features of X and how queries are
evaluated, we will present what kind of preprocessing takes place before any
query is processed. Within the preprocessing stage we are not bound to
any time limits and that is why we can apply unit propagation to the entire
knowledge base, for example.

In consequence queries that would require the method of unit propagation
are answered instantly. Especially queries that require simple applications of
Modus Ponens can be answered immediately.
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Encode proper+ terms

Apply Unit Propagation on entire KB

Pre-processing
Pre-processing

Answering a query:

Test if Query can be inferred

Successful or actual Unsuccessful and actual
RbC-Level > maximum RbC-Level RbC-Level <= maximum RbC-Level

Answer Query Apply Reasoning by Cases

Successful or unsuccessful and
maximum RbC-Level reached
Test unsuccessful and

maximum RbC-Level not reached

Figure 4.1: A brief overview on the way our implementation works like

But we will also see that preprocessing and the presented data structure allow
us to handle a large number of unit terms without any major drawbacks
concerning efficiency.

In the next section we will present every feature of our implementation
using one detailed example that requires the evaluation of an existential
quantifier, reasoning by cases twice and from there also unit propagation.
This section will additionally show the advantages of the earlier presented
data-structure.

To give you a first impression of the implementation made we depict the
general scheme in the figure 4.1. Within the figure you see that our approach
as two phases in general. First we encode propert terms and apply unit
propagation on the entire knowledge base in the preprocessing phase.

After this step our reasoning procedure is ready to answer queries. If the
query can be inferred by the knowledge base we answer the query directly.
If the test is unsuccessful we apply reasoning by cases if the user allows it.
Otherwise the answer to the query is "unknown”.

As the figure states the defined level of reasoning by cases (denoted with
"RbC-Level”) plays a major role since the given level decides how often
reasoning by cases is applied and the entire algorithm is repeated.

As said when the definition of X was introduced the structure of the query
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decides if reasoning by cases is applied at all. In fact, X only supports
reasoning by cases when the query contains a disjunction or an existential
quantifier.

However, in our approach we allow a user-defined level for reasoning by cases
and so every reply to a query can use the feature of reasoning by cases if the
user allows it to. This way of allowing a user-defined level for reasoning by
cases corresponds to the modified version of X [37].

In the figure the user-defined level of reasoning by cases corresponds to the
maximally allowed level of reasoning by cases.

4.2 The use of Inequality

While proper™ terms allow inequalities as part of the equality term, we will
not allow inequalities in our implementation because of the following rea-
sons.

Inequalities cause a major drawback in complexity as we discussed in the
last chapter. For example, if the Disjunctive Normal Form (DNF) is used
to represent an equality term then the size of equality terms will grow ex-
ponentially with regard to the number of unit propagations applied (chapter
3).

Furthermore inequalities introduce a huge impact on inefficiency when
applying reasoning by cases. Remember how X implements reasoning by
cases. It adds every literal of one single ground instance one by one, applies
unit propagation and tests if for each of the literals of the chosen term the
query is implied by the knowledge base.

Suppose that you choose a propert term like (X # a) D P(X) V Q(X) for
reasoning by cases. Since we are only allowed to add one single ground in-
stance (e.g. (X =0b) D P(X)) this would imply that we can choose from the
entire set of constants in the domain of discourse except the constant a.
Now think of the following terms contained in the knowledge base:

(X #a > P(X)V QX))
(X =a > =P(X)V QX))

Additionally we have the query 3X.Q(X). If we choose the first term for
reasoning by cases we would have to add as many ground instances of this
term as there are constants in the domain of discourse to prove that the
query does not hold.

And since we think of knowledge bases that consist of more than 10% proper™
terms the set of constants is of a comparable size. Consequently this would
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cause at least the same number of operations to be executed and therefore
it would require a large amount of time in total.

This is of course a worst case scenario since we assume that we have to go
through all constants, but there are other more common cases that also cause
notable inefficiency. Think for example of the case where you have only some
possible ground instances introduced by inequality but more than one level
of reasoning by cases.

For each of the possible ground instances you now have to go through the
levels of reasoning by cases. Then the search space belonging to reasoning
by cases is multiplied by the number of possibilities caused by the mentioned
inequalities. Note that additional possibilities may also exist at each level of
reasoning by cases.

Comprising, all of the reasons mentioned above show that inequalities prevent
an efficient implementation in our approach. Note that there might exist
other approaches that can handle inequalities efficiently.

At this point we will also discuss the use of inequalities. Inequalities

are mainly used to assign a possible infinite set of constants to a predicate.
For example, (X # a) D P(X) depicts the fact that P(X) holds for every
constant except a.
We could not suggest a practical case where the use of inequalities would be
crucial or not be replaceable by another feature like a predicate for example.
Think for example of the following proper™ term contained in the knowledge
base:

(X # John D isStudent(X))

This term states that everybody except John is a student. In our point of
view such kind of statements are required very seldom and are of no use in
the context of the example.
Consequently, the use of inequalities with regard to single individuals (con-
stants) is very seldom. Normally inequality is used with properties, but not
with individuals.

In contrast we support inequalities in the query since the use of inequal-
ities allows us to ask queries of the following kind:

Query = (X # John A isStudent(X))

The query asks, if there is another individual besides John that is a student.
We think that this use of inequalities is very useful and would not be possible
without inequalities.

Inequalities from a query are not directly involved in the reasoning process
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itself and are only used when testing if a predicate is contained in the knowl-
edge base or not. Therefore they can not cause any drawbacks concerning
efficiency.

In consequence, we consider inequalities contained in the knowledge base
to introduce a major drawback on efficiency, are difficult to handle and sup-
port no features that are essential in practice. Hence, we do not support
inequalities in our implementation.

4.3 Encoding proper+ terms

4.3.1 How we encode proper+ terms

In order to meet the requirements mentioned above, we will first of all have
to find a way to localize predicates and the corresponding equality-terms in
a simple way. In particular we would like to solve this task with as few SQL-
Statements as possible.

We will present an encoding now that allows an efficient access of all details
of proper+ terms.

Therefore we encode proper + K B-terms in a compound of numbers (or
letters) because of two reasons mainly:

1. equality-terms are encoded in a way that allows simple comparing with
other equality-terms

2. by using the encoding we have an easy and quick access of the predicates
where Unit Propagation can be applied on

This allows a fast application of unit propagation and more features are
presented when the encoding is introduced. Recall that unit propagation
comprises two steps:

1. matching predicates
2. matching equality terms

Essentially we create two types of tables to represent proper-+-terms, but it
will be four tables in total since we need one type of tables multiple times.
The first type is able to contain disjunctive terms as well as unit terms while
the second holds all equality terms of the proper+ terms in the knowledge
base.

We will make use of one table that contains only disjunctive terms and two
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1 2 3 4 5 6

Term ID | Predicate ID | Variables | Act. RbC-Level | Ori. RbC-Level | New

Table 4.1: The defined columns in the table ”pTerm-pred” holding the predicates
of a proper™ term

1 2 3 4 5
Term ID | Equality Term ID | Equality Encoding | RbC-Level | Updated

Table 4.2: The defined columns in the table ”pTerm-equal” holding the equality
terms of a proper™ term

that will only hold unit terms - therefore we need four tables in total. Note
that there are only two types of tables in total.

At this point it is only important to remember that there exist differ-
ent tables, but their function will be discussed when the main features unit
propagation and reasoning by cases are introduced. Especially, the presented
detailed examples will provide a deeper insight.

The first type of table named ”pTerm-pred” contains six columns (see
table 4.1):

1. a term identifier

2. a predicate identifier

3. variable names

4. actual Reasoning by Cases level
5. origin Reasoning by Cases level

6. a flag named "new”

The term identifier is a unique mapping to a single proper+-term; the
predicate identifier does the same for predicates. We need the variable names
to extract the right equalities from the entire equality-term corresponding
to the actual term and to determine if two equalities are unifiable. The
remaining columns will be used for Unit Propagation, Reasoning by Cases,
or both.

The second type of table named ”pTerm-equal” contains five columns
(see table 4.2):
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1. a term identifier

2. an equality term identifier

3. the encoded equality term

4. the Reasoning by Cases-level

5. a flag named "updated”

The term identifier establishes the connection between the two types of
tables. The equality term identifier is needed to store disjunctive equality
terms that correspond to one proper+-term. Again the last two remaining
attributes are used to apply unit propagation and reasoning by cases.

The equality term is encoded as described in the table. An encoded equality
term contains four elements, namely the label of the variable, the position
of the variable in the argument array of the predicate, a sign with values 0
and 1 to determine if the variable equals the following constant or may have
any other value assigned except that constant mentioned. Please note that
we could handle equality terms like (X = Y AY # Z), but they are not
supported in our implementation.

We handle variables that are not restricted in any way by assigning the ’don’t
care’ symbol '’ to the attributes sign and constant. If a predicate has more
than one variable the equality encoding of each variable are combined while
using a delimiter.

We need both the attribute variable names and the attribute variable posi-
tion since we use the first to extract the required equalities for a term from
the encoded equality term in the table ”pTerm-equal” and the second to com-
pare equalities of the same variable position when applying unit propagation
later on. This is due to the fact that variable identifiers might be different
along various terms.

Please note that we need to convert equality terms of the proper™ knowledge
base into DNF. Only this conversion makes our representation of equality
terms possible and additionally allows us a very fast method to test if equal-
ities are fulfilled.

First of all when the equality terms are in DNF it is possible to split and
store them in different entries in a table. This allows us to check equalities
in a very simple way, since we only have to test if all the equalities of a single
entry are fulfilled.

If they would not be in DNF the test if a given assignment to a variable holds
would be rather difficult since it could be necessary to test various equalities
and their possible combinations inside the entire equality term.
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proper ™ -term Variable Name | Variable Position | Sign | Constant
(X=a)DPX)| X 1 1 a
(X#c¢)DPX) | X 1 0 c
P(X) X 1 * *

Table 4.3: How equality-terms are encoded; e.g. the equality-term of (X =a) D
P(X) will be encoded as X|1|1|a

In other words it would be necessary to apply some kind of satisfiability test
that is not needed when using DNF (see previous chapter).

We need at least one additional different kind of table that contains the
mapping of predicates to numbers whereby predicates with a negative sign
are mapped to the negated number of the positive predicate. These are the
numbers that are used as the predicate identifier in the table ” pTerm-pred”.
If it is required we can make use of one more table that contains a mapping
for constants. It might be necessary to convert constants in some domain of
discourse into a more compact representation like a numerical identifier.

As mentioned before we use the table type ”pTerm-pred” three times. In the
first table we store proper terms that contain multiple predicates, the second
and third table contain proper terms having only one predicate (unit terms).
We use the third table only when we reason by cases.

As we will see later on, this fragmentation is very useful when we implement
X since it will allow us to reduce the amount of data that has to be inspected
when reasoning by cases, for example.

In our encoding there exists exactly one entry for each Unit Term with the
same predicate and sign. For example, the Unit Terms (X = a) D ~P(X)
and (X = b) A =P(X) will have one entry in the table ”pTerm-predU”. The
different equality terms are stored with the help of the equality identifier in
the table "pTerm-equal”.

It follows that it is quite easy to identify if a Unit Term with a specific
predicate is contained in the knowledge base or not, because we only have to
determine if there exists one entry for the predicate in the table.

If we need to check the equalities of this predicate we can do so by reading
all equalities from the table ”pTerm-equal” with the actual term identifier.
Since nearly every database allows the use of indices we create an index on
the predicate identifier which results in a search time that is logarithmic in
the size of the database [65]. This is how we establish a quick access of
predicates.
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Term Identifier | Predicate Identifier | Variable Names
1 -1 X
1 2 X, Y

Table 4.4: The encoding of (X #aAY =b) V(X =d) D -P(X)VQ(Y,X) in
the table ”pTerm-pred”

Term Identifier | Equality Identifier | Fquality Encoding
1 1 X|1|0la — Y|2|1]b
1 2 X |2|1]d = Y|1] * |*

Table 4.5: The encoding of (X #a AY =b)V (X =d) D -P(X)VQ(Y,X) in
the table ”pTerm-equal”

4.3.2 An Example Encoding

While we talked about properties of single parts in the encoding so far, we
would like to present all parts of the encoding in one example now. Tables
4.4 and 4.5 show how the term

(X #aAY =b)V (X =d) D -P(X)VQ(,X)

is encoded in the database table ”pTerm-pred” and ”pTerm-equal”.
In our example the predicate P is mapped to 1 and @ to 2. We excluded the
values for the RbC-Level and other flags, because they are not of concern
here and will be discussed later on.

All together we presented a quite simple encoding of proper+-terms, that
allows us a fast comparison of equalities and a useful foundation to decide if
a predicate is included in the knowledge base or not in a quick way.

4.4 Unit Propagation

4.4.1 Implementation

For the given representation of proper+-terms, we will now present an al-
gorithm for unit propagation. The algorithm tries to use as much database
features as possible given the current encoding of proper+-terms.

Here unit propagation can basically be applied if we have a proper+-term
with more than one predicate (disjunctive term) and a proper+-term with
exactly one predicate (unit term) which is the negated version of one of the
predicates of the disjunctive term.
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At this point the reader must be aware of the crucial difference between
an application of unit propagation in the propositional case and the first-
order case.

When unit propagation is successfully applied on a clause this original clause
is deleted in the propositional case. But since proper™ terms can represent
even an infinite number of ground instances, we are not allowed to delete the
disjunctive term where unit propagation was applied to.

