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1

In this thesis we investigate a dedutive reasoning proedure that anhandle inomplete �rst-order knowledge bases whih ontain disjuntive in-formation. Mainly, the expressiveness of the underlying �rst-order logi andthe large amount of supported data (� 105 terms) are the essential featuresof the logial sound reasoning proedure of onern.We disuss several properties of the reasoning proedure itself and ap-ply some hanges that are also used in our implementation. Besides imple-menting the evaluation-based reasoning proedure, our work investigates theeÆieny of this kind of dedutive reasoning when employing large datasets.The ability to apply dedutive reasoning eÆiently on a �rst-order knowl-edge base that onsists of a large set of fats, rules, inomplete knowledgeand disjuntive information is the main topi disussed in this work.
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Chapter 1Introdution
1.1 The Trade-O� between Expressivenessand EÆienyKnowledge in the sense of AI requires more than knowledge about the worldthat is suÆient to allow ating in the domain of disourse in an appropriateway. In AI a knowledge-based system additionally should behave and at likeit does beause it makes use of the representation of that knowledge (e.g.,world-knowledge) [41℄. In other words, it is required that an intelligentlyinterating omputer system needs a large body of knowledge about theworld known as ommon sense [48℄. The idea to provide omputer systemswith suh kind of knowledge by representing knowledge expliitly is knownas the Knowledge Representation Hypothesis [66℄.It has been argued that at least �rst-order logi is neessary to representworld-knowledge [50℄. Espeially, the ability to handle inomplete knowl-edge like disjuntive information plays a major role to model the suggestedknowledge in an appropriate way. Sine it is neessary that a knowledge-based system must be able to infer impliit knowledge and it is a well-knownfat that lassial logial impliation is undeidable in the �rst-order asethere is a problem. There exist various approahes that deal with that prob-lem, but none of them an satisfy both expressiveness and eÆieny. Notethat while reasoning in �rst-order knowledge bases is intratable in generalhumans an reason very e�etively on extremely large and omplex datasets,although, of ourse, they annot draw all possible onlusions.In the ontext of knowledge representation reasoning is in general a formalmanipulation of the symbols that represent the fats and believed proposi-3



4 CHAPTER 1. INTRODUCTIONtions1 to produe representations of new propositions [41℄.In this work we apply dedutive reasoning in inomplete �rst-order knowl-edge bases that is logial sound. Dedution is in some sense the diret appli-ation of knowledge in the prodution of impliit knowledge [69℄.Until now only the query evaluation over databases supports dedutive rea-soning on very large �rst-order knowledge bases eÆiently [40, 36℄. But alassial database is a knowledge base that allows no inomplete knowledgesine it makes use of the losed world assumption (CWA) [56℄. In general, adatabase is equivalent to a maximally onsistent set of funtion-free groundliterals [36℄.For example, if we have a database that ontains information about studentsat a university, we ould ask if there is a student from Argentina. Then thisquery would be answered positively only if the database would ontain a fator an entry that supports the query expliitly. If the fats are not expliitlyontained in the database the query is answered negatively beause of theCWA. In fat, no further reasoning takes plae at all.Now suppose the following terms to be ontained in a knowledge base:(isArgentinan(Mary) _ isArgentinan(John)):isStudent(Mary):isStudent(John):This kind of disjuntive information annot be handled by the relationalalgebra used in lassial database. But we would like to be able to answerqueries like "Is there a student from Argentina?", whih would require theability to handle disjuntive information.In our work we use a dedutive reasoning proedure that supports inom-plete knowledge and in partiular disjuntive information ontained in theknowledge base. For instane, the just mentioned query would be answeredpositively by the reasoning proedure of onern even while we do not ex-pliitly know whether Mary or John are from Argentina. The only thingwe know is that one of them is from Argentina, but this fat is suÆient toanswer the query positively.At this point it is important to mention that we are interested in large knowl-edge bases, say more than 105 terms. This guarantees that relatively omplexknowledge an be modeled sine we support both a huge set of terms andthe neessary expressiveness introdued by the underlying �rst-order logi.At the same time the dedutive reasoning proedure should be tratable.Sine logial sound and omplete dedutive reasoning is undeidable in gen-eral, the used dedutive reasoning proedure is logial sound, but not om-plete to preserve tratability [36℄. The trade-o� between the properties of the1An idea that is expressed by a simple delarative sentene [41℄.



1.2. RELATED WORK 5reasoning proedure and the tratability of the proedure is the main key tomaintain eÆieny while supporting logial sound reasoning on inompleteknowledge as well on disjuntive information.In fat, the dedutive reasoning proedure that is of onern here plaesitself between the eÆient databases that support only very restrited rea-soning apabilities and the undeidable and intratable reasoning proeduresthat are used in theorem provers for example.In this work we disuss the eÆieny of the reasoning proedure. Therefore,we determine how eÆient reasoning with inomplete �rst-order knowledgebases that ontain disjuntive information is when using the given reasoningproedure. In other words, we determine if the underlying logi and the rea-soning proedure itself are too expressive to maintain eÆieny at the sametime.We will implement a logial sound and deidable reasoning proedurenamed X that an handle disjuntive information in �rst-order knowledgebases. The reasoning proedure itself was introdued in [36℄. In addition,we will prove several properties of the reasoning proedure onerning itseÆieny and present experimental results.
1.2 Related Work1.2.1 Reasoning with Inomplete First-Order Knowl-edge BasesIn [46℄ the tratability for reasoning with inomplete �rst-order knowledgebases is disussed. It ould be shown, that the eÆieny of dedutive reason-ing with inomplete �rst-order knowledge bases is omparable with lassialquery evaluation in databases if the knowledge base is of a spei� format.Note that this result does not hold for arbitrary �rst-order knowledge bases.The general idea was to redue a dedutive reasoning proedure todatabase query evaluation. To reah this result a bottom-up database queryevaluation algorithm was adapted. The underlying query evaluation algo-rithm is mainly based on work introdued and extended by [3, 29℄.The reader is referred to the original paper. At this moment, the readershould only be aware of the fat that there exists a tratability result for rea-soning with inomplete �rst-order knowledge bases. Note that no disjuntiveinformation is ontained in the knowledge base.



6 CHAPTER 1. INTRODUCTION1.2.2 Limited ReasoningThere exists various work that presents limited forms of reasoning in boththe propositional ase and the �rst-order ase.In the propositional ase the lassial logial entailment is restrited mostfrequently by only allowing a limited use of Modus Ponens or by not sup-porting it at all [45℄. For limited reasoning there exist two logial languages ingeneral. Namely, the lassial language with a adapted semanti or a modallanguage with a belief operator. The belief operator leaves the lassial sub-language that deals with the lassial semanti unhanged, but implementsat the same time an entailment that is weaker than that of the lassiallanguage [45℄. For instane, suppose a belief operator named B. Then entail-ment orresponds to the validity of formulas like (B� � B�) in ontrast tothe lassial entailment based on the validity of formulas like (� � �).In [12, 14, 15, 24℄ the lassial language is used with a non-standard semantito provide a deidable reasoning proedure. For instane, [12℄ implements atratable proof system that is based on a non-deterministi truth table andwhose entailment onsists mainly of unit propagation. On the other handin [33, 39℄ reasoning is aomplished within a newly introdued logi of be-lief. The proposed belief impliation in [39℄ that uses two modal operatorsto handle impliit and expliit belief is tratable for formulas in onjuntivenormal form (CNF). The reasoning is mainly based on tautologial entail-ment, a fragment of relevane logi [2℄.But espeially the reasoning based on tautologial entailment ould not betransferred in an appealing way from the propositional ase into the �rst-order ase [36℄ whih will be explained in the next hapter. In [35, 55℄ the�rst-order ase was disussed and it ould be shown that the reasoning re-quired not only onsiderable mahinery, but additionally the expressivenesswas dereased at the same time [36, 45℄.In onlusion, these approahes are not a solution yet sine they areineÆient or support only an inadequate expressiveness or both. Furtherdetails onerning limited reasoning an be found in [45℄.1.2.3 DatalogIn ontrast to limited reasoning there also exist approahes that allow fullinferene, but restrit the underlying logial language at the same time. Oneexample for this kind of approah is Datalog whih we will disuss herebriey. In general, the family of knowledge representation languages knownas desription logis belong to this approah. For an in-depth survey ondesription logis the reader is referred to [4℄.



1.2. RELATED WORK 7Datalog is a simpli�ed logial programming language that is integrated indatabase management [22℄. The term Datalog refers to PROLOG-like ruleswithout funtion symbols that are treated like logi programs [70℄. Reall,that rules are equivalent to Horn-lauses. From a database point of view,Datalog is an extension to the relational algebra that allows reursion [22℄.In general, the used prediates an be divided into two groups. The �rstgroup onsists of the extensional prediates that are relations ontained inthe database and the seond group onsists of intensional prediates or rulesontained in the Datalog program [70, 22℄.Hene, a relational database is identi�ed with a set of ground lauses or fats[17℄. The Datalog program - onsisting of a set of rules - uses the relationaldatabase as input to answer queries [17℄. In fat, an answer to a query is aresulting database that ontains ground lauses gained by the orrespondingDatalog program applied on the original database.There exist several extensions to the original Datalog like presented in[71℄, but this issues are not further addressed here. The omputational om-plexity was examined in [1℄. It ould be shown that Datalog only apturesqueries that an be answered in polynomial time.At this point it is only important to note that Datalog is restrited to Horn-lauses and the CWA is still used. Therefore, the expressiveness of Datalogis not as powerful as the one that is supported by the underlying logi of thereasoning proedure presented here.An extensive overview onerning the entire relationship between logi anddatabases is given in [49℄.1.2.4 Propositional Satis�abilityThe following setions give a brief introdution to the Satis�ability Problem(SAT), its solutions and why it is essential to take a look at the algorithmsthat solve SAT albeit we deal with �rst-order logi here.The aim of this setion is to show how muh researh is done in thepropositional ase and how diÆult it is to validate the eÆieny of a newalgorithm in this area even while there exist a lot of benhmarks and ompe-titions [57℄. In ontrast, there do not exist any benhmarks and results thatorrespond to knowledge bases and dedutive reasoning proedures as theyare suggested in this work here.The Satis�ability Problem (SAT)SAT is the problem of deiding if there is an assignment for variables in apropositional formula that makes the formula true. Even if we deal with �rst-