Only when the proper® term represents exactly one ground instance we are
allowed to delete the disjunctive term since this case is equal to the propo-
sitional case (e.g. (X =a D P(X)V Q(X))). An example is given in the
subsequent chapter.

As a consequence, the number of proper+-terms in our knowledge base will
increase in general instead of decrease when we apply unit propagation. Only
redundant terms and terms that represent exactly one ground instance can
be deleted. This fact has an obvious disadvantage since it causes a growth
of the original knowledge base (see previous chapter).

And an increased number of disjunctive terms will also increase the set of
disjunctive terms that will be of concern when reasoning by cases is applied.
Consequently, more possibilities than introduced by the original knowledge
base must be tested as we will see when we present the implementation of
reasoning by cases.

In our presentation of unit propagation we will not always state explicitly
that the disjunctive terms remain in the knowledge base. But we have of
course to take care of this property when implementing unit propagation.
Therefore we will first discuss how unit propagation is applied in general and
then we present how we handle the just mentioned topic.

In general a single successful application of unit propagation in our case
exists of three steps:

1. Identify those pairs of proper+-terms where unit propagation can be
applied on

2. Check the equalities of each pair for compatibility

3. Adapt equalities in the disjunctive proper-+-term

As said in the last section our encoding of proper+-terms allows a fast

execution of the first step. To explain how we do this, we have to say which
data is actually stored in the four tables used.
The first table contains disjunctive proper+-term (”pTerm-pred”) only, the
second and third only store unit terms (”pTerm-predU1” and ”pTerm-
predU2”) and ”"pTerm-equal” is the one and only table that holds the equal-
ities.
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In other words the tables ”"pTerm-predU1” and ”pTerm-predU2” will not
contain multiple lines with the same term identifier as ”pTerm-pred” has to
have multiple lines with the same term identifier.

For the moment it is only necessary to know that we have one table for dis-
junctive terms, one for unit terms and one for equalities. The table ” pTerm-
predU2” used for unit terms will be of concern when we introduce reasoning
by cases in the next section.

We now identify the required pairs of terms by using the Join-Operator
of SQL and apply it to the table that contains only disjunctive term and
the table that holds only unit terms. Our join attribute is the predicate
identifier and the join condition is that the disjunctive term must hold the
complementary predicate of the unit term.

For example if a disjunctive term contains the predicate P mapped to 1 the
join condition is satisfied when a unit term holds the negated predicate —P
mapped to —1.

It is commonly known that a join operation is one of the most expensive
operators in databases in general [23] since it requires quadratic complexity
in relation to the number of datasets in both tables.

There exist different types that reduce complexity like the use of bucket
hashing and the use of indices [65, 23]. While our implementation is build
on MySQL we make use of the Index Join.

At this point we will not delve into complexity issues and will continue with
the introduction of our approach. In the following chapter more details will
be discussed.

So far we determined the possible unit propagation pairs. For each of those
pairs we first copy the actual disjunctive term and set the corresponding
"new” flag to the value 2. The value 2 indicates that this disjunctive term is
a newly generated one. Handling things this way is necessary to allow every
possible application of unit propagation.

As said before one disjunctive term may represent various ground instances.
And if we would not copy the disjunctive term and apply all changes on
the copy the update of equalities might prevent further application of unit
propagation.

Suppose the following set of terms:

X=aVX=0DPX)VQX)
X =a>-P(X)
X =b>Q(X)

If we now would apply reasoning by cases copying the disjunctive term before,
we would gain the following set of terms:
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X =aDQ(X)
X =a > -P(X)
X =b>DQ(X)

As you can see no further applications of unit propagation are possible,
because of the updated equality term and the fact that no disjunctive
term is available anymore. Hence, we would not be able to gain the term
(X =0 D P(X)) although this would be required by a correct application of
unit propagation.

We mark the copy of the disjunctive term with a specific value, because these
newly generated terms must be reconsidered by all unit terms. Consider the
following example:

X=avVX=bvX=cDPX)VQ(X)VR(X)
X =a>-P(X)
X=aVX=0D-Q(X)

X =¢D-R(X)

This would generate the following new terms:

X=aDQ(X)VR(X)
X=aVX=0DPX)VR(X)
X =¢DP(X)VQ(X)

From this set for example the second term must be reconsidered by the origi-
nal unit terms since unit propagation can be applied again. In fact, the term
X =b D R(X) results when using the original unit term X =a D = P(X)
with the second term of the above set.

Note that a reconsideration with all of the unit terms has not to take place
with the already included disjunctive terms (new = 1), because every possi-
ble combination has been already determined.

Therefore, we will use the join operator with all unit terms and newly gener-
ated disjunctive terms and with all new unit terms and all disjunctive terms.
We can do so, because we can identify the new unit terms as well as the
newly generated disjunctive terms by using the flag "new”.

When we have copied the disjunctive term we are ready to check if the
equalities of the concerned predicates are compatible. Therefore we use the
data generated by the join of the two tables whereby we use the term identifier
of both terms of the pair to select the corresponding equalities from the table
"pTerm-equal”.

Two equality terms are compatible if they are not mutually exclusive. For
example, (X = a) and (X # b) are compatible, but (X = a) and (X # a)
are not (see also Chapter 3).
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In a few lines of Prolog code we can check if the equalities match. If they do
so it might be necessary to adapt the equality term of the disjunctive term.
Consider again the example considered before: the updated equality term of
the combination of (X = a) and (X # b) will result in (X = a).
Realize that inequalities add up in the updated equality term; e.g. X # a
and X # b result in X # a A X # b. We already remark at this point
that this is the reason for a major drawback concerning complexity. A closer
examination of equality terms and their interaction will be discussed in the
next chapter. Note that an equality term of a unit term will never be changed.
When updating equalities we make use of the flag "updated” to take care
that we do not use any new generated equality term during one application
of unit propagation. After a single and complete application the value of the
flag is reset.
If equalities match we can apply the essence of unit propagation since we
are working on a copy and simply delete the line from the table with the
corresponding term- and predicate identifier from ”pTerm-pred”. If only one
predicate remains, we copy the term to a table that contains only unit terms.
To summarize our implementation of unit propagation, we sketch the
algorithm in the following lines:

1. Determine all possible pairs where unit propagation could be applied
while considering the following sets of terms:

e All disjunctive terms (new = 1) and all new unit terms (new = 1);
then set the flag "new” to 0 at all unit terms

e All new disjunctive terms (new = 2) and all unit terms; then set
the flag "new” to 1 at all disjunctive terms

2. For each pair do the following:

e Copy the actual disjunctive term and proceed on the copy only.
Use the flag "new” to mark this copy as a newly generated dis-
junctive term (new = 2); if the disjunctive term already exists do
nothing.

e Test if equalities of the unit- and disjunctive term are compatible

e If so apply unit propagation and adapt equalities in the disjunctive
term and if there is only one predicate left in the disjunctive term
than copy the term to the table "pTerm-predU” and delete the
entry in ”pTerm-pred”; else delete the copy of the disjunctive term
again
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3. Repeat the steps 1 and 2 until the set of possible unit propagation pairs
is empty

Note that the meaning of the flag "new” is different among disjunctive
and unit terms. Unit terms can be new (1) and old (0). Disjunctive terms
are always new (1) when unit propagation is applied since they always have
to be considered when we determine the set of possible unit propagation
pairs. Additionally, we need the value 2 to indicate newly generated disjunc-
tive terms in the last cycle of the algorithm. The value 0 is used when we
reasoning by cases is applied later on.

We do not have to check the validity of a pair, because one single predicate
will be contained only once in the tables that contain only unit terms. Hence,
it is not possible that some earlier pair deletes the predicate in the same term
that is of concern in the actual pair.

We use the flag "new” indirect as termination criterion of our algorithm.
In the beginning the flag is set to 1 and every unit term is thought of when
determining possible unit propagation pairs. After we have applied prepro-
cessing for example all unit terms will be marked as visited.

After determining the first set of possible pairs all unit terms are considered
to be visited and consequently the flag is set to 0. We can act in this way,
because if a unit term is not to be considered a part of a possible unit propa-
gation pair - in other words the complement of the predicate is not contained
in any disjunctive term - it will be never a part of a possible unit propagation
pair.

So in the next turn those visited unit terms are not of concern anymore -
at least when we consider only the old disjunctive terms in the knowledge
base. As described before the newly generated disjunctive terms reconsider
all available unit terms since this is necessary. But the flag "new” of these
disjunctive terms is directly set to ”1” again, so that in the next turn they
only are of concern in combination with new generated unit terms.

Please note that a newly generated unit term is only marked as new, when
it is not already included in the knowledge base.

The algorithm terminates when the set of pairs is empty. Since the set
depends on the newly generated unit terms and disjunctive terms it is obvious
that this algorithm will always terminate.

While it is legal to mark the visited unit terms and not to consider them
anymore with the old disjunctive terms, it is not correct to do the same for
disjunctive terms. If a disjunctive term is reduced to a unit term by applying
unit propagation all remaining disjunctive terms must be reconsidered to
determine the possible unit propagation pairs. Simply, because of the fact
that the newly created unit term was not of debate before and therefore can
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Term Identifier | Predicate Identifier | Variable Names | new
1 1 X 1
1 2 X, Y 1
1 3 X\ Y. Z 1

Table 4.6: The encoding of (X #e) A (Y =a)) V(X =a) AN (Y #e)A(Z =
b)) D P(X)VQ(X,Y)V R(X,Y,Z) in the table "pTerm-pred”

cause new pairs.

Comprising the presented algorithm is used to implement one of the main
features introduced by X. As we said before we need an efficient implemen-
tation of unit propagation to enable a efficient implementation of the entire
reasoning procedure. For this reason the use of database features was essen-
tial.

4.4.2 FExample

To give a more intuitive feel how our approach applies unit propagation, we
give a detailed example at this point. In this example we only like to show
how unit propagation is executed in our implementation. Again you should
be aware of the crucial difference between unit propagation applied in the
propositional case and the first-order case.

Additionally, note that we allow inequalities even if we assume that they are
not contained in our knowledge base. Hence our presented method supports
inequalities as said before and is therefore fully compatible with the original
reasoning procedure.

Suppose the following proper™ terms are in our knowledge base:

. X#eANY =qa)V
(X=aAY #eANZ=0b)DPX)VQX,Y)VR(X,Y,Z)

2. X =a > -P(X)
3. -P(X)
4. (X =aAY =g)VY #¢D -Q(X,Y)

The tables 4.6 and 4.7 show the encoding of the disjunctive proper term
and the unit terms while table 4.8 holds the corresponding equality terms.
The predicates are mapped to numbers in their alphabetical order.

When we now go through the algorithm step by step we first of all deter-
mine all possible unit propagation pairs. Here a pair simply consists of two
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Term Identifier | Predicate Identifier | Variable Names | new
2 -1 X 1
3 -2 XY 1

Table 4.7: The encoding of (X =a) D -P(X),-P(X)) and V(((X =a) A (Y =
9)) V(Y #¢) D =Q(X,Y) in the table ”pTerm-predU1”

Term Identifier | Equality Identifier | Fquality Encoding

X[1[t]a = Y]2[1]g
X 1] = | * =Y|2]0]c

1 1 X|1|0le = Y|2|1|a — Z|3] * |*
1 2 X|1|1]a —Y'|2|0le — Z|3|1]b
2 1 X1 |*

2 2 X|1[1]a

3 1

3 2

Table 4.8: The encoding of all equality terms mentioned in the example

term identifiers, in our implementation it contains as much data as possible
to reduce access to the database.
As said before we join the two tables using the complement of a predicate as
join condition. The result of this operation can be seen in table 4.9.
Consequently we have the two pairs (1,2) and (1,3). First we copy the
disjunctive term (term identifier of copy: 4) and then we check the equalities
of the pair (1,2).
Since both disjunctive term and unit term have multiple disjunctive equality
terms and all of them are compatible, the number of equality terms increases
and reaches three in total. In fact there exist four terms, but two are identical
to each other.
Equal terms are not stored in the knowledge base, because every entry must
be unique in regard to a term identifier and a reasoning by cases level. This
feature is implemented by the table definition and MySQL.

dt. Term ID | dt.Predicate ID || ut.Term ID | ut.Predicate ID
1 1 2 -1
1 2 3 -2

Table 4.9: The join of the two tables ”pTerm-pred” and ”pTerm-predU1” from
the example where ”dt” indicates the table with disjunctive as "ut” indicates the
table with unit terms
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Term Identifier | Predicate Identifier | Variable Names | new
1 1 X 1
1 2 X, Y 1
1 3 X\ Y. Z 1
4 2 X,Y 1
4 3 X\ Y. Z 1
5 1 X 1
5 3 X\ Y. Z 1

Table 4.10: After the fist application of unit propagation the line with the term
identifier ”4” and predicate identifier ”1” is deleted in the table ”pTerm-pred”

The same is done for the other pair and after the first cycle in our algo-
rithm the tables ”pTerm-pred” and ”pTerm-equal” look like depicted in the
tables 4.10 and 4.11. The second copy of the disjunctive term has the term
identifier 5.

According to the introduced scheme we again identify the possible pairs
for unit propagation. Since there are no new created unit terms from the
last cycle, but new disjunctive terms we combine them with all unit terms
contained in the knowledge base.

The resulting pairs are: (4,3) and (5,2). As described before, we again copy
the disjunctive term, check equalities and since there are compatible equality
terms, we can apply unit propagation successfully.