8 CHAPTER 1. INTRODUCTIONorder logi here, it is lear that propositional satis�ability (SAT) is loselyrelated to dedutive reasoning in �rst-order logi. Simply, beause of thefat that the propositional ase is a sub-problem of �rst-order logi. Theborder between propositional and �rst-order reasoning is often blurred [26℄.One example are problems that make use of quanti�ed formulas but areonstrained to �nite domains with expliitly named domain elements.SAT was the �rst problem shown to be NP-omplete [10℄ and thereforeintratable in general. Sine then - 1971 - there has been a large amount ofresearh onerning the satis�ability problem. Moreover it ould be shownthat there are many pratial instanes of SAT that an be solved very eÆ-iently.There are several huge groups of researhers involved into SAT like theAI researh and the theorem proving group. Many AI problems like planning[31℄ are enoded into SAT quite naturally. Theorem proving is for exampleonerned with satis�ability sine the question if a formula ' is inferablefrom a set of formulas � an be answered by showing that � [ :' is notsatis�able and vie versa.Solving the ProblemThere exist two essential di�erent goals for methods that solve SAT - methodsthat laim to be omplete and those whih are inomplete or approximate.A omplete algorithm is the famous David-Putnam algorithm [18℄. Unfor-tunately, all omplete algorithms are exponential in spae or time. As longas P 6= NP holds, it is not feasible to overome this intratability in gen-eral, but researhers all over the world are highly motivated to improve theiralgorithms as far as possible.Many omplete algorithms are based on the David-Putnam algorithmand implement extensions like branhing heuristis, intelligent baktraking,parallelization, et. [26℄. An upper bound for the original David-Putnamalgorithm is O(1:696N) where N is the number of variables. But extensionslike presented in [5℄ an solve problems easy whih are beyond the sope ofthe normal David-Putnam algorithm and it is furthermore suggested that itperforms as good or better than stohasti SAT algorithms in most of theases.While [58℄ and the improvement made in [60℄ introdue an algorithm withthe best known running time for randomized 3-SAT to date, [16℄ atuallypresents a deterministi algorithm for k-SAT based on loal searh that runsin time 1:481N up to a polynomial fator. Additionally, these bounds seemto be better than all previous deterministi k-SAT algorithms ould obtain.Aside from omplete algorithms there are many approximate algorithms



1.2. RELATED WORK 9[26℄. Firstly, [34℄ presents a greedy algorithm that hooses truth assignmentat random. It is greedy in the following sense: it ips the truth value of avariable that inreases the number of satis�ed lauses. Flipping the truthassignment of a variable without raising the number of satis�ed lauses isalled a sideway move.While in [34℄ no sideway moves are allowed and ipping is repeateduntil no improvement is possible, [61℄ omes up with an algorithm alledGSAT that allows sideway ips. Starting with a random truth assignment,it hanges the variable assignment via hill limbing to the largest possiblenumber of satis�ed lauses. If there is no assignment that does not hangethe number of satis�ed lauses, sideway moves are allowed. Without side-way moves the performane of GSAT degrades immensely. [28℄ shows that ahuge part of searh is onerned with exploring large plateaus where sidewayips predominate. GSAT guarantees relatively good performane even onlarge instanes of SAT [61℄. But note that no dedutive tasks are aom-plished by GSAT and it works only on problems that an be formulated in apropositional language [40℄.There are a lot of implementations that are based on GSAT. Some algo-rithms make use of lause weights [51℄ and an ahieve good improvementswhen applied to ertain lasses of problems. GSAT with random walk [63℄ips a variable with probability p and otherwise hill-limbs normally. Walk-SAT [63℄ makes the idea of GSAT with random walk even more entral tothe algorithm. Hill Climbing returns the variables in an unsatis�ed lause,and the next ip of a variable is based on random or greediness [26℄.Although simulated annealing is a famous loal searh algorithm it is notthat popular for solving SAT even when [68℄ says that it works better thanGSAT on hard random 3-SAT problems. Surprisingly, other approahes thatuse neural networks and geneti algorithms to solve SAT are omparably rare[26℄. In [67℄ there is a Hop�eld Network introdued that works very well onhard 3-SAT problems. One further interesting approah are hybrid methodsthat make use for example of GSAT and the Davis-Putnam algorithm tosolve speial lasses of SAT [72℄.The Benhmark ProblemAs shown above there are lots of algorithms that solve SAT. The problemis to lassify those algorithms by there eÆieny, beause some algorithmsmight work very well on some instanes of SAT but underlie an exponentialblow up on other instanes.Besides there are many di�erent opinions on how to haraterize a hardand easy instane of SAT. The onventional piture drawn is like easy-hard-



10 CHAPTER 1. INTRODUCTIONeasy. Formulas with few lauses are under-onstrained [easy to solve℄ andhene have many satisfying assignments. Therefore it is easy to �nd a sat-isfying assignment. Formulas with very muh lauses are over-onstrained[easy to solve℄ and usually unsatis�able whih will lead to a fast searh too[64℄.Formulas lying in between are the so alled ritial onstrained [hard to solve℄formulas and muh harder to solve, beause they have relatively few satisfy-ing assignments if they have any at all. '...the hardest area for satis�abilityis near the point where 50% of the formulas are satis�able' as said in [64℄.Empirial onluded in [64℄ is that the region of 50% satis�able lauses oursat a �xed ratio of the number of lauses to the number of variables.Very hard instanes of SAT outrop when the number of lauses is 4.3times the number of variables . This phenomena is alled a phase transition.Reent researh has shown that if the omputing time grows polynomiallywith problem size a ontinuous transition is found, but a disontinuous tran-sition is observed when exponentially muh time is required [52℄.In [27℄ it is said that this onventional drawn piture is inadequate. Thereare problems not lying in the lassial phase transition region that an beeven harder than those lying in the median of the transition. Relying onexperimental data it is suggested that there are regions whih underlie aonstraint gap, where the number of onstraints on variables is minimal whilesimultaneously the depth of searh required to solve the problems is maximal.Hene, while it is not obvious where the hardest instanes of SAT arehidden and it seems that satis�ability testing might be quite easy on average[64℄, this setion should emphasize how diÆult it is to verify having aneÆient algorithm developed.Last thing to be mentioned is that there is a suggested general format(like from [19℄) to save SAT instanes so that researhers an easily exhangefor example hard instanes and do not overome the fault to hoose instanesat random, beause a randomly hosen instane of SAT will be easy to solvewith utmost probability. This has the advantage that algorithms an beompared in a fair and broad sense.As we will see later on we are not able to ompare our results withother approahes, beause there do not exist inomplete �rst-order knowledgebases of this type and reasoning proedure of this expressiveness as suggestedhere [36℄. We do not even have the opportunity to make use of an existingknowledge base. Simply, beause of the fat that appropriate test knowledgebases do not exist. For instane, it would be of onsiderable advantage if weould make use of the Cy knowledge base [13℄ or a suitable subset.



1.3. THESIS STRUCTURE 111.3 Thesis StrutureThis thesis is strutured as follows:� In Chapter 1 we motivate our work, introdue dedutive reasoninginformally and present related work while we onentrate espeially onresearh done in the propositional ase.� Chapter 2 introdues the required notations and elementary de�ni-tions to enable a deeper understanding of the reasoning proedure. Ad-ditionally, all main features of the reasoning proedure are explainedhere.� In Chapter 3 we disuss several properties of the reasoning proedureitself. Espeially, the use of inequalities plays a major role in thishapter.� In Chapter 4 we present the implementation of all major featuresinluded in the reasoning proedure. This hapter also ontains variousexamples to larify the proeeding of the algorithms presented.� Chapter 5 ontains several results onerning the eÆieny of ourapproah. We show that the harateristi of the knowledge base hasa major inuene on the eÆieny of the reasoning proedure.� In Chapter 6 we assess the work that was done during this projetand present ideas for future researh.Additionally, we like to mention that we assume that the reader is fa-miliar with basi �rst-order logi and PROLOG, or any other similar logialprogramming language.



12 CHAPTER 1. INTRODUCTION



Chapter 2Fundamentals
2.1 IntrodutionIn this hapter we introdue the basis required to enable a omplete un-derstanding of the reasoning proedures presented some subsetions later.Furthermore the logial language orresponding to the reasoning proedureis introdued briey.But we will not only disuss notation and de�nitions here, but we willadditionally present V - the preursor of the reasoning proedure X whihis of onern here. We do so, beause we would like to provide a step by stepintrodution.While V an handle some inomplete knowledge by not using the CWA [56℄,X is even able to handle disjuntive information additionally. Sine bothproedures operate on �rst-order knowledge bases it is a known fat thata omplete logial reasoning proedure would be undeidable when allowinginomplete knowledge. Therefore both proedures are inomplete but de-idable and an handle inomplete knowledge and disjuntive informationrespetively.At the end of this hapter we will introdue X itself.While it is not neessary to follow eah detail of the proedure V, it isruial for the following hapters to get in touh with the notations, de�ni-tions and the equations of X. Espeially, the features Unit Propagation andReasoning by Cases introdued by X should be understood very well sinethey belong to the main topis of the entire work. So, even if the reader isonly interested in the pratial part of this work he or she has to go throughthis.We use the same notations and de�nitions as presented in [40, 36℄. Read-ers that are ommon with this literature may skip the entire hapter.13



14 CHAPTER 2. FUNDAMENTALSHere, we only summarize the main ideas underlying the work by Lakemeyerand Levesque. For an in-depth survey the reader is referred to the originalpapers [40, 36℄.2.2 First-Order Knowledge BasesThe reasoning proedure is based on a standard �rst-order language L with-out funtion symbols exept onstants and an equality prediate. Whilemaking use of the unique name assumption [25℄ an in�nite set of onstantsC= f1; 2; :::g is assumed.NotationFirst of all elements of L are alled formulas and formulas without free vari-ables are alled sentenes. The standard symbols for quanti�ers, negations,et. are used while only :, _, 9 belong to the logial language. In someexamples we will use ^, 8 and � as an abbreviation. In addition, 8 is forinstane used as an abbreviation for 8x.The symbol l will range over literals and l will express its omplement. �will range over substitutions of all variables by onstants, so that �� is theresult of applying the substitutions to �.Furthermore, �xd denotes � with all ourrenes of the variable x substi-tuted by the domain onstant d. The symbol � will range over atoms whosearguments are distint variables, so that �� will range over ground atoms.Note that neither atoms nor literals inlude equalities.Finally, e will mean quanti�er-free formulas whose only prediate is equality.Furthermore it is assumed that quanti�ation is interpreted substitution-ally with regard to C. This assumption is founded on the fat how standardinterpretations of L are de�ned:De�nition A standard interpretation I of L is one where equality (=) isinterpreted as identity, and the denotation relation between C and the domainof disourse is bijetive.This kind of standard interpretation an be desribed by the followingset of axioms about equality given that the onsidered logial theory onlyonsiders a �nite number of onstants. Of ourse �nite knowledge bases willalways ful�ll this restrition.



2.3. A DEDUCTIVE REASONING PROCEDURE 15De�nition The set " is the axioms of equality, whih inludes equivalenerelation and substitution of equals of equals, and the set of formulas fi =j j i 6= jg.On those de�nitions and assumptions the interrelationship between thesatis�ability of equality and a losed formula and the existene of a standardmodel was proven [40℄. The following theorem states this oherene:Theorem 1 Suppose S is any set of losed formulas, and that there is anin�nite set of onstants that do not appear in S. Then " [ S is satis�able i�it has a standard model.Sine we now introdued the essential properties of the logial language L, weare able to present the de�nition of the form of the used �rst-order knowledgebases. The following de�nition belongs to knowledge bases where V operateson.As you will see the de�nition does not allow lauses and thereby no dis-juntive information at all. When introduing X later on the de�nition isextended to ontain disjuntive information.De�nition A knowledge base is alled proper if " [ KB is onsistent andKB is �nite and of the form 8(e � �) or 8(e � :�).For example the following term would be a valid entry in a proper KB :8(X 6= a � :P (X))In ontrast, 8(X 6= a � P (X) _Q(X)) is not a valid entry sine lauses arenot allowed (yet). Please note that equality terms may onsist of any kindof logial ombination like negations, disjuntions and onjuntions.2.3 A Dedutive Reasoning ProedureWhile dedutive reasoning was introdued briey in the last hapter, we nowget step by step in touh with the dedutive reasoning proedures to be usedin �rst-order knowledge bases that are of onern in this work here.As already said in the introdution we think that there exists an highdemand in AI to work with extremely large knowledge bases that hold morethan 105 fats [36℄. Currently there are very few dedutive reasoning proe-dures that an handle suh kind of sets. As seen in the introdution GSAT[28℄ and other methods are apable to perform good results on huge data



16 CHAPTER 2. FUNDAMENTALSsets, but an not ahieve dedutive tasks and are restrited to propositionallanguages [40℄. Again, the following setions are mainly based on [40, 36℄.In the following setions reasoning proedures are introdued that areapable of working on large knowledge bases. Although the knowledge basesare large they are restrited in their expressiveness.While the �rst proedure presented handles quanti�ers, equality and inom-plete knowledge and a knowledge base (KB) that onsists of funtion-freeground literals, the seond proedure introdued allows funtion-free groundlauses in a knowledge base in addition. By supporting lauses the lastmentioned deision proedure is able to handle disjuntive information.2.3.1 The V-ProedureIntrodutionV is a dedutive reasoning proedure that works on proper �rst-order knowl-edge bases by evaluating the query. In ontrast to a normal database theknowledge base may ontain both omplete and inomplete knowledge. Infat this is the one and only di�erene to ommon databases - the losed worldassumption (CWA)[56℄ does not hold anymore. Even though this might beinterpreted as no big di�erene - only allowing inomplete knowledge - theprie to pay is high.This inrease in expressive power makes omplete logial reasoning unde-idable in the �rst-order ase. For example, the knowledge base that isequivalent to an empty set of literals requires that all valid formulas mustbe known when the CWA is not longer assumed. This problem is alreadyo-NP hard in the propositional ase and undeidable in the �rst-order ase[40℄. Therefore V is an inomplete but deidable and logial sound reasoningproedure that an handle inomplete knowledge.As said before it is not neessary to read the following subsetions, butit is reommended to get a better feel for dedutive reasoning and on theproeeding of suh a proedure if you are not ommon to it. In the followingsubsetion we glimpse at V when presenting the orresponding equations asde�ned in [40℄ and give some further explanations and examples.The EquationsAs an be seen from the following equations the reasoning proedure de-termines the return value of a query by evaluating it. When evaluating anexistential we make use of the set H+k that ontains the union of onstants,that appear in the knowledge base and the query and k new onstants that



2.3. A DEDUCTIVE REASONING PROCEDURE 17are not mentioned in the knowledge base or the query.V uses a 3-valued answer from n0; 12 ; 1�. Returning 0 means known to befalse, 12 means unknown and 1 means known to be true.Note that we do not say that the proedure deides if a query is true or false.The return values only state answers that are implied by the reasoning meh-anism used in V whih is due to the fat that the reasoning aomplished byV is not omplete for arbitrary queries. We give a simple example to showinompleteness some lines later.The �rst step in the reasoning proedures onsists of the reursive deom-position of the query by the mathing equations of the reasoning proeduresprovided that the query is omposed one.For example the query P (x) _ Q(x) is deomposed by V to V [P (x)℄ andV [Q(x)℄ (see equation 2.4). Besides negation also the existential is deom-posed by using the set H+1 to substitute the free variables in the query byonstants (see equation 2.5).As an be seen in the equations, deomposition has an quite intuitiveimpat on the return value of V. For example, when handling a disjuntivequery the maximum value of the disjuntive parts is returned, a negationsimply auses the inverse return value.After deomposing a formula � the single parts of the formula are reduedto ground atomi formula by substituting free variables by domain onstants(��).In general the knowledge enoded in a query - respetively a formula - willbe redued to knowledge of ground atomi formulas.V [��℄ = 8><>: 1 : if there is a 8(e � �) 2 KB suh that V [e�℄ = 10 : if there is a 8(e � :�) 2 KB suh that V [e�℄ = 112 : otherwise (2.1)V [t = t0℄ = 1 if t is idential to t0, and 0 otherwise. (2.2)V [:�℄ = 1� V [�℄: (2.3)V [� _ �℄ = maxfV [�℄; V [�℄g: (2.4)V [9x:�℄ = maxd2H+1 fV [�xd ℄g: (2.5)At this point the proedure determines the return value by deiding if theterm (e � �) is ontained in the knowledge base whereby the substitution



18 CHAPTER 2. FUNDAMENTALS� is applied on e also and the return value of V [e�℄ is tested (see equation2.1). If the query onsisted of a omposed formula this return value may bemodi�ed as desribed before and as de�ned within the proedure.Comprising, the answer of V is aquired by deomposing the query, redu-ing the knowledge enoded in the query to the knowledge of ground atomiformulas and deiding if this knowledge is ontained in the atual knowledgebase.For example, if we assume V [p℄ = 0 and V [q℄ = 1, KB = fp; qg, V [p _ q℄would return 1. To show inompleteness we an give a simple example. Sup-pose V [p℄ to be 12 then V [p _ :p℄ = 12 and not the wanted answer 1.Levesque proved logial ompleteness if the query is in a ertain normalform named NF [40℄. In general NF is an extension to the Blake CanonialForm (BCF)[7℄. In addition to the properties that hold for formulas in BCF ,formulas that are in NF are also losed under negation and may ontainarbitrary ombinations of _ and ^.It is said in [40℄ that every query an be equivalently transformed into thisspeial normal form. However, this property was only proven in the propo-sitional ase, but not in the �rst-order ase.Anyway, transforming the query into this normal form is intratable ingeneral [40℄. Hene, if the reasoning proedure eÆiently returns logialorret answers, the query has to be transformed in an omputationally in-tratable way. In [40℄ there are appliations like problem solvers and plannerssuggested that depend on very large knowledge bases and in whih the trans-formation of the query ould be done o�ine. Then the appliation ould besure of a logial sound and omplete answer evaluated by the reasoning pro-edure.It was also shown in [36℄ that V is omplete for arbitrary queries whenonly tautologial entailment [2℄ and not the lassial logial entailment isonsidered. In general the propositional tautologial entailment allows be-sides the standard two-valued assignment, that formulas an additionally beassigned neither true nor false or both values. Consequently, the onnetionbetween the falsity and truth of a sentene is not existent anymore [36℄. Forexample, p^ (p � q) does not tautologially entail q, beause p as well as :pan be supported by some setup1.Therefore tautologial entailment is a muh weaker notion than impliationas known in standard logi due to the four-valued setups whih inlude theset of two-valued assignments [11℄. This weaker kind of entailment enablesV to be sound as well as omplete for tautologial entailment and arbitrary1A setup was originally de�ned by using the four truth values true, false, neither orboth [20℄.



2.3. A DEDUCTIVE REASONING PROCEDURE 19queries [36℄.While we will not disuss the implementation of V in our work here wewould like to mention that it ould be shown in [46℄ that V itself an beimplemented eÆiently in some ases. Here the word "eÆient" means thatqueries an be evaluated in a omparable omplexity as they an be evalu-ated in lassial databases. Sine it is assumed in [46℄ that a given query isin NF the reasoning aomplished is also logial orret.The general idea was to redue V to database query evaluation and to gainthis result a bottom-up database query evaluation algorithm was adapted.The underlying query evaluation algorithm is mainly based on work intro-dued and extended by [3, 29℄.This is a very important result sine we would like to implement the sues-sor of V that introdues additional expensive features to handle disjuntiveinformation and if V would be intratable then it would be of no questionthat X would be intratable too.To give a more pratial insight onerning V suppose you would imple-ment V in PROLOG as funtion with two parameters, v(Query,ReturnValue)namely. Then you ould depit the existential for example as:v(exists(Variable,Query), ReturnValue) :-isSingleFormula(Query),member(Constant, DomainConstants),substitute(Variable, Constant, Query, GroundFormula),inKnowledgeBase(GroundFormula, ReturnValue).This is of ourse a very simple and shortened version of the implemen-tation, but it is just to emphasize the fat that there are only few featuresin V that would prevent an eÆient implementation. The amount of termsand espeially onstants is one of the antagonists to eÆieny.The deomposition of formulas aomplished by the reursive de�nition ofV an be intuitively transferred into PROLOG. This is of ourse true for X,too.Although even with V as it will be with X the question arises how to storeand how to manage more than 105 proper terms. But before we go intodeeper detail now we leave this topi for a later hapter to ome.In onlusion, V is a deidable and logial sound reasoning proedurethat infers if a query is known to be true, known to be false or unknownby evaluating it while supporting knowledge bases that an ontain bothomplete and inomplete knowledge.