And this time a new unit term is generated. In fact both pairs generate a
new unit term, but they are identical to each other, so that there is only one
new unit term and therefore only one additional term identifier in the end.
The result is shown in the table 4.12. This time we only show the entries of
"pTerm-predU”, which also holds the just generated new unit term, since the
table "pTerm-pred” holds no new disjunctive terms. Additionally we depict
the equality terms of all unit terms in the table 4.13

Note that in all entries of the table ”pTerm-predU” the value of the flag
"new” is set to 0 except of the just created unit term.
Now that we have finished the second cycle of our algorithm, the algorithm
terminates although we generated a new unit term, because there are no
more possible unit propagation pairs in the knowledge base left.
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Term Identifier | Equality Identifier | Equality Encoding

X|110le = Y|2|1]a — Z|3]| * |*
X|1|1|a —Y'|2|0le — Z|3|1]b
X1 = |*

X/|1)1]a

X|1|1]a —Y|2|1]g

X|1] % |« =Y|2|0|c

X|110le = Y|2|1|a — Z|3] * |*

X|1|1|a —Y|2|0]e — Z|3]|1]b

X|11ja = Y|2|1lla — Z|3| * |*

X|1]0]la — Y'|2|1]g — Z|3]1|b

X|110le = Y|2|1]a — Z|3]| * |*

X|1|1|a —Y|2|0]c — Y|2|0]e — Z|3|1]b

CL O O i i e W W NN~ =
W N WNF DN NN

Table 4.11: The encoding of all equality terms mentioned in the example after
the first application of unit propagation

Term Identifier | Predicate Identifier | Variable Names | new
2 -1 X 0
3 -2 XY 0
6 3 X\ Y. Z 1

Table 4.12: After the second application the following unit terms are stored in
the table ”pTerm-predU”

Term Identifier | Equality Identifier | Fquality Encoding

X1 = |*

X/|1)1]a

X|1|1]a —Y|2|1]g

X|1] |« =Y|2|0|c

X|110le = Y|2|1|a — Z|3] * |*

X|1|1]a — Y|2|0le — Y'|2|0]|c — Z|3|1|b
X|1[1|a = Y|2|1lla — Z|3] * |*

X|1|1la =Y|2|1|g — Z|3|1|b

Y O O O W W NN
=W N NN

Table 4.13: The encoding of all equality terms corresponding to the unit terms
after applying unit propagation twice
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4.5 Evaluation of the Query

4.5.1 Introduction

In the following sections we will describe how disjunctions, conjunctions,
quantifiers and single predicates are evaluated in our implementation. Since
we already discussed one of the two main features of X we now focus on how
queries are decomposed and evaluated. In fact, we will use the decomposition
as introduced in X in general.

Think for example of the following query IX.P(X). In X it is defined

that this query is answered by using the set of constants H,", and thereby
generating many ground instance of the query and test if this ground instance
is included in the knowledge base.
When you recall that we would like to deal with large knowledge bases that
contain more than 10° terms which implies round about the same number of
constants it is quite obvious that substituting a variable with each constant
of the set is not an efficient way to answer the query.

Therefore we will present methods that are more efficient especially for
the two quantifiers. At this point we will make use of the fact that we do
not support inequalities in our implemented reasoning procedure.

Finally, we would like to mention that we did not invest in a user friendly
input of the query. The input of a query is predefined by a given structure and
very complex queries are not supported yet although they could be handled
by the reasoning procedure itself.

We acted in this way because normally we only have very short queries and
the main focus of this work lies on the efficiency and implementation of the
reasoning procedure itself

We already mentioned in the second chapter that the recursive definition

of the reasoning procedures presented are not difficult to implement. For
example, the decomposition of complex formulas is quite similar to language
processing with grammar rules which is a well known strength of PROLOG
[9].
From there those parts of the implementation - namely the skeleton of X -
will not play any major role here. Of course we will describe how we evaluate
a query as said before, but we will not present solutions how very complex
queries are decomposed.

4.5.2 Format of the Query

In our implementation we assume first of all that the query @) is in DNF.
We assume that every formula a; has the following form when e; denotes
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equality terms and P; a predicate or its complement:
a; = AN NejANPL AN AP)
Then a query ) must have the following format:
VX VX, VXYY, L 3Y, (e Ve Vo)

The reason why we do not support queries like 4X.VY. « is due to the im-
plementation of the V-quantifier that we will discuss in a subsequent section.
To give you a more intuitive feel which kind of queries the implementation
can answer we provide some example queries:

)V (X =bAQ(X))
o IX.(X #aA P(X))

e (X=aAP(X)

o W((X =aAPX,Y)) V(X =cAQ(X,Y)))
o VXAV.(P(X,Y)AQ(X,Y))

In general, we do not support queries like (e D P). Only V(e D P) is handled
in our implementation.

We do not support the evaluation of equality terms only. For instance, we can
not handle a query like V(X # a). In addition, queries like V(X = a A X #
a O P(X)) are not supported. This is due to the fact that equality terms
are not evaluated in a distinct way. We think that it would be no major
problem to evaluate equality terms only, but mainly lack of time caused this
restriction.

4.5.3 Quantifier-free Queries

We begin with the description of the way how queries only containing a single
predicate like (X = a A P(X)) is tested. By using the table that holds the
encoding of every predicate, we would search the table that stores the unit
terms for the corresponding encoding. If it would contain the encoding, we
would determine the corresponding equality term and test if the equalities
from the equality included in the query and in the database match. If it
would not contain the encoding we answer ”unknown”.
The equality of proper™ terms (t; = t3) does not play a major role in our
implementation, but it would be possible to compare the encoding of proper™
terms in a simple way.

If the query consists of a conjunction of predicates all of them must be
known to be true. Every single predicate is tested as described before. Note
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that X does not support reasoning by cases when the query only consists of a
conjunction. Recall, that in our implementation the application of reasoning
by cases does not depend on the structure of the query, but only on the
user-defined value. Hence, a query only consisting of conjunctions could be
answered with the help of reasoning by cases.
And since the query is in DNF we simply have to test if one of the disjunctions
is known to be true.

A query can be of a complex format and will then be decomposed as
defined in X. Suppose the following query:

Query = (X =aANY =bAPX)AQY)))V (X =aAR(X))

This query would be decomposed in the two parts (X =aAY =bAP(X)A
Q(Y))) and (X = a A R(X)) and each of the parts would be tested by the
methods presented before.

Comprising, our implementation of quantifier-free queries is nearly equal
to the definitions presented within X.

4.5.4 The Existential
Introduction

In the procedure X the existential is implemented through the substitution
of domain constants that are contained in H,' .

Recall that the set H, holds every constant from the query, every con-
stant contained in the knowledge base and k additional constants contained
nowhere else.

In fact this implies that a query that contains an existential is answered by
substituting the corresponding variables by domain constants and for each
created ground formula it is tested if it is contained in the knowledge base
or not.

It is obvious that this can not be done efficiently since we have a large number
of constants when we assume knowledge bases with more than 10° proper™
terms.

There exist different ideas to solve this problem. One idea would store all
constants used among a single predicate and thereby decrease the number of
possible constants in an essential way, because it would be only necessary to
substitute the variables with these constants.

This is due to the fact that a predicate can only be fulfilled by the constants
that are connected to it. Suppose the following proper™ terms to be contained
in the knowledge base:
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X=aAY =bDQ(X,Y)
X=dANY=fANZ=eDR(X,Y,Z)
X =g> PX)

Now assume the query 3X.P(X). Then it would make no sense to substitute
the variable by all the constants contained in the knowledge base, because
only the constant ¢ is connected to the predicate P.
Consequently, if you use the method of only using constants that are con-
nected to one predicate you have decreased the number of possible constants
immensely.
This should provide a deeper insight in the problem described above. In our
example there exist five constants and thereby five ground instances that
would serve as input for the reasoning procedure.
This might cause reasoning by cases for each of the ground instances, but at
least the application of the test if a ground instance is part of the knowledge
base although it is predetermined that none of them will succeed. Note that
the majority of constants is useless for this task.
And now assume that there are thousands of constants contained in the
knowledge base. This is the reason why we had to decrease the set of con-
stants in a more restrictive way than done in X to solve the existential.
The approach that we use in our implementation to solve the existential
is even more effective than the first presented idea.
If the query exists of only one predicate we simply check if the predicate from
the query is included in the knowledge base.
If it is contained in the knowledge base there must be a constant that fulfills
the query otherwise the existential fails. If the query consists of conjunctions
of predicates we check if the different equalities for the same variable are
not mutually exclusive. If they are not mutually exclusive there exists a
substitution that satisfies the predicates.
Further details concerning this method and the corresponding assump-
tions are presented in the following subsections.

Decomposition of the Query

Additionally to the assumptions about the query made in the last section we
assume at this point that the query contains no other quantifiers than the
existential.

Taking those assumptions into account the format of a general query con-
taining an existential is given by:

4X:3X, ... X, a, ais in DNF
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Since « is in DNF we can split it up into the conjunctions a; to .
Therefore we can subdivide the query into the following distinct queries [59]:

Query; = AX13X, ... 3X,, oy
Query, = AX13X, ... 3X,, a»

Query,, = 31X 13X, ... 34X, an,

We use those parts of the original query to answer the entire query. So if
we can show that a Query; is known to be true the query can be answered
immediately. If this can not be shown for any of the queries the answer to
the query is unknown. We can act in this way since « is in DNF.

Testing the Query

In this section we present the testing method that is used when the query
contains an existential. This method will be used in the entire algorithm to
check if the knowledge base implies the given existential.

The test we apply for each of the mentioned queries is depicted in the
following tasks:

1. Test if each predicate of the conjunction is stored as unit term in the
database

2. If so, read all of the corresponding equalities into the memory and test
if the equalities with regard to the existential and the query itself are
not mutually exclusive.

If they are mutually exclusive fail, else return true.

The first task (1.) can be easily accomplished by as many SQL-statements
as there are predicates in the query. The ”SQL-Select” will return a term
identifier for each of the predicates. If there exists no unit term for one of
the predicates the query can not be known to be true.

For the second task (2.) we use the set of term identifiers returned by the
first task. We use them to read the corresponding equalities from the table
"pTerm-equal”. Now we have to examine the equality terms carefully. First
of all we have to take care of the restrictions introduced by the existential.
For example, if we have the following query:

IXTV(P(X,Y) A Q(Y, a))

In this example it is implied that the equalities of the variable Y must be
compatible. Now suppose the following unit terms to be in the knowledge
base:
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(Xlza/\XQ;ébDP(Xl,Xg)
(Vi=cAY;=a>Q(V,,Ys)

Note that we allow inequalities in our example since our testing method
concerning the existential supports the use of them.

To identify the corresponding equalities in each unit term we use the variable
position in each of the predicates that is occupied by the variable that is
bound to the existential. The variable position provides the identification of
the matching equality term within each of the unit terms.

Returning to the example we have to test if X5 # b and Y; = ¢ are compatible
since they are restricted by the variable Y within the existential. In this
example they are not mutually exclusive and therefore compatible.

As said before two equality terms are compatible if they are not mutually
exclusive. For example (X = a) and (X # b) are compatible, but (X = a)
and (X # a) are not as (X = a) and (X = b) are neither.

In fact the test if the equalities of all the unit terms of concern are not
mutually exclusive is a key feature here.

Additionally, we have to test if the equality term of the unit term satisfies the
restrictions made by the constants contained in the query. In our example
those are also satisfied.

If all tests succeed the query is answered as known to be true. Otherwise
the test will fail and if there is no reasoning by cases allowed, the query will
be answered as unknown.

While testing the equalities of a query it is important to be aware of the
fact that it is not required to determine one specific value for the variable so
that the current predicate holds. An existential only implies that there is a
substitution that makes the predicate true.

Take a look at the following example where we apply reasoning by cases:

KB = {(P(a) vV Q(b), (=P(a) vV Q(a))}
Query = 3IX.Q(X)

In particular that means that when we add P(a) to the KB it follows that
Q(a) is in the KB and hence the query holds for the first predicate.
If we now add Q(b) - as it is required by reasoning by cases - again the
query is known to be true. So, when we apply reasoning by cases there is no
connection between the equalities of the predicates that are used in reasoning
by cases.

As said when we presented the implementation of reasoning by cases the
test of a query is a subroutine in the entire algorithm.
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4.5.5 The V-Quantifier

The V-quantifier is handled within the reasoning procedure X in a similar
way as the existential. But now every substitution of a variable by a constant
of the set H;” must fulfill the corresponding predicate. Hence, it is necessary
to test every possible ground instance. It is obvious that this approach would
involve a large set of ground instances to be tested.

But since we do not support inequalities it is not necessary to substitute
every possible constant from the set H, . Our implementation is based on
the following properties.

Lemma 13 (Levesque, [38])
Let a be a sentence that contains no equalities and % denotes a surjection
from C to C.

Then I = o* iff I* = «.

Proof This was shown and discussed in [38]. In general, the proof is based
on the surjection * while every constant that is contained in KB or «a is
mapped bijectively and the new constant n* is mapped to a constant c;, so
that ¢; € KB or ¢; € «. ]

To make use of this result in our case the knowledge base nor the query may
contain equality terms. Since we do not support inequalities and equality
terms are in DNF we can generate a corresponding e-free knowledge base
{¥(c)} that is equivalent to the original knowledge base, but contains no
equalities at all (see Chapter 3).

In the following we use the notation of the e-free KB {¥(c)}. Recall, that we
use KB =, « as an abbreviation for ¢ U KB = « to indicate the use of the
standard model of equalities.

Lemma 14 Let KB be an e-free KB {¥(c)} and « a sentence that contains
no equalities.

Then KB Ec o = KB E.aX, ¢; e

c;’

Proof Let I =. KB. Then I =, KB*. By Lemma 13 I* |=. KB holds.
Provided that T* |=, a:X holds, also I =, (a;\.)* holds.

Then I |=. o, ¢; € C.
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Theorem 15 Let KB be an e-free knowledge base {¥(c)}. « is a sentence
that contains no equality terms.

Then KB = VX.a iff KB . a;., n* a new constant.

n*’

Proof ”=": obvious. ”<": By the assumption and Lemma 14 KB |,
agf, ¢; € C and consequently, KB =, VX.a. ]

This result allows us to test if « is true for all possible values of the variable
X by applying only one single substitution.

Until now we assumed that o does not contain any equality terms. First we
will add inequalities. For simplicity, we only examine the case of a single
unary predicate and a single binary predicate, respectively. The general case
of a disjunction of predicates of any arity follows by a similar argument. Note
that inequalities are allowed in the query only.

Lemma 16 Let KB be an e-free KB {V(c)}.
Then KB =, VX.(X # a) D P(X) iff KB . VX.P(X).

Proof ”<": obvious. ’=": Let KB =, V(X # a) D P(X). Then KB =,
P(n*), when n* is a new constant. By Lemma 15, KB =, VX.P(X) follows.

This shows that it is possible to handle a semi-restricted variable contained
in a predicate in the same way as a free variable.
Now we allow besides inequalities also equalities and gain the following result.

Lemma 17 Let KB be an e-free KB {V(c)}.
Then KB = VXYY.(X =aAY #b) > P(X,Y) iff KB | VX.VY.(X =
a) > P(X,Y).

Proof 7<": obvious. ”=": Let KB . VXVY.(X = aAY #b) D a,
then KB =, YY.(y # b) D P(a,Y). Then KB =, P(a,n*), when n* is
a new constant. By Lemma 15, KB =, YX.VY.P(q,Y). Consequently,
KB EVXVY.(X =a) > P(X,Y). m

This means that if a variable is bound to a constant we test if the corre-
sponding equality term in the knowledge base contains a matching equality
for the variable. If an inequality is contained in the equality term of the
query we bind the variable of concern to a new constant and then test if the
corresponding equality matches.

Comprising, these observations allow us to implement the V-quantifier with
a minimum of required substitutions.
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4.5.6 The Combination of Quantifiers

Until now we only discussed the two quantifiers distinct from each other. In
this section we will investigate, if the presented implementations for each of
the quantifiers can be combined. Especially, we explore which connections
the quantifiers introduce among the quantified variables when we combine
the two quantifiers.

In our implementation we only support queries that contain both kind of
quantifiers if they can be converted into the following format:

VX1VX, VX, 3FY13Ys . Y, «, a in DNF

Note that this format of the query is necessary to allow an efficient handling
of the quantifiers in our approach. Especially the way we implemented the
V-quantifier does not allow a combination of quantifiers like 3X.VY.P(X,Y).
If we now simply apply our methods as introduced in the two sections before,
we would test for every X, to X, that are contained in each of the disjunctive
parts of « if they hold for every possible constant. In the same way we would
test if the equality terms belonging to the variables Y; to Y,, within a single
disjunctive part of the query would match.

For example, suppose we have the following knowledge base:

KB={(Y=a>P(X,Y)),(Y =b>Q(X,Y)))}

The query VX3Y.(P(X,Y)VQ(X,Y)) would be answered by X as known to
be true. The same answer is gained when using our implementation, because
the variable X has an empty equality term (X |1|x|*) so that the new constant
matches. Additionally, there exists an constant that substitutes Y and fulfills
the predicate.

Note that when the two predicates in the query would be connected by an
conjunction the query would be answered with "unknown” even while the
two predicates from the knowledge base are single unit terms, because then
the existential would link the second arguments of each of the predicates with
each other and would require them to be equal. The query VX3Y.(P(X,Y)A
Q(X,Y)) would be answered by X as unknown. The same answer is gained
when using our implementation, because then the existential would link the
second arguments of each of the predicates with each other and would require
them to be equal.

We implement the mentioned combinations of quantifiers while we make use
of the results gained in the last section concerning the V-quantifier and we
provide that existential variables that are used in predicates connected by
conjunctions are not mutually exclusive.
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4.6 Reasoning by Cases

4.6.1 Introduction

Since we introduced the idea of reasoning by cases in the second chapter
already, we now describe how we implemented reasoning by cases in our
approach.

As said in the second chapter the main problem with reasoning by cases is
to determine the next clause to choose. There is no criterion that would
allow us to make the "right” choice directly or at least it would be too time
consuming to precompute the most useful clause. The only thing we can do
is to restrict the search space slightly as described in the following section.

Recall, that in our implementation reasoning by cases is restricted to
a user-defined level and does not depend on the structure of the query as
suggested in X.

We will first of all present the criterion that we use to restrict the set of

possible clauses that can be used at a specific application of reasoning by
cases. At the same time we will see that there are various criterion that filter
out specific possibilities, but can not be generally applied.
Additionally, we will discuss the fact that it is not possible to preprocess the
knowledge base to gain better results concerning the set of possible clauses
when more than one level of reasoning by cases is of concern. We will discuss
this topic also in the section preprocessing.

Thereafter we present the algorithm that implements reasoning by cases
in our approach.

4.6.2 The Criterion of Reasoning by Cases

In our implementation reasoning by cases is applied while making use of the
following criterion.

Before we present the criterion first note that clauses are connected to each
other if they share the same predicate. We use the absolute value of a predi-
cate, hence the clauses (P(X)VQ(z)) and (—=P(X)VQ(z)) are connected by
P and (). Suppose the query would consist of the predicate P only, then the
clause (-Q(X) V R(X) V S(X)) would be indirectly connected to the query.
The first two clauses are directly connected to the query.

The criterion allows us to pre-compute a conservative estimate of the disjunc-
tive terms that are connected with each other [42]. This set is used when
reasoning by cases is applied.
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Criterion Reasoning by Cases

The set of clauses that will be used for reasoning by cases at any level will only
contain the clauses that are connected by predicates directly or indirectly to
the predicates of the query.

Note that this criterion requires the knowledge base to be consistent in the
context of the reasoning procedure of concern. Hence, our first step when ap-
plying reasoning by cases is to determine all proper™ terms in the knowledge
base that contain the predicate from the query. Secondly, we determine all
of the disjunctive terms that are connected to the first set of proper™ terms
by predicate. Note that this also includes clauses that are not directly re-
lated to one of the disjunctive terms of the first set. The following procedure
represents the method how the possible set of clauses for reasoning by cases
is determined.

Initialize:

e Determine all predicates from the query and store them in the variable
Predicatel Ds,,eq

e Predicate] Dsyseq, Predicatel Dsier,y,, and TermlIDspgyc are empty
variables

Repeat

e Identify all disjunctive terms that contain a predicate that is in
Predicatel Ds,,.,, or its complementary predicate is contained in
Predicatel Ds,,eq

e Store the identified terms in TermlI Dsgyc if they are not already con-
tained

e Set Predicatel Ds,s.q=Predicatel Ds,,.,, and delete all predicates from
Predicatel Ds,, ey

e Determine all predicates contained in the newly identified terms and
store them in Predicatel DSepmyp

e Select only newly determined predicates by comparing the predicates
stored in Predicatel Dsiep, and Predicatel Dsy.q and store them in
Predicatel Ds,, ey

Until Predicatel Ds,,, contains no predicates
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After the application of this procedure the variable TermlIDsgyc contains
all disjunctive terms that are of concern when reasoning by cases is applied.
The procedure is initialized by storing the predicates contained in the
query in Predicatel Ds,,.,,. The predicates from the query are used to deter-
mine the directly connected disjunctive terms. All further recursions of the
procedure identify the indirectly connected disjunctive terms.
As the reader can observe we search for a predicate and the complement of
a predicate at the same time. This proceeding is motivated by the fact that
we can accomplish this task in one single SQL-Statement:

SELECT * FROM pTerm-pred WHERE predicateld IN (Predicatel Dsyey)

The indirect way would look for the actual predicates only and then look in
the following cycle only for the complementary version of the predicate. In
the end both approaches will return the same set of disjunctive terms.
We use the variable Predicatel Ds,.q to keep track of the predicates that
have been already used to determine disjunctive terms. Then, it is possible
to select only new predicates in the newly discovered disjunctive terms. At
the same time this will terminate the procedure after all disjunctive terms
for reasoning by cases are determined.

In Prolog this algorithm could be implemented by the following snippet
of code:

% Detemine the terms that will be used by reasoning by cases
get_Clauses([1,_,[1).

h

% PIDList holds the predicate identifiers (initial: Query)
get_Clauses (PIDList, PrevPIDList, [ReturnTIDs|ReturnTIDList]) :-
% create the list of the complementary predicates

maplist (times(-1) ,PIDList,InversePIDList),

append (PIDList,InversePIDList,CompletePIDList),

% get all corresponding disjunctive terms
getall_DisjunctiveTermIDs (CompletePIDList, ReturnTIDs),

% get all predicates that are contained in ReturnTermIDs
getall_PredicateIDs (ReturnTIDs, ActualPIDList);

% add to visited predicateIDsList

append (CompletePIDList,PrevPIDList, VisitedPIDList),

% delete all previous used predicateIDs from the current PIDlist
subtract (ActualPIDList, VisitedPIDList, NewPIDList),

% start the next cycle with the new predicates

get_Clauses (NewPIDList, VisitedPIDList, ReturnTIDList).



78 CHAPTER 4. IMPLEMENTATION

As said earlier we have to determine the set of clauses that will be used by
reasoning by cases online. Consequently, the algorithm must be fast. In fact
this is the reason why we can not take care of equalities for example. It
is obvious that the observation of equality terms would restrict the set of
possible clauses in a more effective way.

But we only use a predicate and its complement version to explore the con-
nections among different clauses, because the analysis of the equality terms
would be too time consuming.

There exist also other methods to restrict the set of clauses, but as far as
we know they can not be applied efficiently. We will discuss some methods
briefly in a later section. At this point we have chosen in favor of a large set
of possible clauses and a fast method of determination.

Note that when all the clauses in a knowledge base are connected directly
or indirectly to a given query all clauses of the entire knowledge base must be
considered when reasoning by cases is applied. It is obvious that those kind
of knowledge bases can not be handled efficiently with our implementation.
A better criterion would improve this, but we think that those kind of knowl-
edge bases can not be handled efficiently in general. Additionally, those
knowledge bases do not belong to the field of application of concern.

We can not preprocess the set of possible clauses since we allow more
than one level of reasoning by cases. At the first level of reasoning by cases a
single predicate is added to the knowledge base and this might have essential
effects on it. And since a subsequent level in reasoning by cases uses the
knowledge base in the status the previous levels have changed the original
knowledge base there is no way to preprocess the set of clauses. Although we
will purpose a method to preprocess the knowledge base in a later section.
But this method can only be used when exactly one level of reasoning by
cases is of concern.

Finally, we presented a method in this section to precompute a conser-
vative estimate of the set of clauses to be used by reasoning by cases in
advance.

4.6.3 Implementation

In this section we present our implementation of reasoning by cases. Since
unit propagation is a part of reasoning by cases the algorithm includes the two
main features introduced by X. Therefore, the algorithm described here shows
how we answer a query in general. The testing of a query is accomplished as
described in an earlier section. In the following algorithm we will make use
of those variables:
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e RbC Level: actual reasoning by cases level, the initial level is —1

e MaxRbC Level: maximum reasoning by cases level (user-defined)

e RbCTerms;: Set that contains the term identifiers that are of concern
at the reasoning by cases level ¢

1. Test the query while using the actual knowledge base

2. If the test did not succeed for any of the queries apply reasoning by

cases:

(a) Increment the actual RbC Level
(b) If RbC Level > MaxRbC Level then fail

(c) Determine the set of clauses that will be used for reasoning by
cases (as described in the section before), delete already used
terms (marked) from the set and store it in RbC'Termsrpcrevel

(d) Until not every term in RbCTermsgpcrever 1S visited or not return
1 do the following:

i.

il.

iii.

1v.

Add the actual predicate of the current term to the KB as
unit term. If there is more than one equality term use one
equality term that was not used before. Note that only one
single ground instance can be added at once. Mark the entire
term as used.

Apply Unit Propagation
Go to step 1. (test if query is implied by the KB and apply
reasoning by cases again if necessary and possible)

If iii) succeeds (returns 1) proceed to the next predicate in
the actual term and go to step a), else fail and if there are
unused equality terms go to i) and else go to the next term in
RbCTermsgpcrever and undo all changes (e.g. unmark used
terms, delete added unit terms and all changes done in the

knowledge base) caused by this RbC Level
If step iv) is successful for every predicate of one term, then
return 1

(e) If step e) does not succeed for any of the terms in RbCTerms;
then return 0

3. If the test succeeds for the query then return 1
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Note that we will provide a detailed example in the following section.
Since those steps sketch the algorithm briefly we go through it step by step
now.

In step 1.) we apply the test that we have introduced in an earlier section. It
checks if the given query is supported by the actual knowledge base or not.