20 CHAPTER 2. FUNDAMENTALS2.3.2 The X-Proedureproper+ Knowledge BasesWhile [40℄ presented a dedutive reasoning proedure that operates onfuntion-free ground literals in [36℄ an extension is drawn that handles dis-juntive information.This extension was motivated by the fat that inomplete knowledge aboutsome individuals has various appliations. While proper knowledge basesand V allow reasoning in huge sets of prediates, inluding positive as wellas negative instanes and handling prediates that are left open for ertainindividuals it is for example not possible to inlude the following term in theknowledge base: (isStudent(Mary) _ isStudent(John))But espeially this kind of terms that ontain inomplete knowledge aboutsome individuals and the orresponding reasoning are of great interest asstated in the introdution.Sine X an handle lauses among other things we have to extend theproper knowledge bases used with V to inlude lauses. Therefore the fol-lowing de�nitions are introdued:De�nition If  is a disjuntion of literals whose arguments are distint vari-ables, 8(e � ) is alled a 8 � lause.De�nition Then a KB is alled a proper+ KB when the KB is a �nite andnon-empty set of 8 � lauses. Given a proper+ KB, gnd(KB) is de�ned asf� j 8(e � ) 2 KB and " j= e�g.In regard to the de�nition of standard interpretations some setions ago, thismeans that a proper+-KB is a �nite representation of the normally in�niteset gnd(KB). The set is usually in�nite beause in gnd(KB) every formulaof the KB is inluded with all possible substitutions of variables. Note thatwe have an in�nite set of onstants.To give an example for a valid proper+ KB the following knowledge basewould be one:KB = f8(x 6= a � P (x)); 8(x = y � :P (x) _Q(y))gSine lauses have many appliations in general, they have two predom-inate ones [36℄. First they an be used to represent rules and seondly in-omplete knowledge about individuals.



2.3. A DEDUCTIVE REASONING PROCEDURE 21KB1 KB2P (a) _ P (b) _ P (f) P (a) _Q(e) _Q()P (a) _ P (e) _Q(f) Q(d) _ P (b) _Q(a)P (a) _Q(e) _ P () P (a) _ P (e) _ P (f)P (a) _Q(e) _Q() P () _Q(e) _ P (a)Q(a) _ P (b) _ P (d) Q(a) _Q(b) _Q(g)Q(a) _ P (b) _Q() P (a) _ P (e) _Q(f)Q(a) _Q(b) _Q(g) Q(b) _Q(a) _ P (g)Q(a) _Q(b) _Q(g) Q(a) _ P (d) _ P (b)Table 2.1: Two knowledge bases that ontain inomplete knowledge about indi-vidualsAs disussed in [36℄ the �rst appliation of lauses an be ful�lled by X, butthe seond whih requires solving a ombinatorial puzzle is nearly given upfor the sake of eÆieny.To give you a brief impression what kind of omplexity ours when inom-plete knowledge about individuals is involved, onsider the following example.In the table 2.1 two di�erent knowledge bases are depited ontaining thetwo prediates P and Q.If you now try to answer the query 9X:(P (X)^Q(X)) you will observe thatis quite hard to determine that only one of the two knowledge bases supportsthe query.As we will see, X deals with inomplete knowledge introdued by lausesin a limited way.Unit PropagationNext we present one of the main features that is inluded in the reasoningproedure X :De�nition If S is a set of ground lauses, then UP (S) is the least set whihontains S and if flg [  and l are in UP (S), then so is . In other wordsUP (S) is simply the appliation of Unit Propagation to the set S.X uses UP (S) to deide if a literal an be inferred or not.While we introdued unit propagation formally, we would like to give someexplanations and examples at this point, beause it is important to under-stand how unit propagation works and when it an be applied suessfully.As said in the introdution unit propagation is an often used method inthe propositional ase. There exist various eÆient implementations of unit



22 CHAPTER 2. FUNDAMENTALSpropagation for the propositional ase like presented in [73℄, [44℄ and [30℄.In fat the omplexity of the appliane of unit propagation is linear in thepropositional ase [73℄.The use of unit propagation ensures simple appliations of Modus Ponens asshown in the following example that onsists of literals only:KB = fp;:s; (:p _ q); (:q _ s _ r)gAfter applying unit propagation (�rst time):KB = fp;:s; q; (:q _ r)gAfter applying unit propagation (seond time):KB = fp;:s; q; rgSine X makes use of unit propagation (see equation 2.6) the answer toX[KB; r℄ will equal 1. As you an see in the example the unit lauses p and:s are propagated along the disjuntions in a way that new unit lauses arise- like q - what onsequently auses r to be known to X.Note that X while using unit propagation supports simple appliations ofModus Ponens in ontrast to tautologial entailment, for example.While the use of literals only makes unit propagation similar to applyingunit propagation in the propositional ase we must be aware of the fat thatwe have to onsider the equality terms when using unit propagation withproper+-terms in general.At this point we again present a simple example that shows what is neessaryto apply unit propagation suessful:KB = f(X = a) � P (X); (X = b) � (:P (X) _Q(X))gHere we an not apply unit propagation beause of the mutual exlusiveequalities. And even if equalities math the equality term of the resultingterm must be adapted aordingly.This means that in ontrast to the propositional ase we do not only have topropagate unit lauses and delete the inverse prediate from the disjuntions,but additionally have to take are of the orresponding equality terms. Thiswill belong to the main topis in the hapters to ome.While it is not neessary at this point to know everything about the onse-quenes on equality terms when applying unit propagation in a proper+ �KB, you should be aware of the di�erene to the propositional ase.When we investigate the interation of equality terms and unit propagationlater on (hapter 3) we will see that this partiular di�erene alls the use ofunit propagation in onnetion with proper+-terms into question - at leastfor some spei� types of proper+-terms.



2.3. A DEDUCTIVE REASONING PROCEDURE 23Reasoning by CasesAs we mentioned before, X deals with inomplete knowledge introduedby disjuntive information. X handles suh kind of knowledge by usingreasoning by ases.Hene, besides unit propagation the appliation of reasoning by ases is afurther main feature ontained in X. And beause this feature will play amajor role in our work we will introdue the priniple of it here briey andwill examine it more losely when presenting our implementation.Suppose the following knowledge base:KB = f(P (a) _Q(b)); (:P (a) _Q(b))gSine reasoning by ases assumes every part of a disjuntion eah byeah as to be true and then testing a given formula or query, it follows that9X:Q(X) would be true.Simply beause of the fat that adding P (a) to the knowledge base wouldause Q(b) to be true by unit propagation and the e�et of adding Q(b) willof ourse support the query. Aordingly we will see that X answers in thesame way.If reasoning by ases with more than one level is supported, the proessis started again while the added terms of the previous levels remain.At this point the reader should be aware of two fats. First reasoning byases is a muh more ompliated method than unit propagation sine itmakes use of unit propagation as sub-proess for example.Seond in general the omplexity of reasoning by ases grows exponentiallywith the level that is de�ned, beause we do not have a riteria that pre-vents the growth of the searh spae suÆiently. In the next hapter we willintrodue the riteria we used in our implementation.The EquationsUntil now we desribed whih features the reasoning proedure uses and atthis point we present X itself in the following equations as de�ned in [36℄.In the next setion we determine in whih equations the main features areapplied. X[KB; l℄ = ( 1 : if l 2 UP (gnd(KB)); l a literal0 : otherwise (2.6)X[KB; t = t0℄ = ( 1 : if t is idential to t00 : otherwise (2.7)



24 CHAPTER 2. FUNDAMENTALSX[KB;:(t = t0)℄ = 1�X[KB; t = t0℄: (2.8)X[KB;::�℄ = X[KB;�℄: (2.9)
X[KB;� _ �℄ = 8>>>>>><>>>>>>: 1 there is a 8(e � ) 2 KB and a � 2 H+ksuh that X[KB; e�℄ = 1and for all l 2 ;X[KB [ fl�g; �℄ = 1 or X[KB [ fl�g; �℄ = 1;where k is the number of free variables in 0 otherwise (2.10)X[KB;:� _ �℄ = minfX[KB;:�℄; X[KB;:�℄g: (2.11)

X[KB; 9x:�℄ = 8>>>>>><>>>>>>: 1 there is a 8(e � ) 2 KB and a � 2 H+ksuh that X[KB; e�℄ = 1and for all l 2 ;there is a d 2 H+k+1 suh that X[KB [ fl�g; �xd℄ = 1;where k is the number of free variables in 0 otherwise (2.12)X[KB;:9x:�℄ = mind2H+1 fX[KB;:�xd ℄g: (2.13)Properties of XWe begin this setion by presenting the ase where the reasoning of bothintrodued proedures is equivalent. The following proof was given in [36℄:Corollary 2 If KB is proper then for any sentene �,X[KB;�℄ = 1 i� V [KB;�℄ = 1Hene, when X is used on proper KBs its reasoning is equivalent to that ofV. In ontrast to its preursor X returns only 0 and 1 and is therefore not athree-valued proedure anymore. Nevertheless it is possible to gain the sameanswers like V does beause of the fat that using the query and its negationtogether yields the same response in total.V answers a single query � by returning if � is known to be true, known to



2.3. A DEDUCTIVE REASONING PROCEDURE 25be false or unknown. To reah the same result with X we have to use twoqueries, namely � and :�. Hene, the return value 0 here means unknownand not known to be false anymore.The major di�erenes to V an be found in equations 2.7, 2.10 and 2.12.In fat those are the lines that are onerned with literals, disjuntions andthe existential.The �rst mentioned equation uses UP (S) to deide if a literal an be inferredor not.Equations 2.10 onerning disjuntions and 2.12 onerning existential quan-ti�ers allow reasoning by ases, but only with respet to a single lause in S.Note that the number of appliations of reasoning by ases is limited by thestruture of the query. In fat, reasoning by ases is allowed exatly one foreah appearane of a disjuntion and existential in the query.In our implementation we allow a user-de�ned level of reasoning by ases.This di�erene to X was inspired by a slightly di�erent version of X - namelyW presented in [37℄.This means for example that the user an de�ne that the query 9X:P (X)should be answered by using two levels of reasoning by ases.In the proedure there is nothing said on how to hoose the next lausefor reasoning by ases - the hoie is a non-deterministi one. This of oursemust be hanged in the pratial implementation sine our algorithm musthave some riteria at least to hoose the next lause to enable an eÆientimplementation. It is obvious that we an not try every lause of the 105possible ones. The riteria used is presented in the next hapter.While we will not talk about every detail of X we would like to say somewords on the role that H+k plays.First of all writing � 2 H+k means that the substitutions may only range overthe onstants inluded in H+k .As denoted in equations 2.10 and 2.12 X does not allow ase splitting for anylause inluded in the knowledge base, but is restrited to split substitutioninstanes over H+k of a lause in the knowledge base only. So the hoie of alause is restrited by H+k .Both V and X aomplish logial sound reasoning, but are not logialomplete. Note again that X only supports reasoning by ases when anexistential or a disjuntion is inluded in the query. Suppose the followingterms to be ontained in the knowledge base:(P (a) _ P (b)) (:P (a) _ P (b))Although it is obvious that the query P (b) is supported by the given knowl-edge base, X will return "unknown", beause of the reasons desribed before.