If the query is not known to be true we apply reasoning by cases. This
causes the increase of the actual RbC-Level which is simply necessary to be
able to limit reasoning by cases by the user-defined maximum (see 2.a) and
2.b)). Note that we start with the initial RbC-Level —1.

In the section 2.c) we determine the set of clauses that will be of concern

when we apply reasoning by cases. At this point we use the method presented
in the section before. Every clause that is connected directly or indirectly by
predicates to the predicates contained in the query will be included in the
set RbC'T'erms gpcrevel-
We prevent cycles in reasoning by cases simply by marking the term that has
been used for the actual application of reasoning by cases. As can be seen in
2.d)iv) we unmark the term that was marked at the actual level again if we
proceed to the next term.

The entire section 2.d) contains the essence of reasoning by cases. We
take the first term from the previous generated set of term identifiers. Now
we add the first predicate and the corresponding equality term in this chosen
term to the database. In fact this is of course a unit term (2.d)i)).

At this point it is important to mention that we only add one single ground
instance to the knowledge base. For example, suppose the chosen term to be
the following one:

(X =a) V(X =b) > P(X)VQ(X)

Then we add at first the unit term (X = a D P(X)). If reasoning by cases
does not succeed then, we do not proceed to the following term, but first
try the other equality X = b. In general, we first add every possible ground
instance of the actual term before proceeding to the next possible proper™
term. We add a predicate that contains unrestricted variables by using equal-
ities that are used by other proper™ terms in the knowledge base and contain
the identical predicate. If this does not succeed we use a ”"don’t care”-symbol
to generate a ground instance and keep track of an assignment to this vari-
able so that the variable can have only one specific value during the actual
reasoning process. Note that the variable might be assigned to a constant
contained in the query, so that we take care of constants that are not used
in the knowledge base but in the query only. This approach is similar to
the implementation of the V-quantifier. It prevents the substitution of every
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possible constant included in the entire knowledge base. If a proper™ con-
tains no unrestricted variables at all, we simply add each possible disjunctive
equality term one by one if necessary.

Since we have a new unit term in our database we apply unit propagation
again as described in some earlier section. This may cause that some other
unit terms are created and our query could now be known to be true. This
is why we test the query again (see 2.e)iii.)).

The return to step 1.) is in fact a recursion. If the test succeeds we go to the
next predicate in the actual term. But if the test fails we apply reasoning by
cases again. But now not on the original database but on the database that
includes the changes from the previous reasoning by cases level. The depth
of recursion is restricted by the maximum reasoning by cases level (2.b)).

If it is not possible - even with the highest reasoning by cases level - then we
leave the actual term, undo all changes caused by the actual RbC-Level, go
back one level and try all other possible terms at this level.

This proceeding is repeated until we again reach level zero. Then we proceed
to the next term in the set of clause at RbC-Level 0, restart the entire process
and proceed until there are no more possible terms at RbC-Level 0. In fact
this proceeding is commonly known as backtracking.

Note that every single different term may additionally have several ground
instances due to multiple equalities what of course causes an additional com-
plexity.

At this point it should be obvious that the application of reasoning by cases
is a complex process since there are not only possibilities in reasoning in-
troduced by the set of clauses fulfilling the criterion, but additionally by
different equalities.

Consequently, the reader should be aware of the fact that high levels of
reasoning by cases can not be applied efficiently. And even small level of
reasoning by cases may cause long answering times since the number of pos-
sibilities depends also on the trait of the knowledge base.

Think for example of a knowledge base where every clause is directly or in-
directly connected to a given query. Then all clauses contained in the entire
knowledge are of concern when reasoning by cases is applied. But this is a
topic of the following chapter.

Undoing all changes for example includes deleting added unit terms and
unmark the term that was involved in this actual application of reasoning by
cases at the current level.

Note that we only undo changes applied by the actual level and not all
changes. If we go back from RbC-Level 1 to 0 the database is again in its
original state.



82 CHAPTER 4. IMPLEMENTATION

Be aware of the fact that we have to consider all possibilities at each level
since we will test all of the terms that are actual in the current level (we
again apply 2.d)). This includes that we sometimes go just one level back
in reasoning by cases, go to the next term, test it and increment the level
again.

Note that when we return to step 1. in 2.d)iii) we support the strategy
of "depth-first” when reasoning by cases. This means that we go to the
maximum RbC-Level each time when we add a new unit term (a single
predicate) and the query is not tested successfully at any level before.

If we reached the maximum level and the query is not known to be true
although we tried every possible term at each level we proceed to the next
term in the set RbCTermsy.

We have chosen the strategy of ”depth-first” because of two main reasons:

e If we would use ”breadth-first” we would always have to recreate the
data that was achieved in the reasoning by cases levels before

e We assume only very small maximum RbC-Levels (normally 1 or 2)

We think that an improvement concerning the implementation of this

part of reasoning by cases would be to use the strategy of breadth-first and
a data structure that supports to keep data of different terms and levels of
reasoning by cases distinct.
This approach would of course be more space consuming than our current
implementation, but since the amount of generated clauses could be handled
by a database and this approach would be more effective and efficient, we
think that it would be at least useful when you would like to support higher
maximum values for reasoning by cases than two or three.

If all predicates of one term of the first identified set turn out to support
the query by applying reasoning by cases once or as often as required and
allowed the query is known to be true.

In contrast, if we do not find any term that supports the query with all of
its predicates at any allowed level of reasoning by cases the query is unknown
(2.1)).

The step 3.) is used as direct return value when we do not need to apply
reasoning by cases at all (step 1. succeeds) or as return value in one of the
recursive calls.

In general, "return 1”7 as final return value states known to be true as ”return
0” denotes unknown.

The presented algorithm implements the main part of X since it includes
the two main features reasoning by cases and unit propagation. Every kind
of query will be answered by this algorithm.
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Of course there are some features of X left, but this algorithm belongs to
the essential parts of the implementation.

4.7 Preprocessing of the Knowledge Base

While we already introduced all main features of our implementation we now
present which kind of preprocessing takes place before any query is answered.
As mentioned before preprocessing especially regards to the encoding of a
given propert knowledge base and the application of unit propagation.

In the following we will discuss both topics and we will additionally briefly
discuss methods that could be used to enable a fast processing when we apply
reasoning by cases.

First of all we have to encode a given propert knowledge base. Actually
this is done as described in the corresponding section. Note that this not only
includes the encoding of each term of a proper™ knowledge base, but also the
encoding of predicates and constants. Since this is done during preprocessing
we are not tied to the bounds of efficiency and therefore it is for example no
problem to convert every equality term into DNF.

However, at this point we would like to mention a fact that we will discuss
also in a later section. At the moment there exist no propert knowledge
bases at all. Hence, it could be even possible that knowledge bases are
directly created in a given format (like our suggested one), so that nearly no
encoding has to take place.

While this could be an advantage caused by the fact that there exist no
proper™ knowledge bases until now, the fact also causes a major problem:
we do not have any opportunity to test our approach. But this topic will be
of concern later on.

The most important feature of our preprocessing is the application of
unit propagation on the entire knowledge base. This is of such importance,
because it allows us to have a large number of unit terms in our knowledge
base.

This is due to the fact that after we tested every unit term with every dis-
junctive term during preprocessing we will never again have to consider these
unit terms when we apply unit propagation later on.

If a unit term does not succeed on a disjunctive term it will not succeed
at any later test. If a unit term can be applied the resulting disjunctive or
unit term is stored in the knowledge base and there is no need to redo this
application.

Of course we will need to access the entire set of unit terms, but we do not
have to consider all of the possible unit terms when we apply reasoning by
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cases. Then we only have to take care of the new generated terms in the
current reasoning process.
In fact, this is the reason why we have chosen three distinct tables that hold
disjunctive terms, "old” unit terms and new unit terms. Preprocessing allows
us to have a large number of unit terms in our original knowledge base since
it does affect our reasoning procedure only slightly as we show in the next
chapter.
As said before we need to search the table of unit terms during every reason-
ing process, but since we restrict ourself to have maximally 10% unit terms
this can be handled efficiently by the MySQL-database (see next chapter).
And since unit propagation is applied during preprocessing there exist
queries that can be directly answered. Especially queries that would require
simple applications of Modus Ponens can be answered immediately.
Suppose the following propert terms contained in the original knowledge
base:

P(X), =5(X), ~P(X) VQ(X), ~Q(X) vV R(X) V §(X)

After encoding these terms and preprocessing the knowledge base the follow-
ing result are achieved:

P(X), ~8(X), ~P(X) vV Q(X), ~Q(X) vV R(X) v 5(X), Q(X), R(X)

Hence, if we now ask IX.R(X) we can directly answer that the query is
known to be true, since the predicate is contained in the preprocessed knowl-
edge base as unit term.
Consequently, queries that require the application of Modus Ponens can be
answered instantly and therefore can be answered very efficiently (see next
chapter).
Note that the application of unit propagation will cause the original knowl-
edge base to grow. We will discuss this topic in the subsequent chapter.
Another kind of preprocessing could allow us to apply reasoning by cases
efficiently at least if we restrict the level of reasoning by cases to be maximally
1.
For example, if you determine the clauses that are directly or indirectly linked
to the query and this set does not contain any clause that has exactly two
predicates there must be a clause that holds exactly the complement of the
predicates contained in the query.
This is due to the fact, that further chaining in reasoning caused by unit
propagation can only occur, when there exist clauses that contain exactly
two predicates. Hence, if they do not exist and we allow only one level of
reasoning by cases there must exist a clause that holds the inverted predicates
of the query. Otherwise it is not possible that reasoning by cases succeeds.
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Since this is a rather simple criterion you might wonder why we did not

include it in our approach. The reason why we did not include this criterion
among other possible criterion is that we support more than one level of
reasoning by cases in general.
And then the connections between the clauses and the possibilities in chaining
increases in a way that they can not be handled as efficient as with the
criterion that we used. As said before we decided in favor of a criterion that
can be applied efficiently.

All in all preprocessing in our implementation creates the foundation of
our approach by encoding a given proper™ knowledge base and allows us to
answer queries that would only require the application of unit propagation
instantly. In fact, one main method of reasoning introduced by X is applied
after we preprocessed the given knowledge base. Furthermore preprocessing
and the chosen data structure enable us to handle round about 10° unit terms
without any major drawbacks concerning efficiency.

Additionally, we think that during preprocessing other tasks like a prepara-
tion for a later use of reasoning by cases could be applied to increase efficiency
for special kind of queries.

4.8 Worst-Case Complexity

In this section we discuss the worst-case complexity of the presented imple-
mentation in terms of the number of applied unit propagations. In the fol-
lowing we assume that a single application of unit propagation requires linear
time complexity in the number of proper™ terms in total. This assumption
is for instance based on the fact that we can assign a maximal length to a
single proper™ term and this length is very small compared to the size of the
entire knowledge base. Additionally, in the propositional case [73] presents
an algorithm with linear time complexity. In addition, we assume that ev-
ery term is of concern when reasoning by cases is applied. Furthermore, we
use an e-free KB {V(c)} (see Chapter 3) during our observations. Recall,
that this representation is equivalent to proper™ knowledge bases {V(e D ¢)}
when e in DNF and e contains no inequalities.

We will use the following parameters:

n = |KB| :|CICB|

[ = Maximal number of predicates contained in a disjunctive term
k = Maximal number of variables in a term

RbC'r,epe; = Maximally allowed level of reasoning by cases
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Now we determine the number of applied unit propagations to approximate
the worst-case complexity. Thereby, we make use of Theorem 6 from Chapter
3. As it was shown in Chapter 3 an e-free knowledge base with n terms
results under the closure of unit propagation in a knowledge base whose size
is maximally n**! while & denotes the maximal number of variables in each
of the terms.

Therefore, we can assume that every single added unit term during reasoning
by cases at the first level can only cause less than n**! applications of unit
propagation. Note that this requires besides other properties that every term
is directly or indirectly connected to every other term in the knowledge base.
Since there are n terms and every term has maximally [ predicates and we
approximate the number of argument values of a single predicate by the
maximal number of variables contained in a term (k) we can not add more
than about n x n* unit terms while we neglect [ since [ << n. Mainly, this is
due to the fact that every variable can be substituted by n constants since
|C|= n. Recall, that we can only add one single ground instance during an
application of reasoning by cases.

In total, we apply unit propagation n
by cases.

Note that we neglect the time that is used to choose a term, to add an
appropriate ground instance and to undo all changes when going back one
level of reasoning by cases.

If we set RbCrever = 2 we try for every added unit term at the first level
of reasoning by cases to succeed while adding one other possible unit term
which may cause again about n**! applications of unit propagation for each
added term. Note that we can again add about n**! unit terms.

In general, the worst-case complexity is:

2k+2_times at the first level of reasoning

O((n2k+2)RbcLe,,e, )

Note that the worst-case complexity is exponential in the number of the
applied level of reasoning by cases, but not in the size of the knowledge base.
Additionally, note that & is a very small constant compared to n.

Since we only discussed the worst-case complexity until now, please note
that the number of possible substitutions is much smaller and chaining in
reasoning takes place only two or three times in the practical case. As men-
tioned before, we assumed in the discussion of the worst-case scenario that
every term is connected to every other term like it is common in a SAT in-
stance. But this is not the field of application of this reasoning procedure
used here.
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Example Knowledge Base
(X —a)DQ( )V P(X,Y)
(Y =d) O R(X)V P(X,Y)
(X —a/\Y d)DS( )V P(X,Y)
(X =a) > =Q(X) V-R(X)V-5(X)

Table 4.14: An example knowledge base where all of the features of the introduced
approach will be applied on

However, the complexity of the algorithm will be exponential in the user-
defined level of reasoning by cases even with the just made assumption for
the practical case. This is a consequence of the fact that high levels of reason-
ing by cases cause reasoning to get close to classical logical entailment which
is intractable in general. Therefore we suggest small levels of reasoning by
cases. As we will see in the following Chapter, the answering time of the
algorithm also depends on the number of terms that are of concern during
an application of reasoning by cases which corresponds to the observations
made in the worst-case scenario.

4.9 A detailed Example

Since we described separately how proper™ terms are encoded, unit propaga-
tion and reasoning by cases are applied, and how queries are evaluated in our
implementation, we now turn to a detailed example to clarify how different
pieces of the introduced approach fit together.
Note that when we apply unit propagation we will not denote every created
disjunctive term to enable a better readability.

Suppose the example knowledge base as depicted in table 4.14.

Of course we first of all have to encode the knowledge base into the
data structure on which our algorithm works on. The encoding requires two
tables in essence as said before. Table 4.15 and 4.16 hold the corresponding
encoding while the encoding of the single predicates is not shown; they are
simply mapped to the numbers 1 to 4 according to their alphabetical order.

Preprocessing of the knowledge base will leave the K B unaffected since
there are no unit terms in the KB at all. Therefore, the table ”"pTerm-
predU1” will contain no entries. Recall that preprocessing only applies to
unit propagation.

Now we would like to answer the following query while we allow two steps
of reasoning by cases
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termld | predicateld || variables || rbcLevel || oldrbecLevel || new
1 2 X 0 0 1
1 1 XY 0 0 1
2 3 X 0 0 1
2 1 XY 0 0 1
3 4 X 0 0 1
3 1 XY 0 0 1
4 -2 X 0 0 1
4 -3 X 0 0 1
4 —4 X 0 0 1

Table 4.15: The table 'pTerm-pred’ holding one part of the example knowledge
base

termld || equalityld || equalities updated || rbeLevel
1 1 X[1[1la=Y|2| = |« | 0 0
2 1 X1 *|*=Y]2[1|d | 0 0
3 1 X[1[1la=Y]2|1]d | O 0
4 1 X[1[1|a 0 0
4 2 X116 0 0

Table 4.16: The table 'pTerm-equal’ depicts the equalities of the example knowl-
edge base
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3X,Y.P(X,Y)

At this point we would like to mention again that X in its standard
definition does not support reasoning by cases at any higher level than one.
The extension implemented here is founded on [37] as said before.

First the algorithm searches the table ’pTerm-predU1’ if there is an unit
term with the ’predicateld=1’. While this is not successful since the table is
empty, the algorithm makes use of reasoning by cases, because it is allowed
to by the user.

At this point we use the method to determine the possible set of disjunc-
tive terms that can be used by reasoning by cases while we use the presented
criterion. In our case this are the terms with the identifiers 1,2,3 and 4,
since all clauses are directly or indirectly connected to the query which only
contains the predicate P. In our example the fourth disjunctive term is in-
directly linked to the query while all other terms are directly linked.

The algorithm always chooses the clause with the smallest term identifier
("termID’) and so (X = a) D Q(X) is added at first to the knowledge base,
namely to the table ”pTerm-predU2” (see table 4.17).

Note again that we do not support inequalities at this point. Suppose

that the actual equality from the example would be not (X = a) but (X # a).
Then the set of possible ground instances would be immense and it is not
trivial to decide which of them to choose. Hence, there would exist too many
possibilities of ground instances that could be added to the knowledge base
and therefore this could not be implemented efficiently.
Please note that we add this clause to the table "pTerm-predU2”. Only unit
terms contained in the table ” pTerm-predU2” are considered when unit prop-
agation is applied within reasoning by cases. In addition the table 'pTerm-
equal’ is affected of course, but we will not show the changes made in that
table here.

Now the algorithm applies unit propagation again what obviously affects

(X =aVX=0)D-Q(X)V-R(X)V-S(X). Consequently, the resulting
term (X = a) D —R(X) V —~S(X) is added to the table that contains the
disjunctive terms only (table 4.18).
At this point the algorithm will check again if there exists a unit term with
the "predicateld=1" in the knowledge base. Again, this is not successful and
since the algorithm is allowed to increase the level of reasoning by cases once
again, it will add R(X) as unit term next and apply unit propagation.

At this stage the application of unit propagation results in a new disjunc-
tive term and a new unit term, namely:

X =aD-Q(X)V-S(X)
X =a>5(X)



90 CHAPTER 4. IMPLEMENTATION

termld | predicateld || variables || rbeLevel || oldrbecLevel || new
5 2 X 1 1 1

Table 4.17: The table ’pTerm-predU2’ after adding the first predicate Q(X) of
the chosen clause in the beginning of reasoning by cases

Consequently, the execution of unit propagation proceeds since this unit
term can be used to affect the term (X =aAY =d) D S(X)V P(X,Y) for
example and results again in a new unit term, namely (X =aAY =d) D
P(X,Y). Note that also other disjunctive terms are effected.

And now the algorithm will check again if there exists a unit term with
the 'predicateld=1" in the table ”pTerm-predU2” (see table 4.19).

This time this will succeed and since we do not need to check equalities while
we only search for the existence of P(X,Y), we proceed to the next and last
predicate in the actual clause.

Hence, (X =aAY =d) D P(X,Y)) is added to the KB and this of course
implies that 3X, Y. P(X,Y") holds, since we only want to determine if P exists
with any arbitrary assignment of the variables X and Y.

At this point we showed that P(X,Y") holds when adding the first pred-
icate of the first chosen clause. Furthermore, we have to check the second
predicate of the clause, namely (X = a) D P(X,Y); it is obvious that the
addition of a corresponding ground instance will satisfy the query.
Accordingly, the algorithm answers that 3X, Y.P(X,Y") is known to be true.

Note that the use of our depth-first strategy and the allowance of two
levels of reasoning by cases prevented the use of the fourth term. If we would
restrict reasoning by cases to only one level the algorithm would still answer
known to be true.

This is due to the fact that after trying every other clause without success
the last clause supports the query by one single application of reasoning by
cases.

4.10 Summary

In this chapter we presented an implementation of all main features intro-
duced by X. We started the discussion of our implementation by restricting
proper™ terms to contain no inequalities for several reasons.

This restriction has major effects on the evaluation of a query and the ap-
plication of reasoning by cases. For example quantifiers could be solved very
efficiently and within reasoning by cases we can easily add single ground in-
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termld || predicateld || variables || rbcLevel || oldrbecLevel || new
1 2 X 0 0 0
1 1 XY 0 0 0
2 3 X 0 0 0
2 1 XY 0 0 0
3 4 X 0 0 0
3 1 X,Y 0 0 0
4 -2 X 0 0 0
4 -3 X 0 0 0
4 —4 X 0 0 0
6 -3 X 1 1 1
6 —4 X 1 1 1

Table 4.18: The table 'pTerm-pred’ after adding the unit term (X = a) D Q(X)
to the table 'pTerm-predU2’ and applying unit propagation at the first level of
reasoning by cases. Note the new disjunctive term.

termlId || predicateld || variables || rbcLevel || oldrbcLevel || new
5 2 X 1 1 0
7 3 X 2 2 1
8 —4 X 2 2 1
9 1 XY 2 2 1

Table 4.19: The table 'pTerm-predU2’ after adding the unit term R(X) and
applying unit propagation at the second level of reasoning by cases
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stances. Both aspects would not be possible with inequalities included.
Additionally, we could not think of any practical use of inequalities with re-
gard to single domain constants, except of the use in a query. And since we
allow inequalities to be contained in a query there are no practical restrictions
caused.

While we presented the algorithms corresponding to unit propagation and
reasoning by cases the usefulness of our encoding was clarified. Apart from
the way we encode proper™ terms the use of database features was essential,
e.g.: fast search in large datasets and index join.

The application of reasoning by cases is as mentioned a complex process.

We chose for a criterion that can be applied very fast. Hence, it is possible
to efficiently determine the set of clauses that is of concern when reasoning
by cases is applied.
The number of possible combinations of clauses caused by higher levels of
reasoning by cases and different equality terms corresponding to one sin-
gle proper™ term is immense and therefore hard to implement efficiently.
Therefore we suggested very small levels of reasoning by cases (< 2) and ad-
ditionally proper™ terms should not contain many disjunctive equality terms.
This topic will be of concern in the next chapter.

Furthermore we showed the features that preprocessing introduces and

which implications preprocessing has on the reasoning procedure itself. For
instance, it allows to instantly answer queries that require simple applications
of Modus Ponens.
Even more important for the case of reasoning by cases is the fact that
preprocessing allows us to restrict the set of possible unit propagation pairs
in a crucial way. This is due to the fact that all original unit terms have been
considered already after preprocessing is applied.

The main contribution of our work is that all main features of X can be
handled by our implementation while allowing large datasets. We addition-
ally support an efficient answering of queries based on the following features:
unit propagation by employing database features, the efficient handling of
quantifiers, and preprocessing of the knowledge base.



Chapter 5

Efficiency

5.1 Introduction

We begin this chapter by introducing a major problem concerning the gen-
eration of a test knowledge base.

The problem is that there do not exist any proper™ knowledge bases at all.
And as said before we think that there is a use for large first-order knowledge
bases in the field of artificial intelligence, but until now they are not existent
(36].

Consequently, we had no opportunity to take a given knowledge base and test
our approach or to compare our results with other approaches. In contrast to
the worldwide SAT competition [57] that involves thousands of competitors
and test instances, large first-order knowledge base as suggested here are not
of such concern.

Therefore, we cannot present as significant and precise test results as
they are common in the context of the propositional case. We will discuss
for example the relations between the size of the knowledge and the answering
time, and answering times that are caused by queries that do not make use
of reasoning by cases.

Additionally, we will see that the answering time depends immensely on the
characteristics of the proper™ terms contained in the knowledge base when
reasoning by cases is applied.

A simple example of this fact is a large set of terms that is directly or
indirectly connected to a predicate from the query. Then the set of clauses
that will be used when reasoning by cases is applied is also large and conse-
quently there exists a high number of possibilities for our implementation of
reasoning by cases (see Chapter 4). Hence, the answering time will increase
in a non-reasonable way.

93
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DB-Query D> D> D>
Eclipse Prolog MySQL-Interface LAN MySQL-Database

4 4 4 Response

Figure 5.1: A brief overview on the flow of data when a query is send from
ECL'PS¢ PROLOG to the database and the answer to the query is send back.

Comprising, we will discuss how we generated a test knowledge base and
which factors increase the answering time of the presented implementation
and which circumstances support an efficient evaluation of the query.

5.2 Environment

We use a 1,7 GHz dual processor system (512 MB RAM) as database server.
The client (1,7 GHz, 128 MB RAM) is connected to the server by a 100
MBIit/s local area network (LAN).

Furthermore, we use the MySQL version 4.01 [53] and the version 5.5
of ECL'PS® PROLOG [21]. The used version of MySQL is public domain
and can be downloaded freely at the given web address in the bibliography
[53]. ECL'PS® PROLOG is not public domain, but is available for free to
universities and non-profit research institutions.

Additionally, we use a MySQL-interface to handle the database queries,
which is available at [21] and was created by [32]. In fact the MySQL-
interface consists of a C-interface to MySQL which is integrated in EC L' PS¢
PROLOG.

The flow of data between EC'L'PS® PROLOG and the database is de-
picted in Figure 5.1. As can be seen in this figure a single query originating
in PROLOG is first send to the MySQL-Interface, second to the LAN and fi-
nally to the MySQL-Database. The answer to the query has to take the same
way back. Note that these costs introduced by the PROLOG/C-Interface,
the MySQL-Interface and the client/server configuration are included in the
answering times presented later on.
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5.3 The Test Knowledge Base

As said before there do not exist any first-order knowledge bases that are of
the size and type as suggested in our work [36].

Therefore we have to generate a test knowledge base on our own. As

we know from the introduction it is even very hard to generate appropriate
propositional instances. For example, instances created by random can be
solved very efficiently with high probability. Consequently, these instances
can not be used to test an approach in an appropriate way.
In the first-order case we discuss here, we have the additional problem that
we need large datasets (> 10°) to test our implementation. Note that the
problem size in the propositional case consists of 1000 clauses maximally at
most of the time [57].

Now suppose that you have to generate about 10° proper® terms that
are consistent and contain disjunctive terms that support queries like
AY.(P(a,Y) A Q(X,Y)). Note that this also includes large set of constants
and predicates.

It is of course possible to generate this set of terms by random, but the
following two topics introduce major problems that have to be solved then:

1. Consistency of the entire knowledge base
2. Coherences in a set of terms

Recall, that we require consistency for our criterion of reasoning by cases.

After adding one new term the consistency of the whole knowledge base
must be tested. Since we have more than 10 terms the needed consistency
test would be very complex and time consuming. For example, think of the
following terms in the knowledge base:

(P(X))
(=P (b) v =Q(a)

Now suppose the next term to add would be the unit term Q(a). Then we
first had to apply unit propagation before we could determine that this term
would cause the knowledge base to be inconsistent.

After generating this set of terms we still have to solve the second problem.
Since the knowledge base is generated randomly we are not aware of the
connections between the clauses. Consequently, it is hard to decide which
query to ask.