26 CHAPTER 2. FUNDAMENTALSAnother example to show inompleteness of X is ontained in the examplepresented earlier (table 2.1). X is not able to handle this kind of knowledgebases, beause it is simply not suÆient to apply reasoning by ases to onlyone lause when solving an existential or a disjuntion.Although the knowledge base KB2 entails the given query �, X would re-turn the value "unknown" (X[KB2; �℄ = 0). The solving of the puzzle wouldrequire notieable more levels of reasoning by ases than one - in fat 8 arerequired. Note that the required number of levels is equal to the number oflauses ontained in the knowledge base.The property that X is not able to solve this kind of ombinatorial puzzles isa desired e�et sine the reasoning aomplished by X was planned to staytratable [36℄. For instane, tautologial entailment is able to solve suh kindof puzzles, but at the same time it is a subjet to ause intratability [36℄.Note that tautologial entailment is tratable in the propositional ase [39℄,but [35, 55℄ showed that this result ould not be transferred in the �rst-orderase.One other interesting fat that ould be shown in [36℄ is that even if thequery is onverted to the earlier mentioned normal form NF the questionif the query is entailed by a proper+ knowledge base stays undeidable ingeneral. As showed before this was di�erent when only proper knowledgebases were onsidered and therefore no lauses were of onern.Furthermore the following important property of X was proven in [36℄:Theorem 3 X is deidable.The proof is mainly founded on the reasons that both the knowledge baseand the set H+k are �nite and that it is always possible to deide if a literall is a member of gnd(UP (KB)) due to the fat that no full Resolution isapplied.All in all it is quite obvious that the two features unit propagation andreasoning by ases are also the main di�erene in omplexity to the reasoningproedure V. As desribed in an earlier setion V does not make use of suhkind of rather omplex methods. Details on this topi are presented in thesubsequent hapters.Consequently, it remains to be shown whether X is eÆient omputable.2.4 SummaryIn this hapter we introdued two dedutive reasoning proedures - V andX namely - as they were presented in [40, 36℄. Before the design and the



2.4. SUMMARY 27features of eah proedure were presented, we gave a brief introdution tothe notation and de�nitions and the underlying logi.While the importane of Unit Propagation and Reasoning by Cases wasdesribed, both are onsequently of speial regard in the subsequent hap-ter sine they are ruial for the reasoning proedure itself and thereforeextremely relevant for an eÆient implementation of X.Besides Lakemeyer and Levesque presented a new version of the reasoningproedure in [37℄ named W whih is very similar to X exept the fat thatthe depth of reasoning by ases is user-de�ned. In our implementation we willonentrate on X mainly, but will allow the user-de�ned level of reasoningby ases.There is not only a new variant of the reasoning proedure presented butthere is also a new logi introdued to give a more preditable and intuitiveinsight on how those rather omplex and reursive proedures answer. Forfurther details please refer to [37℄.In onlusion, X is deidable and performs logial sound reasoning as Vdoes. But in ontrast to V it an also handle disjuntive information byusing the main features unit propagation and reasoning by ases.
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Chapter 3Exploring Properties of theDeision Proedure
3.1 IntrodutionIn this hapter we will disuss two properties introdued by the deisionproedure. The �rst setion will investigate the growth of the equality termsthat takes plae when unit propagation is applied. Conerning this topireall the following example knowledge base:KB = f(X 6= a � P (X)); (X 6= b � (:P (X) _Q(X))gIf we apply unit propagation this results in the following proper+ term:(X 6= a ^X 6= b � Q(X))Note the growth in the equality term.We show that inequality auses an exponential growth of the equality termswith regard to the number of unit propagations applied. This is one of themain reasons why we will exlude inequality from the equality term in generalwhen we implement X later on.Seond we will show the interhangeability in the order of the generationof ground terms and the appliation of unit propagation. This is neessaryto allow the appliation of unit propagation without generating all possibleground instanes �rst as it was de�ned in the reasoning proedure X.Additionally, we will present in this setion the essential di�erene betweenunit propagation in the propositional ase and the �rst-order ase.29



30CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREEquality Term RestritionV ariable Not RestritedV ariable 6= Constant Semi RestritedV ariable = Constant Fully RestritedTable 3.1: The partitioning of equality-terms relating to the assigned value of avariable3.2 The Growth of Equality-Terms3.2.1 When growth takes plaeIn this setion we will determine the growth of the equality terms 'e', whenwe apply unit propagation. First, we reall why there is any growth of e ina proper term. Sine we disussed in the last hapter how unit propagationworks, it is quite easy to realize that there are ases when applying unitresolution auses e to grow, beause the equalities of the resulting properterm have to be updated.Note that we an apply unit propagation only if there exists a proper termthat ontains more then one prediate and another proper term that ontainsexatly one prediate ('Unit Clause or Unit Term').Additionally a mathing unit term must ontain the negated version of aprediate whih is one of the prediates from the proper term with multipleprediates. Furthermore the equalities of both proper terms must math,that is equalities may not be mutually exlusive.Our �rst step to determine when growth takes plae and when the numberof equality terms stays onstant is that we divide equality terms into threeategories. Those ategories are based on restritions relating to variables.As shown in table 3.1 a variable an be assigned three di�erent kinds ofvalues: all possible values (domain onstants), all possible values exept oneor exatly one value. For eah of those assignments exist di�erent kinds ofproperties when unit propagation is applied and therefore we will proeedthrough them eah by eah.The three lasses an also be interpreted in a hierarhial way sine every lassdesribes an expliit level of restrition. Then the highest level of restritionwould be assigning a variable to a onstant and the lowest level would be norestrition at all.We will all the proper+ term whih ontains more than one prediate thedisjuntive term and the other proper term as before unit term. Note thatat this point we deal only with proper terms where unit propagation an be



3.2. THE GROWTH OF EQUALITY-TERMS 31e1Not restrited Semi restrited Fully restritedNot restrited e1 = e2 e1 e1e2 Semi restrited e2 e1 ^ e2 e1Fully restrited e2 e2 e1 = e2Table 3.2: The resulting equality term depending on the lasses e1 and e2 belongtosuessfully applied to.We assume for now that an equality term e ontains only one variable andone orresponding assignment. Furthermore, e1 orresponds to the equalityterm of the disjuntive term and e2 to the unit term.Conerning the equalities we observe the following when unit propagationis applied:� If e1 restrits a variable not at all, it will be overwritten by e2 in anyase, sine e2 restrits a variable on a higher level of restrition or atleast at the same level. It is obvious that no growth of equalities willtake plae if we only replae e1 by e2.� If e1 restrits a variable to have any value exept one, it will be replaedby e2 only if e2 restrits a variable to a onstant.� If e2 semi-restrits a variable, the equality term of the resulting dis-juntive term will be of the following form e1 ^ e2, if e2 6= e1. We notea growth in this ase.� If e2 does not restrit the variable in any way, e1 just remains theequality term of the resulting proper term.� If e1 restrits a variable to be exatly one onstant, then e2 = e1, henee1 resides and so there is again no growth at all.All these observations between the equality term of the disjuntive term andthe unit term are depited in the table 3.2.So there is only one ase where growth takes plae - namely if e1 ande2 both semi-restrit a variable. For example, X 6= a � P (X) _ Q(X)and X 6= b � :P (X) will resolve to X 6= a ^ X 6= b � Q(X). All otherombinations will resolve in a replaement of e1 by e2 or e1 simply remains.



32CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE3.2.2 The interation between Growth and Unit Prop-agationSo far we disovered that in this kind of onstellation there is only one typeof growth possible.But the onsidered equality terms ontained only one variable eah. Thissimple on�guration allowed us to determine the worst ase of growth onthe lowest level. We will use that result while now equality terms an nowinlude any number of variables.In our implementation that we will present in the subsequent hapterwe assume that all equality terms are in Disjuntive Normal Form (DNF).We deided in favor of the DNF, beause we depend on a fast omparisonbetween equality terms of two proper+ terms when implementing X. SineDNF allows us to split the equality term into the onjuntions of single as-signments of variables and test the equalities one by one we an easily deideif equality terms are ompatible or not.In ontrast, if we would not use DNF we would trade o� time for spae. Atthis point the reader will realize that the growth aused by unit propagationpresented in the last setion and the use of the DNF will ause an exponen-tial growth. We will return to the topi onerning the hoie of the normalform later on.In this and in the subsequent setion we will make use of the following de�-nitions and properties.De�nition Two equality terms e1 and e2 math if there is at least onesubstitution � for whih the following holds:� j= e1� and � j= e2�In other words two equalities math if they are not mutually exlusive.Now we present an equivalent representation of proper+ KBs f(e � )gwhen e in DNF and e ontains no inequalities. Therefore, we need the fol-lowing notations. Given e, let �e be a substitution whih maps only variablesourring in e to onstants. In a similar way �je restrits � to the variablesontained in e.De�nition Let KB be a proper+ KB f(e � )g and e in DNF and ontainno inequalities. Then KBe�free = f 8(0)j there exists a 8(e1_ :::_ en � ) 2KB so that there is a ei and �ei and � j= ei�ei and 0 = �eigNote that every proper+ knowledge base an be modi�ed to a e-free knowl-edge base in this way, if equality terms are in DNF and ontain no inequali-ties.