The generation of an appropriate test knowledge base is not trivial and
is not entirely solved in the propositional case. Especially, if a consistent
knowledge base is generated successfully there is no information about the
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hardness of this instance (see Introduction). Hence, it is not possible to
determine how well an implementation works in general.

As shown in the first chapter many researchers are working on the sat-
isfiability problem and therefore there exist well known test instances and
results that can be used to test the efficiency of a new algorithm.

Since large first-order knowledge bases as we suggest them are very seldom
in AT [36] we can not take advantage of any knowledge bases created before.

Our test knowledge base consists of terms generated in the following two
ways:

e Unit terms are generated by random
e Disjunctive terms are clauses of SAT instances (from [57])

Since every unit term in our database holds a single predicate that is not
contained anywhere else in this table we simply use the actual unique term
identifier with some offset as predicate identifier. We choose a single equality
term by random by using a single constant from a set of constants. Recall
that predicates and constants are mapped to numbers.

We use clauses that contain three literals each from SAT instances to
generate disjunctive terms. Hence, every created disjunctive term consists of
three predicates and a equality term generated by random.

But none of these terms will be of concern directly when a query is an-
swered, because we add incomplete information about individuals, rules and
facts manually for every query we want to ask. In fact, we scatter the spe-
cific problem instances over the entire dataset and then ask the corresponding
query.

In other words, we take a small set of proper* terms that have specific
and known internal connections and add those terms to the entire knowledge
base.

Comprising, we can not present a test knowledge base that can be used
in its entire size. We simply generate a test knowledge base that consists of a
large number of proper™ terms, but only a small set will be of concern when
answering a specific query.

Nevertheless, the entire set of terms must be considered to determine the
corresponding terms of the actual problem instance.

5.4 Test Results

In this section we present the results of our approach applied on test knowl-
edge bases of the type that was discussed in the previous section.
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5.4.1 Preprocessing

Since preprocessing itself is done offline and is therefore not of concern when
determining the efficiency of our approach we have no corresponding test
results.

This is also due to the fact that the type of the generated knowledge base
has nearly no connection between disjunctive terms and unit terms. Hence,
the application of unit propagation would be without an effect at most of
the time. Consequently, test results would not be representative. Note that
the result of preprocessing will be of concern in the next section.

Furthermore, the encoding of propert term is not applied since we gen-
erate terms in the suggested format directly.

At this point we only would like to discuss the following disadvantage
caused by preprocessing. The growth of the knowledge base when unit prop-
agation is applied (see Chapter 3) has a great impact during preprocessing
since every disjunctive term and unit term is of concern when unit propa-
gation is applied. While we discussed the theoretical case in Chapter 3 we
now turn to the practical case and make several assumptions concerning the
characteristics of the knowledge base.

Suppose that we have 10.000 disjunctive terms and 100.000 unit terms.
Every disjunctive term contains two predicates. Then the growth of the
knowledge base would be of minor concern, because every successfully applied
unit propagation would generate a new wunit term only. Consequently, only
the number of unit terms would increase. This has no drawback to efficiency
as we will see later on.

But if the disjunctive terms contain more than two predicates the number
of disjunctive terms will increase in addition. For example, consider the
following set of terms:

(P(X)VQ(X) V R(X))
—P(a), 2Q(a)
After the application of unit propagation the set contains the following terms

since we are not allowed to delete any disjunctive terms if they are not re-
dundant (Chapter 3):

Note the growth in the number of disjunctive terms. When a disjunctive
term contains more than two predicates than the number of disjunctive term
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H 2 Predicates ‘ 3 Predicates ‘ more than 3

Number of Disjunctive Terms H 80% ‘ 15% ‘ 5%

Table 5.1: The number of disjunctive terms in the knowledge base with regard
to the number of predicates contained

increases by the number of unit propagations successfully applied.
Additionally note that the number of unit propagations can be bigger than
the number of predicates included in a term. For instance, the reader can
observe this if we add the unit terms —P(b) and =Q(b) to the set of terms
from above.

We assume that disjunctive terms that contain only two predicates are
mainly used in the knowledge bases that are of concern here. Nevertheless,
there remains a considerable growth of disjunctive terms.

Assume the percentages depicted in the Table 5.1 considering the number

of predicates contained in the disjunctive terms in a knowledge base. If we
additionally assume that on every disjunctive term that contains more than
two predicates, unit propagation can be applied twice the number of terms
will be multiplied by a factor about 3.
For example, if we have 10.000 disjunctive terms in total, then there are 2.000
terms that contain more than two predicates with regard to the assumption
made. In the following we also assume that there are only three predicates
in these disjunctive terms.

If we now apply unit propagation once on each of these terms the number
of disjunctive terms doubles since the original disjunctive term remains and
the new disjunctive term is added. Hence, we have now 12.000 disjunctive
terms in total. When we apply unit propagation again the number of original
terms is doubled again and 4.000 new unit term are generated in addition.

The generation of unit terms is due to the fact that the 2.000 disjunctive
terms that were created by the first application of unit propagation contain
only two predicates (see last example). And since we assume that we can
apply unit propagation twice on each original disjunctive term there must
be a predicate contained in the new generated disjunctive term where unit
propagation can be applied on successfully.

Hence, a unit term is created since the new generated disjunctive term con-
tains only two predicates. The same holds for the other generated disjunctive
terms and consequently another 2.000 unit terms are generated.

In total we have 14.000 disjunctive terms after we have applied prepro-
cessing. We will see in the next section that this kind of growth will not
introduce any major drawbacks concerning efficiency even if the number of
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Query 100.000 unat terms | 1.000.000 unit terms
(X =aA R(X)) || 9msec 10msec
(X #aAR(X)) || 10msec 10msec
AX.R(X) Imsec 10msec

Table 5.2: The answering times of the queries while using 100.000 unit terms in
the first case and 1.000.000 in the second

disjunctive terms would double or triple.

Note that this discussion here is mainly based on assumptions and empirical
results. Additionally, note that when we will refer to a number of terms to
be contained in the knowledge base we always refer to the number of terms
after preproccesing.

Additionally, we will discuss the positive results that are gained by prepro-
cessing in the next section.

5.4.2 Answering Queries without Reasoning by Cases

We begin this section by discussing results that are achieved when no rea-
soning by cases is used. In the last chapter we mentioned that queries that
require no reasoning by cases at all can be answered instantly due to pre-
processing. These queries include cases that require simple applications of
Modus Ponens (see previous chapter).

For instance, suppose the following set of terms to be contained in the knowl-
edge base before preprocessing:

(X=aVX=0D-P(X)VQX))
(X=aVX=0D-Q(X)VR(X)VSX))
P(X), =5(X)

After preprocessing the database holds the unit term (X = aV X =0 D
R(X)) among others.

The Table 5.2 holds sample queries and the corresponding answering times.
The first test knowledge base contains 100.000 unit terms and the second
1.000.000 unit terms. Note that the number of disjunctive terms plays no
role in this context.

Note the small differences between the answering times concerning the
different queries and the different sizes of the knowledge base. All stated
queries will be answered with known to be true. Most notably these results
confirm that the handling of the existential quantifier is accomplished very
efficiently by our implementation.
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Query 10.000/100.000 | 100.000/1.000.000
P(a,Y) b6msec 61msec
VX.3Y.P(X,Y) b6msec 61msec
(P(X,Y)AQ(X,Y)) 67msec T4msec
VXIYV.(P(X,Y)ANQ(X,Y)) || 68msec 76msec

Table 5.3: The answering times of the queries while using 10.000 disjunctive terms
in the first case and 100.000 in the second.

The very small difference caused by the different number of unit terms in
the knowledge base is due to the fact that databases can handle millions of
datasets very efficiently [23]. Note that no reasoning at all takes place except
the evaluation of the query.

In consequence these results confirm that queries that require simple ap-
plications of Modus Ponens or unit terms only can be answered efficiently.
This is mainly due to the encoding scheme of proper™ terms and preprocess-
ing.

5.4.3 Answering Queries while using Reasoning by
Cases

Suppose the following two terms to be contained in the knowledge base:

P(X,a) vV P(X,b)
Y =aVY =b>Q(X,Y))

Now we ask the queries as stated in Table 5.3. Note that we now have 10.000
disjunctive terms in the first case and 100.000 disjunctive terms in the second.
Recall that it was assumed in [40] that the number of disjunctive terms is 10%
of the entire number of terms in the knowledge base. Additionally note that
the predicates P and () are contained nowhere else in the entire knowledge
base except in the terms stated above.

All queries require reasoning by cases, but no unit propagation is applied.
Note again the efficient handling of the quantifiers. In this scenario it is very
important to note that there exists only one clause that can be used when
reasoning by cases is applied. This implies that it is not necessary to choose
from a set of clauses when reasoning by cases is applied.

In the next scenario we will show that the number of clauses that are used
when reasoning by cases is applied causes a major drawback to efficiency.
First of all we present the terms that are of concern in this test case:
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(Y=aDR(X )vP
(VY =b> S(X) Vv P(X Y))
(X =a>-Q(X)V-R(X

Additionally, we have the query 3Y.P(a,Y’). Recall, that this query can be
answered correctly already when allowing only one level of reasoning by cases
(see previous chapter).

Note that every application of reasoning by cases includes several appli-
cations of unit propagation depending on the allowed level. Furthermore the
test of the query is applied multiple times (refer to the example in the last
chapter).

This query is answered in 280msec when allowing one level of reasoning
by cases, and considering 10.000 disjunctive terms and 100.000 unit terms
are contained in the knowledge base. If we allow two levels of reasoning by
cases then the answering time is 210msec.

The reason why the answering time of the query that allows two levels of
reasoning by cases is faster than the one that supports only one level is due
to the fact that we use a depth-first strategy in our approach when applying
reasoning by cases. If we use the first clause and two levels of reasoning by
cases are allowed, the query is known to be true and no further reasoning
has to be accomplished.

But if we only allow one level of reasoning by cases we have to go through the
first three clauses in the set and then succeed when using the last clause with
reasoning by cases. This causes the differences in the answer times here.
Note that the clauses that are determined for the use with reasoning by
cases are sorted by there term identifier and so it is possible to fix the order
of clauses to be used (see chapter 4).

The answering time of 210msec, when two levels of reasoning by cases are
supported, shows that unit propagation is implemented efficiently since the
evaluation of the query requires the testing of the query 5 times (=~ 10msec
each) and unit propagation itself is applied 4 times (see also Chapter 4).
Note that 5 tests of the query require about 50msec since testing a query
only involves unit terms (refer to the results from the last section). Hence,
one application of unit propagation requires less than 40msec since unit
propagation is only a subprocess when reasoning by cases is applied. As we
will see later on the time used for unit propagation will only increase in a
reasonable way when 100.000 disjunctive terms are of concern.

To show that the number of disjunctive terms that are of concern when
reasoning by cases is applied cause a major drawback concerning efficiency
we will add disjunctive terms that are indirectly connected to the query.
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For example, we add the disjunctive term (R(X) VT (X)) while the predi-
cate T is nowhere else contained in the knowledge base. And since we add the
disjunctive term while using a smaller term identifier than the other terms of
concern have, this disjunctive term will be used in an application of reasoning
by cases at first.

Additionally, unit propagation can be applied successfully when adding
the first predicate of the clause. When a ground instance of R(X) is added
as unit term then this has an effect on the disjunctive term (X = a D
—Q(X)V aR(X)V S(X)). Then the query is tested again, but without
success.

Consequently, the algorithm will proceed to the next clause in the set if

there is no further level of reasoning by cases allowed. If a further level of
reasoning by cases is allowed then the query is known to be true with regard
to the first predicate used in the current clause. This is due to the fact that
at the next level of reasoning by cases again every clause may be chosen from
the determined set except the actual one.
For example, the term (X = aAY =a D Q(X)V P(X,Y)) is chosen next for
reasoning by cases at the second level. Since (X =a D =Q(X) V =S(X)) is
now contained in the knowledge base and adding a ground instance of Q(X)
as unit term will create the new unit term —S(X) the query is supported.
The same holds of course for the second predicate P of the current term.

But since the predicate T" will not support the query at any level of
reasoning by cases the disjunctive term (R(X) Vv T'(X)) will never support
the query. As we could see, clauses of this kind cause several applications of
unit propagation and the test of a query is applied multiple times.

So, we guarantee that all features of reasoning are accomplished for every
single added disjunctive term. At the same time we prevent that those kind
of clauses can support the query by using an unique predicate (7).

In this test we will not only add one term of this kind, but up to sixty
terms. Every single newly added term will be considered before the term is
reached that supports the query.

The result can be seen in Figure 5.2. While we have 4 terms in the original
set, we first add 4, then 12, 28, and finally 60 terms. Note that none of the
terms will support the query at any level of reasoning by cases, but they are
all considered before the original set of terms is of concern. In the knowledge
base there are 10.000 disjunctive terms and 100.000 unit terms contained.

As we can see in the figure the answering times increases with the number
of terms that are considered when reasoning by cases is applied. The effect is
amplified by the number of levels of reasoning by cases that are allowed. This
is explainable by the fact that each level of reasoning by cases reconsiders all
possible terms again except the actual used ones (see chapter 4).
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Figure 5.2: The influence of the number of clauses considered when reason-
ing by cases is applied on the answering time to a query. (10.000 Disjunctive
Terms/100.000 Unit Terms)

If reasoning by cases fails for the actual term it goes to the next level
of reasoning by cases if it is allowed to and otherwise it will try all other
possible terms at this level to support the query before it returns to the
previous level again. In fact this corresponds to the backtracking property
that was explained in the last chapter.

Note that the answering time when we use reasoning by cases with a
maximal level of two is only faster than the answering time when allowing
only one level if the number of terms is only four.

The problem is the criteria used when reasoning by cases is applied. Since
it is only tested if a predicate is directly or indirectly connected to the predi-
cate in the query the set of terms that is of concern grows very fast. The size
of growth depends on the structure or characteristic of the knowledge base.
Think for example of SAT instances where every literal is directly or indi-
rectly connected to every other literal in the instance. Consequently, if the
instance would hold 1000 clauses every single clause would be considered
during one application of reasoning by cases.

Note that our approach is not able to solve such kind of instances, be-
cause of the high number of clauses that have to be considered at each level
of reasoning by cases and especially the fact that such kind of instances re-
quire very high levels of reasoning by cases. Recall, that the solution of the
combinatorial puzzle introduced in Chapter 2 requires 8 levels of reasoning



104 CHAPTER 5. EFFICIENCY

Nr. of RbC-Terms || RbC-Level 1 | RbC-Level 2 | RbC-Level 3
4 0,28 0,21 0,21

8 0,44 0,85 1,57

16 0,85 1,59 2,94

32 2,01 3,84 7,45

64 5,67 11,11 21,40

Table 5.4: The answering times in seconds to the query 3Y.P(a,Y’) depending on
the number of terms that are considered when reasoning by cases is applied and
the allowed level of reasoning by cases.(10.000 Disjunctive Terms / 100.000 Unit
Terms)

by cases.

Consequently, our approach is not able to answer queries efficiently if
the predicates of the query are connected directly or indirectly to a set that
contains more than 16 to 32 disjunctive terms. As can be seen in the Figure
5.2 and the corresponding Table 5.4 the query is answered in 0, 85sec when
only allowing one level of reasoning by cases and 1,59sec when two levels
are allowed and if there are 16 terms of concern when reasoning by cases is
applied.

We think that answering times at about 1 second can be called efficient
in our case. As can be seen from the figure the answering time to a query
increases dramatically with the number of terms that are of concern with
reasoning by cases. Especially, the amplified answering times when allowing
a maximal reasoning by cases level of three suggest an exponential growth of
answering times with regard to the user-defined level of reasoning by cases
and the number of disjunctive terms that are used when reasoning by cases
is applied. This result corresponds to the discussed worst-case complexity in
Chapter 4.

Comprising, these results show that reasoning by cases with a maximal level
of 2 causes a major drawback when the characteristic of the knowledge base
contains sets of terms that contain more than 32 connected disjunctive terms.

5.4.4 The Size of the Knowledge Base

Since we already gave some test results concerning the size of the knowledge
base we now present further results in detail.

As we said in the previous chapter the chosen data structure supports a
large set of unit terms (more than 1.000.000) in the original knowledge base
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Nr. of RbC-Terms || 10.000/100.000 | 10.000/1.000.000 | 100.000/1.000.000
4 100% (0,28s) | +11% (0,31s) | +27% (0, 365)
8 100% (0,44s) | +9% (0, 48s) +20% (0, 53s)
16 100% (0,85s) | +4% (0, 88s) +15% (0, 98s)
32 100% (2,01s) | +6% (2, 14s) +19% (2, 38s)
64 100% (5,67s) | +4% (5,88s) +23% (6,99s)

Table 5.5: Comparison of the answering times corresponding to the number of
terms (disjunctive terms / unit terms) contained in the knowledge base while
allowing only one level of reasoning by cases

since those terms are not of concern when reasoning by cases is applied.

At this point we present the corresponding results. In Figure 5.3 the test
from the last section is repeated in a knowledge base that contains 10.000
disjunctive terms and 1.000.000 unit terms. As you can observe the difference
to the case where only 100.000 unit terms where of concern is negligible.
Hence, the reasoning procedure is nearly independent of the number of unit
terms.

We also said in the section " Preprocessing” in this chapter that the growth

of disjunctive terms caused by the application of unit propagation during
preprocessing does not, cause any major drawbacks.
Figure 5.4 supports this statement. Now the knowledge base contains 100.000
disjunctive terms and 1.000.000 unit terms. As you can observe the large
number of disjunctive term has only a slight impact on the answering times.
This is again mainly due to the fact that databases can handle datasets of this
size very efficiently [23]. Note, that this also implies that the implementation
of unit propagation works efficiently even when 100.000 disjunctive terms
must be considered.

In the Table 5.5 we summarize the results concerning the topic of this
section by comparing the answering times presented here with the times from
the last section. We compare all answering times measured at the reasoning
by cases level 1.

5.5 Summary

In this chapter we presented a method for generating test instances and de-
scribed the difficulties that arise when generating a test knowledge base. Unit
terms are generated by random and we use SAT instances to generate dis-
junctive terms. Small number of proper™ terms are added to the knowledge
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Figure 5.3: The influence of the number of clauses considered when reason-
ing by cases is applied on the answering time to a query. (10.000 Disjunctive
Terms/1.000.000 Unit Terms)

30 T r . . ; .
1 1 | | Max. RbC-Level 1 msjmm

Max. RbC-Level 2 == =+
1 1 1 1 Max. RbC-Level 3 = ==

Response to a Query in seconds

Number of Terms that are of concern when Reasoning by Cases is applied

Figure 5.4: The influence of the number of clauses considered when reason-
ing by cases is applied on the answering time to a query. (100.000 Disjunctive
Terms/1.000.000 Unit Terms)
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base which contain specific rules or incomplete knowledge. This enabled us
to ask the corresponding queries.

We discussed the disadvantage caused by preprocessing, namely the
growth of the number of disjunctive terms caused by the application of unit
propagation. For the practical case we could show under several assumptions
that the number of disjunctive terms that hold more than two predicates
cause the size of the knowledge base to double or triple. But additionally
we presented results that confirmed that this kind of growth has no major
drawback concerning efficiency.

As said in the last chapter we confirmed in this chapter that queries
which require no reasoning by cases can be answered very efficiently. The
same holds for queries that make use of reasoning by cases when the number
of disjunctive terms that are of concern is relatively small (< 30).

At the same time we could show empirically that the implementation of unit
propagation works efficiently. Even if 100.000 disjunctive terms are contained
the implementation introduces no major drawback.

In contrast, we could show that the number of disjunctive terms that is
of concern when reasoning by cases is applied has an major influence on the
answering time to a query. In fact, if the set of disjunctive terms contains
more than about 30 terms, the evaluation of a query is not efficient anymore.
In consequence, the implementation of reasoning by cases must be improved.
Especially, the criterion that determines the set of disjunctive terms that is
of concern when reasoning by cases is applied must be improved to reduce
the size of the set.

Furthermore, we showed that the size of the knowledge base has only a
slight impact on the performance of our approach. Especially, the number of
unit terms increases the answering times to a query in a negligible way only.
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Chapter 6

Summary and Discussion

In this chapter we are going to provide a summary and a critical assessment,
of the work that was done during this thesis. Furthermore, we will discuss
directions for future research.

6.1 Summary

In this thesis, we investigated and implemented a deductive and logical sound
reasoning procedure that is able to handle incomplete first-order knowledge
bases that contain disjunctive information.

First, we introduced the deductive reasoning procedure that is of concern
in this work and then we examined the properties of the reasoning procedure
itself. We could show that one of the main features, namely unit propaga-
tion, introduced by the reasoning procedure causes an exponential growth
of the equality terms if equalities are represented in DNF. In addition, we
could show that during an application of unit propagation only redundant
terms can be deleted. Hence, the application of unit propagation is not as
unproblematic as in the propositional case. In addition, we observed that
the use of inequality causes the major drawback concerning complexity in
our implementation; therefore inequalities were no longer supported.

The fact that we did not support inequalities had a major impact on the
implementation. Especially, the handling of the V-quantifier was simplified
in a crucial way since we could show that we do not have to substitute every
possible constant to determine if the V-quantifier holds.

Furthermore, we implemented all main features of the reasoning pro-
cedure while using an encoding scheme for proper™ terms and employing
database features to enable an efficient handling of huge datasets. After-
wards we discussed the efficiency of our implementation and showed that we
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achieved efficient implementations concerning the evaluation of queries (e.g.,
quantifiers) and the application of unit propagation even if about 10° terms
are contained in the knowledge base.

In contrast, we could show that the application of reasoning by cases
can cause the answering times to a query to increase dramatically. Beside
the user-defined reasoning by cases level the answering times depend on the
characteristic of the knowledge base. Namely, the number of disjunctive
terms that are connected to each other by predicates plays a major role in
this context.

6.2 Critical Assessment

As said before it was possible to determine that the growth of equality terms
was caused by the use of inequality when we use DNF to represent equalities.
This was one of the main reasons to ezclude inequalities from the entire
reasoning procedure. As a downside, if we want to include inequalities later
on, perhaps in a limited form, this would require substantial revision of the
implementation.

While the implementation of the reasoning procedure concerning the rep-
resentation of proper™ terms and unit propagation caused only minor prob-
lems, the implementation of reasoning by cases was very complex and, ulti-
mately, could not be accomplished in a satisfying way. The reason for this
difficulty is originated in the theoretical definition of reasoning by cases given
in the reasoning procedure. The choice of the clause that is used for reasoning
by cases is non-deterministic in the definition. The criterion we used simply
determined which disjunctive terms contained in the entire knowledge base
are directly or indirectly connected to the query. Depending on the char-
acteristic of the knowledge base the number of terms can be too large for
our approach to stay efficient. Already small numbers (about 30) cause the
answering time to a query to increase dramatically.

In addition, we did not discuss the soundness and completeness of our
implementation with regard to the original reasoning procedure in every case.
For instance, the format of the query is restricted so that we do not support
queries such as V((X = a A X # a) D P(X)).

The implementation does also not support every feature of equality terms.
Especially, we can not handle equality terms of the following type: (X =
YANY #£7).

Furthermore, the architecture of the implementation can be improved
since there exist several interfaces such as the Prolog-C and the C-MySQL
interface that connect our program to the database. For instance, it would be
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possible to decrease the number of interfaces and therefore increase efficiency.

Although we tried to establish an appropriate test environment to deter-
mine the efficiency of our implementation it remains to be seen if the results
would be similar under real-world conditions. Recall, that there was no ap-
propriate test knowledge base available. As in the propositional case the
characteristic of the test instance as a major influence on the test results.

Additionally, the presented implementation is a prototype that is only
suitable to examine the feasibility of the deductive reasoning procedure and
to analyse its efficiency in general. In particular, the user interface needs to
be improved for the use by others.

6.3 Future Work

In this section we provide a brief outlook on future research. We begin this
outlook by presenting some proposals to improve the introduced implemen-
tation. Additionally, we will propose an improvement of the given reasoning
procedure.

There exist many essential improvements that can be made concerning
the implementation since it was the first attempt at all to implement the
given reasoning procedure. For instance, the criterion used when applying
reasoning by cases. An enhanced criterion could decrease the answering time
to queries in an essential way, since the answering time increases with the
number of disjunctive terms used when reasoning by cases is applied. We
think, that this improvement would require an updated data structure or a
graph that holds the necessary information to determine the clauses which
are used with reasoning by cases.

Besides improving the approach by advanced algorithms there also exist sev-
eral possibilities to increase the performance by using the given infrastructure
in a more effective way. For example, the use of database features can be
enlarged and rectified (e.g., the use of nested SQL-queries).

Furthermore, a discussion concerning soundness and completeness of every
part of our implementation is necessary. Also the set of possible queries must
be extended.

Additionally, there is a lot of research necessary to enable an accurate and
appropriate test environment to verify the performance of a given approach.
While the research activities in the propositional case are very intensive the
research activities that deal with huge incomplete first-order knowledge bases
that contain disjunctive information are very seldom. Consequently, it is
very hard to determine the efficiency of an implementation. Recall, that
this problem is not yet entirely solved in the propositional case. We ap-
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proximated the worst-case complexity by determining the maximal number
of applied unit propagations which resulted in a worst-case complexity of
O((n*+2)RbC=Level) when |K B| = |Cxs| = n, RbC — Level is the user-defined
reasoning by cases level and k£ denotes the maximal number of free variables
contained in one single term. In the practical case the exponent RbC' — Level
remains, but the base n?*? is decreased in an essential way. For instance,
the facts that knowledge bases in our field of application consist of no terms
that are connected by a predicate to every other possible term contained in
the knowledge base and it is not necessary to substitute every variable by
every possible constant decrease the polynomial.

While there exist several possibilities to advance the presented implemen-
tation, we also think that the given deductive reasoning procedure can be
extended. One possible extension would for instance affect the return value
"unknown” of the reasoning procedure. The information content of this re-
turn value is small, although an immense number of reasoning operations are
executed most of the time when a query is answered. Therefore, we suggest a
return value like "unknown, but ...” to take advantage of the reasoning that
was applied and the corresponding results.

For example, suppose the following terms to be contained in the knowledge
base:

P(X) v -Q(X)V R(X)
Q(X) vV -R(X)
~Q(X) v -T(X)
R(X) Vv -T(X)

v T(X)

Then it would be possible to answer the query FIX.P(X) with
7unknown, but P(X) VvV -Q(X) and P(X) V R(X) are implied by the KB”.
Note, that we do not use the expression "known to be true”, because only
single literals are known to be true.

This approach would increase the information content of the negative re-
sponse to a query in an essential way. The suggested extension has its origin
in a brief discussion with Craig Boutilier [8].
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