3.2. THE GROWTH OF EQUALITY-TERMS 33Lemma 4 For all standard interpretations I the following equation holds:I j= KB i� I j= KBe�freeProof ")": Let I j= KB and let 8(0) 2 KBe�free. Hene, there exists8(e1 _ ::: _ en � ) 2 KB, so that there exists an ei�ei and � j= ei�ei and0 = �ei . Now I j= 8(e1 _ ::: _ en � ) and by the assumption follows thatI j= ei� for some i. Then I j= (e1_ :::_en)�ei . Hene, I j= 8�ei , i.e. I j= 80."(": Let I j= KBe�free and let 8(e1 _ ::: _ en � ) 2 KB. We show thatI j= 8(e1 _ ::: _ en � ). Suppose, I j= ei� for some substitution �. It suÆesto show I j= �. Then there exists a �ei = �jei, so that I j= ei�ei i.e. � j= ei�ei .By de�nition of KBe�free there is a 0 2 KBe�free with 0 = �ei. Hene,sine I j= 80 holds by the assumption we have I j= 8�ei and therefore,I j= �.From Lemma 4 the next theorem follows immediately.Theorem 5 For every proper+ KB f8(e � )g with e in DNF and e on-tains no inequalities and the orresponding equality free KBe�free f8()g thefollowing holds: KB j= � i� KBe�free j= �Note that the original representation is more ompat, but the representationused here is equivalent and auses only a minor growth of the KB. Supposethat the maximal number of disjuntive equality terms is k. Then the growthlies in O(m � k) while m denotes the size of the original KB.Before we ontinue the observations of the speial ase mentioned at thebeginning of this setion we �rst of all present a result given by [47℄.Theorem 6 (Liu, [47℄)Let KB be an e-free knowledge base f8()g when jKBj = n and CKB denotesthe set of onstants ontained in KB while jCKBj � n. In addition, k denotesthe maximal number of variables in one lause .Then the losure under unit propagation applied to the entire KB results ina knowledge base KB0 while jKB0j � nk+1.Proof-Sketh Let �CKB range over substitutions of all variables by onstantsi while i 2 CKB and gndCKB(KB) = f�CKB j 8() 2 KBg.Then jUP (KBj � jgndCKB(UP (KB))j. By an extension of Theorem 12it would be possible to show jgndCKB(UP (KB))j = jUP (gndCKB(KB))j.Sine unit propagation applied to ground instanes orresponds to unit



34CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREpropagation applied in the propositional ase the following equation holds:jUP (gndCKB(KB))j� jgndCKB(KB)j.While we have maximally k variables in eah of the n lauses ontainedin KB and have maximally n onstants the maximal number of possibleground instanes equals n � nk. Hene, jgndCKB(KB)j� nk+1. Consequently,jUP (KBj � nk+1.At this point we return to the ase where inequalities are supported andexamine the growth aused by the appliation of unit propagation.While again e1 and e2 represent the equalities of the disjuntive termand the unit term respetively, jejj will denote the total number of singleequalities in ej. In addition, e1i will indiate the i-th lause of an equalityterm. Furthermore, je1ij holds the number of onjuntive equality terms thatare ontained in the i-th lause while n (m) stands for the total number ofdisjuntive equality terms in e1 (e2).Sine we do not restrit an equality term to hold exatly one variable any-more, the growth will now additionally inrease by all possible ombinationsbetween disjuntive equality terms in e1 and e2.For example, if we have the following equality terms:e1 : (X 6= C1 ^ Y 6= C2) _ (X 6= C2 ^ Y 6= C1)e2 : (X 6= C3 ^ Y 6= C4) _ (X 6= C4 ^ Y 6= C3)If we would apply unit propagation now we had to adept e1 in the waywe determined before. Sine this is not a matter of replaing or keeping aequality term, the single equality terms from e1 and e2 add up, but not in alinear way.The growth is not linear beause disjuntions ause as muh ombinationsof e1i and e2j as there are disjuntions in e1 and e2. This is in general thewell known drawbak of a onversion of a formula to DNF. In our ase wehave to onvert two formulas that only onsist of disjuntions onneted bya onjuntion to a formula in DNF. This auses the mentioned growth.In our example one part of the resulting equality term whih only regardsthe �rst part of e1, namely e11, would be:(X 6= C1^Y 6= C2^X 6= C3^Y 6= C4)_(X 6= C1^Y 6= C2^X 6= C4^Y 6= C3).We ount 8 single equality terms for this part of adaption and the �nalresulting equality term would hold 16 single equality terms in total, so thatthe number of equality terms in this ase doubles in total.We again observed a worst ase senario here sine besides using semi-restrited equalities only, we also assumed that every variable whih is on-tained in e1 is also ontained in every single term in e2 whih is normally



3.2. THE GROWTH OF EQUALITY-TERMS 35not the ase; reall that e1 is the equality term of a proper term that holdsdi�erent prediates and e2 onstraints variables that belong to exatly oneprediate only.When we assume that we only use semi-restrited equalities and every lausefrom e1 has to be ombined with every lause from e2, then we an deter-mine the number of single equality terms in the resulting equality term inthe following way.First we write e1 and e2 in detail as de�ned:e1 : e11 _ e12 _ ::: _ e1ne2 : e21 _ e22 _ ::: _ e2mSo the number of single equality terms (je1j) in e1 an be alulated byPni=1 je1ij; je2j analogous.Consequently the resulting equality term is of the following form:eresulting : ((e11 ^ e21) _ (e11 ^ e22) _ ::: _ (e11 ^ e2m) _ (e12 ^ e21) _ ::: _ (e12 ^e2m) _ ::: _ (e1n ^ e21) _ ::: _ (e1n ^ e2m))Sine we are interested in the total number of single equality terms ineresulting, we an determine jeresultingj by the following equation:jeresultingj = nXi=1(m � je1ij+ mXj=1 je2jj) (3.1)While we reognize je1j and je2j in equation 3.1 and je2j is added upn-times the equation an be simply rewritten as:jeresultingj = m � je1j+ n � je2j (3.2)Consequently the growth of equality terms is determined by jeresultingj �je1j and hene:Maximum Growth of Equality Terms = (m� 1) � je1j+ n � je2j (3.3)As we an observe in equation 3.1 the growth of equality terms is theomposition of the growth of semi-restrited variables and the ombinationof disjuntive terms in je1j and je2j. We dereased the number of equalityterms by e1 in this equation, beause we determined the growth and not thetotal size of the resulting equality term.Notie that we assumed that there are only semi-restrited variables aswell in je1j as in je2j and every je1ij has its ounterpart in every je2jj whih



36CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREis quite unusual as said before.In that we showed that only semi-restrited variables ause any growth at alland maximised the number of ombinations of single equality terms equation3.3 marks out the maximum possible growth of equality terms.To desribe the size of the resulting equality term in a more simple way weassume that n = m and je1j = je2j so that we get the following equation:jeresultingj = n � (2 � je1j) (3.4)With the assumptions made we notie that the number of single equalityterms doubles if we have no disjuntive equality terms at all (n = 1). Ifn > 1, je1j is additionally multiplied by the number of disjuntions in je1j.This might give a more intuitive feel of the growth of equality terms.As we showed before the resulting equality term will hold as muh assingle equality terms as denoted in 3.1.If we assume again that je1j = je2j, n = m and additionally je1ij = je2jj = 1for all i; j (onsequently je1j = je2j = 1) and we apply unit propagation nownot only one, but several times the number of single equality terms willinrease dramatially. The number of unit propagations applied is denotedas jUPsj.From 3.4 and sine Pni=1 je1ij=n beause je1ij = 1 we derive the size ofthe resulting equality term when we apply unit propagation the �rst time:jeresultingj = n � (2 � n) = 2 � n2 (3.5)At the same time the number of disjuntive equality terms will be determinedby keeping in mind that m = n:jedisjuntive�termsj = n �m = n2 (3.6)If we ombine the following equality terms for example where n = 3, wewill have the denoted values for the number of single equality terms andnumber of disjuntive equality terms:e1 : e11 _ e12 _ e13e2 : e21 _ e22 _ e23jeresultingj = 18 jedisjuntive�termsj = 9Note again that a disjuntive equality term (e.g. e11) onsists of singleequality terms.If we now apply unit propagation a seond time with a unit term that hasas before m (in our example is m = 3) disjuntive equality terms in total, we



3.2. THE GROWTH OF EQUALITY-TERMS 37must be aware of the atual number of disjuntive equality terms and singleequality terms of the disjuntive term generated by the �rst appliation ofunit propagation.Now n in equation 3.1 will be equal to jedisjuntive�termsj (e.g. 9) and sinethe number of single equality terms simply add up when jej = 1 in eahdisjuntive equality term and by eah appliation of unit propagation, wean rewrite 3.1 in the following way:jeresulting2j = jedisjuntive�termsjXi=1 (m � (je1ij+ je2ij) + mXj=1 je2jj) (3.7)Equation 3.7 denotes the number of single equality terms after applyingunit propagation twie. We add je1ij and je2ij beause now eah of the dis-juntive equality terms of the disjuntive term onsists of the addition of theold number of single equality terms and the single equality terms of the �rstused unit term.Taking into aount the assumptions made above and sine we on-tinue applying unit propagation this will result in the reursive de�nitionof jedisjuntive�termsj while jedisjuntive�terms1j = n �m:jedisjuntive�termsjUPsjj = m � jedisjuntive�termsjUPsj�1j (3.8)While we assumed that n = m we have:jedisjuntive�termsjUPsjj = njUPsj+1 (3.9)In fat this equation already states the exponentially growth of equalityterms with regard to the number of appliations of unit propagation verylearly. Note that we always use jedisjuntive�termsjUPsj�1j when determiningjeresultingjUPsjj.Furthermore, we an rewrite the inrease in size of a single equality term ina disjuntive term in the following way sine je1ij = je2jj = 1:jegrowthjUPsjj = jUPsjXi=1 1 = jUPsj (3.10)Consequently, we an rewrite while we now also substitute m by n sinem = n and je1ij = je2jj by 1:jeresultingjUPsjj = njUPsjXi=1 n � (jUPsj+ 1) (3.11)If we now apply unit propagation (n � 1)-times this will result in thefollowing equation:



38CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREjeresultingn�1j = nn�1Xi=1 n2 (3.12)Theorem 7 Let emax denote the equality term ontained in the KB so thatjemaxj � jeij for every ei 2 KB.Then there exist proper+ KBs f8(e � )g with e in DNF suh that the losureunder unit propagation results in a KB so that emax grows exponential in thesize of emax.Proof Equation 3.12 determines the number of equalities ontained in theresulting equality term after unit propagation is applied n� 1-times while nis the length of the equality term of the original disjuntive term. We nowonstrut a general example knowledge base whih meets the assumptionsunderlying the equation.Suppose a KB that ontains a disjuntive term that has an equality termemax with jemaxj = n while the disjuntive term is of the following form:(X 6= 1 _X 6= 2 _ ::: _X 6= n) � P1(X) _ ::: _ Pn(X)Note that i 6= j if i 6= j. Hene, we need at least jCmaxj = n onstants inthe disjuntive term.Additionally, the knowledge base ontains n�1 unit terms while the omple-ment of every prediate is ontained in the disjuntive term and a prediateis not ontained twie in the n � 1 unit terms. At least the following n � 1unit terms must be ontained in the knowledge base:(X 6= a1 _X 6= a2 _ ::: _X 6= an) � :P1(X)...(X 6= u1 _X 6= u2 _ ::: _X 6= un) � :Pn�1(X)Note that the equalities orrespond to the same variable as they do in thedisjuntive term and we have n equalities eah. However, none of the equal-ity terms ontains a onstant from the set Cmax nor a onstant that is usedin another equality term of the unit terms of onern. This prevents thatidential equalities are ontained in the equality terms of the disjuntive termand the orresponding unit terms.Thereby we ful�ll the assumption underlying Equation 3.12, espeiallyjemaxj = jeunit1 j = ::: = jeunitn�1 j = n. In addition, unit propagation anbe applied suessfully sine we only deal with inequalities and there existn� 1 mathing prediates.Therefore, we an apply unit propagation n� 1-times. Consequently, as de-pited in Equation 3.12 we notie an exponential growth in the size of jemaxj



3.2. THE GROWTH OF EQUALITY-TERMS 39onerning the equality term emax. Hene, the losure under unit propagationan ause an equality term to grow exponentially in its size.It is quite obvious that this an not be handled eÆiently even if the numberof the equalities, prediates and appliations of unit propagation are rathersmall. As said before this is one of the reasons why we exluded inequalitiesfrom equality terms. More reasons are disussed in the following hapter.Now we return to the topi onerning the use of DNF. The reader mightthink at this point that the presented growth of equality terms is mainlyaused by the onversion to DNF and this is in fat true.If we would not onvert the equality terms to DNF we onjeture that thegrowth would not be exponential anymore sine we would not have to takeare of the huge number of possible ombinations of the single equalities. Infat, after a suessful appliation of unit propagation we would simply addthe orresponding equalities of the unit term to the equalities of the originaldisjuntive term and no further proessing (e.g., normal form onversion)would take plae.But as mentioned before we haven hosen in favor of DNF, beause it allowsus to ompare equalities in a eÆient way. And as also said before if we do notstore equality terms in DNF a rather omplex satis�ability test is required.For example, we would then have to take are of the above mentioned possibleombinations and the onnetions between the single variables when testinga single equality.We need the following notations for the next observations onerning thesatis�ability test of equality terms. In this ontext, � denotes an arbitrarypropositional formula and p an atomi formula. Then we onstrut a formulae� so that the following holds: � is satis�able i� e� is satis�able. In e� everyp 2 � is replaed by Xp = p respetively where X is a variable and i aonstant. In addition, Vj= e i� " j= eX1:::Xnv(X1):::v(Xn) for all Xi in e.Lemma 8 Let I be a truth assignment of the the atoms p 2 �. Additionally,VI is a variable mapping so that VI(Xp) = p if I(p) = true and VI(Xp) = �if I(p) = false when � 6= p.Then I j= � i� VIj= e�Proof The proof is by indution on the struture of �. In the base ase wehave I j= p i� VI(Xp) = p i� VI j= Xp = p."(�1 _ �2)": I j= (�1 _ �2) i� I j= �1 or I j= �2 i� VIj= e�1 or VI j= e�2 i�VI j= (e�1 _ e�2).



40CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE"(�1 ^ �2)": I j= (�1 ^ �2) i� I j= �1 and I j= �2 i� VIj= e�1 and VI j= e�2i� VI j= (e�1 ^ e�2)."(:�)": I j= :� i� I 6j= � i� VI 6j= e� i� VIj= :e�. Note that it is suÆientto hoose one onstant � so that � 6= p for all p 2 �.Lemma 9 Let V be a variable mapping for e�. Additionally, Iv is a truthassignment for every p 2 � so that Iv(p) = true if V(Xp) = p andIv(p) = false if V(Xp) 6= p.Then Vj= e� i� Iv j= �Proof Similar to the proof of Lemma 8.Theorem 10 The satis�ability problem for the formulas e is NP-hard.Proof Let � be a propositional formula, e� as in Lemma 8 and Lemma 9.It is obvious that we an onvert � in linear time to e�. Then we show that� is satis�able i� e� is satis�able. ")": Let I j= � then VIj= e� by Lemma8. "(": Let Vj= e� then Iv j= � by Lemma 9.If for example, SAT instanes would be in DNF, then it would be rathersimple to determine if a formula is satis�able or not. But the onversion toDNF itself would be very omplex. In fat, if we would give up the onversionto DNF we would shift the omplexity from spae to time, but would stayexponential in both ases. Note that the onversion to DNF applies to eahproper+ term separately whih seems pratial assuming that proper+ termsare very small ompared to the size of the entire knowledge base.Sine inequalities are seldom in general and not used in our implementationat all we think that it was the right hoie to use DNF sine it allows usthe very important feature to ompare equalities fast. But also note at thispoint that the use of no inequalities would also ause the satis�ability testto be rather simple.In this setion we showed that there are three types of equality terms onwhih unit propagation has di�erent e�ets. In partiular we ould show thatthe ombination of two inequalities auses a growth in the equality terms.Furthermore, we presented the equation 3.9 that desribed the oherenebetween the size of an equality term and the number of appliations of unitpropagation very learly. In fat, we ould show that the size of the resultingequality terms grows exponentially in its size with regard to the number ofunit propagation applied.



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION41Additionally, we disussed the use of DNF sine it is the main fator thatauses exponential growth in spae. Due to the fat that we an only shiftthis omplexity from spae to time, we think that the use of DNF is the righthoie with regard to the requirements introdued by X.Finally, this setion ontains one of the main reasons that auses inequal-ities to be exluded from the equality term in general.3.3 The Interhangeability in the order of thegeneration of Ground Terms and the ap-pliation of Unit PropagationIn this setion we show the interhangeability in the order of the generationof ground terms and the appliation of unit propagation.To introdue this topi we will �rst of all present an example to larify anessential di�erene between unit propagation applied in the propositionalase and the �rst-order ase.3.3.1 Unit Propagation in the Propositional Case andthe First-Order CaseAs we showed in the last hapter the appliation of unit propagation is iden-tial in both ases when only the prediates are of onern, but there is aruial di�erene onerning the result of a suessful applied unit propaga-tion.To larify this we an hoose for instane the following set of literals:fl; (:l _m)gAfter applying unit propagation the set will ontain the two literals l andm only. This is due to the fat that we an delete the lause (:l _ m)after applying unit propagation sine this lause represents only one groundinstane. Consequently, the set is dereased in its size.If we now turn to a knowledge base that ontains the following proper+terms, we will see that we are not allowed to delete any proper+ terms.((X 6= ) � P (X) _Q(X))(X = a � :P (X))(X = b � :Q(x))Instead of generating all ground instanes, we �rst apply unit propagationwhih has the following e�et on the example knowledge base:



42CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE(X = a � Q(X))(X = a � :P (X))(X = b � :Q(x))And this result is ahieved, beause unit propagation updates the equalityterm of the disjuntive term with the equality term of the unit term and theoriginal disjuntive term is deleted. In onsequene no further appliationsof unit propagation are possible.On the other hand we an apply unit propagation twie on the sameknowledge base if we �rst generate all possible ground instanes. In this aseone term represents exatly one ground instane and not a set of groundinstanes anymore. Note the similarity to the propositional ase whih wouldallow us to delete single literals and not to keep the original disjuntive term.(P (a) _Q(a))(P (b) _Q(b))(P (d) _Q(d))...(:P (a))(:Q(b))In this set of ground instanes we an apply unit propagation twie and gainthe following set of ground instanes:(P (a) _Q(a))(P (b) _Q(b))(P (d) _Q(d))...(:P (a))(:Q(b))(P (b))(Q(a))Note the ruial di�erene. The literal P (b) is ontained in this last set,but not in the set that was generated when we �rst applied unit propaga-tion. Hene, if we delete proper+ terms after applying unit propagation thesuggested interhangeability does not hold.At the same time this depits the essential di�erene between unit prop-agation applied in the propositional ase and the �rst-order ase. We are notallowed to delete any proper+ terms of the knowledge base exept when theyare redundant1. Consequently, the set of terms will not derease as in the1Proper+ terms are alled redundant if they represent the idential set of groundinstanes.



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION43propositional ase after applying unit propagation, but will inrease.And this is a major di�erene to the propositional ase. This implies that aknowledge base grows in a di�erent way than examined before when we applyunit propagation. We will return to this topi in the subsequent hapter.Additionally, note that this is not aused by the use of inequalities. Thesame result is for example gained when we replae the �rst term of the orig-inal knowledge base by the term ((X = a _X = b) � P (X) _Q(X)).In this ase there would not be an in�nite number of possible ground in-stanes, but exatly two. But again this set of ground instanes would allowus to apply unit propagation twie and as before one additional literal wouldbe generated in omparison to the approah when applying unit propagation�rst.3.3.2 The Coherene between Unit Propagation andthe Generation of Ground TermsAs said before we want to show in this setion that the interhangeabilityin the order of the generation of ground terms and the appliation of unitpropagation holds.At this point we assume that every equality term in the given knowledgebase fully restrits a single variable to a single onstant and that the equalityterms are in DNF. This proeeding allows us to introdue the topi in asimpli�ed way.Sine all equality terms are in DNF we an split the equalities and an reatea proper+ term for eah of the equality terms.As an example we observe the following proper+ term:(X = a _X = b � P (X) _Q(X))We an rewrite this term due to the fat that equalities are in DNF byreating two distint terms:(X = a � P (X) _Q(X))(X = b � P (X) _Q(X))If we rewrite every term in the entire knowledge base a single proper+ termrepresents exatly one ground instane and onsequently jgnd(KB)j = jKBj.And sine gnd(KB) = f�j8(e � ) 2 KB and � j= e�g and there exists onlyone possible substitution �, beause there is only one fully restrited equalityfor eah variable, the suggested interhangeability holds sine every proper+term represents exatly one ground term in gnd(KB).



44CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURENow we assume that the variables an also be restrited in any possibleway and the equality terms are not neessarily in DNF. For instane, thisimplies that one proper+ term an represent as many ground instanes asthere are onstants.To desribe what e�et unit propagation has when it is applied on this kindof proper+ terms, we �rst introdue the ondition that has to be ful�lledfrom the equality term to apply unit propagation suessfully. Note thatalso the prediates must math, but this property will not hange when wegenerate the ground terms �rst or afterwards.Sine we do not delete any proper+ terms after applying unit propagationwe an apply unit propagation on a disjuntive term that ontains variablesthat are not restrited or semi restrited with regard to one prediate asoften as there are unit terms with a mathing equality term. The fat thatproper+ terms are not deleted ensures that all possible ground terms an bereated later on.Note that only variables are of onern that belong to the prediate that isa�eted by the appliation of unit propagation.Hene, there will be as many new proper+ terms as there are mathing unitterms sine every applied unit propagation will ause the equality term ofthe resulting disjuntive term to be adapted. Note that it is possible thatredundant terms are reated.Consequently, a single proper+ term will support as many suessful appli-ations of unit propagation as there are mathing unit terms with regard tothe orresponding prediate.The same number of appliations of unit propagation will be appliedwhen the ground terms are generated �rst, beause the generation of groundterms will not a�et the number of mathing equalities. This property alsoholds for the subsequent appliations of unit propagation whih are ausedby haining in reasoning.Note that when generating ground terms the variables in the proper+ termsare simply replaed by all appropriate substitutions.Before we show the interhangeability in the order of the generation of groundterms and the appliation of unit propagation we �rst of all de�ne unit prop-agation when it is applied to a proper+KB.De�nition Let KB be a proper+ knowledge base f8(e � )g while  = (l1 _l2 _ ::: _ ln). Then UP(KB) is the least set whih ontains KB and if 8(e1 �flg [ ) 2 UP (KB) and 8(e2 � nlo) 2 UP (KB) with l� = l0� where � is an



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION45most general uni�er (MGU) 2 and (e1^e2)� is satis�able3, then 8((e1^e2)� ��) 2 UP (KB).Lemma 11 For every proper+ knowledge base f8(e � )g and lause  thefollowing holds:  2 UP (gnd(KB)) i�  2 gnd(UP (KB))Proof ")": Let  2 UP (gnd(KB)). We show this by indution on thenumber n of applied unit propagations (UPs) used to generate . Supposen = 0. Then there exists 8(e � 0) 2 KB and  2 gnd(8(e � 0)). Then 2 gnd(UP (KB)). Suppose, the Lemma holds for every lause  that isobtained by appliation of unit propagations so that the number of UPs is< n. Then there exits 1 = fl1g [  and 2 = f:l1g. 1 and 2 are obtainedby using at most n� 1 UPs eah.Hene, by indution, 1 2 gnd(UP (KB)) and 2 2 gnd(UP (KB)). Con-sequently, 8(e1 � 01) and 8(e2 � 02) are ontained in UP (KB)) and1 2 gnd(8(e1 � 1) and 8(e1 � 01). Then there exists 01 = fl01g [ 0and 2 = f:l001g.Thus there exists an MGU � so that l01� = l001� sine l1 is a ground instane of l01and l001 and (e1^e2)� is satis�able sine both e1 and e2 are satis�able for this in-stantiation, with 8(e1^e2)� � 0� 2 UP (KB)) and  2 gnd(8(e1^e2)� � 0�),i.e.  2 gnd(UP (KB))."(": Let  2 gnd(UP (KB)). We show this by indution on the num-ber n of applied unit propagations (UPs) used to generate . Supposen = 0. Then there exists a 8(e � 0) 2 KB so that  2 gnd(8(e � 0)),i.e.  2 UP (gnd(KB)).Suppose, the Lemma holds for every lause  that is obtained by appliationof unit propagations so that the number of UPs is < n. Let  be a groundinstane of a lause in UP (KB) generated by n appliations of unit propa-gations. Then the two terms 1 = 8(e1 � fl1g [ 0) and 2 = 8(e2 � f:l2g)are ontained in UP (KB), so that l1� = l2� for some MGU �, (e1 ^ e2)� aresatis�able and  2 gnd(8(e1 ^ e2)� � 0�).Hene, there are 01 2 gnd(1) and 02 2 gnd(2), so that 01 = fl01g [  and02 = f:l01g. By indution, 01 2 UP (gnd(KB)) and 02 2 UP (gnd(KB)) andonsequently  2 UP (gnd(KB)).2In this ontext a MGU orresponds to simply renaming of variables. For instane,assume the following two terms: 8X:Y:((X = a ^ Y = b) _ (X = a ^ Y = a) �P (X;Y )_Q(X;Y )) and 8Z:(:P (Z;Z)). Then fX=X; Y=X;Z=Xg is an MGU for P (X;Y )and :P (Z;Z). The resulting term is: 8X:((X = a^X = b)_(X = a^Y = a) � Q(X;X).3Two equality terms are satis�able if " j= 9�(e1 ^ e2).



46CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREThen the next theorem follows immediately from Lemma 11.Theorem 12 For every proper+ KB f8(e � )g the following equationholds: UP (gnd(KB)) = gnd(UP (KB)) (3.13)In onsequene, we proved the interhangeability in the order of the genera-tion of ground terms and the appliation of unit propagation.



Chapter 4Implementation
4.1 On implementing XIn this hapter we will present an implementation of the reasoning proedureX. Sine we are interested in an eÆient approah, some features of X andthe underlying de�nitions had to be hanged.First of all we will restrit the de�ned proper+ terms to ontain no in-equalities anymore. This proeeding is justi�ed by various reasons. Forexample, inequality auses a major drawbak onerning eÆieny as weproved in the last hapter. At least if the equality terms are represented inDNF.This has of ourse several onsequenes onerning our implementation, butfurther details are presented in the orresponding setions.At this point we present the foundation of our implementation - namelythe enoding of proper + KBs. It is of great importane how the data isrepresented, beause we depend on a fast aess of the data.Beause we would like to handle more than 105 terms we suppose that the useof a standard database (MySQL [53℄) should inrease both - manageabilityand eÆieny. Our view is supported by the fat that eÆient list handlingis only eÆient in most of the PROLOG-systems as long as a list ontainsnot more than 105 elements. For example ECLiPSe PROLOG an handlelists that ontain about 40; 000 elements quite well, but eÆieny dereasesrapidly when there are more elements of onern [32℄.The proposed struture is optimized to implement one of the key featuresintrodued by X - Unit Propagation namely. We would like to use standarddatabase features for eÆient handling of large data sets, but furthermorewe would like to use them to implement one part of the Unit Propagation-algorithm as well. For example we will determine a mathing unit lause by47



48 CHAPTER 4. IMPLEMENTATIONan easy SQL-statement.We at in this way, beause it is a ommon fat that databases inludefeatures that an handle large data sets eÆiently [23℄. One example is themethod of indexing whih allows us very fast searh.Sine X is mainly based on unit propagation we are depending on a veryeÆient implementation. All the more we an make use of database features,the more the eÆieny of our implementation of X inreases.We will not ahieve to implement unit propagation as an SQL-Statementonly, but we will get lose to that goal. The things left are done by a fewPROLOG-lines.Then we will present how our implementation proesses a given query.This topi inludes how a query that ontains for example disjuntions andonjuntions is deomposed and evaluated. For eah of the di�erent operatorsof the logial language we will present a method to test if a query is knownto be true or is unknown.In the main the eÆieny depends on the implementation of unit propa-gation and reasoning by ases in respet to a large set of terms. Additionally,the implementation of the quanti�ers is of speial importane sine quanti-�ers are already expensive in general.After we disussed unit propagation and the evaluation of a query, wehave to deal with one more key feature of X - namely reasoning by ases(RbC).Reasoning by ases is more diÆult to implement than unit propagation,beause it is as said in the Chapter 2 a muh more omplex method thatmakes use of unit propagation as a sub-proess for example.We will present a riterion that is rather simple but an be eÆientlyapplied. The riterion restrits the set of possible lauses that is going tobe used by reasoning by ases. Furthermore we again try to use as muhdatabase features as possible to implement it.When presenting the algorithm belonging to reasoning by ases this is in fatthe essene of the entire implementation, sine the seond main feature unitpropagation and the evaluation of a query are both involved. Consequentlyall important features are ontained in this algorithm.After we introdued the two main features of X and how queries areevaluated, we will present what kind of preproessing takes plae before anyquery is proessed. Within the preproessing stage we are not bound toany time limits and that is why we an apply unit propagation to the entireknowledge base, for example.In onsequene queries that would require the method of unit propagationare answered instantly. Espeially queries that require simple appliations ofModus Ponens an be answered immediately.
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Figure 4.1: A brief overview on the way our implementation works likeBut we will also see that preproessing and the presented data struture allowus to handle a large number of unit terms without any major drawbaksonerning eÆieny.In the next setion we will present every feature of our implementationusing one detailed example that requires the evaluation of an existentialquanti�er, reasoning by ases twie and from there also unit propagation.This setion will additionally show the advantages of the earlier presenteddata-struture.To give you a �rst impression of the implementation made we depit thegeneral sheme in the �gure 4.1. Within the �gure you see that our approahas two phases in general. First we enode proper+ terms and apply unitpropagation on the entire knowledge base in the preproessing phase.After this step our reasoning proedure is ready to answer queries. If thequery an be inferred by the knowledge base we answer the query diretly.If the test is unsuessful we apply reasoning by ases if the user allows it.Otherwise the answer to the query is "unknown".As the �gure states the de�ned level of reasoning by ases (denoted with"RbC-Level") plays a major role sine the given level deides how oftenreasoning by ases is applied and the entire algorithm is repeated.As said when the de�nition of X was introdued the struture of the query



50 CHAPTER 4. IMPLEMENTATIONdeides if reasoning by ases is applied at all. In fat, X only supportsreasoning by ases when the query ontains a disjuntion or an existentialquanti�er.However, in our approah we allow a user-de�ned level for reasoning by asesand so every reply to a query an use the feature of reasoning by ases if theuser allows it to. This way of allowing a user-de�ned level for reasoning byases orresponds to the modi�ed version of X [37℄.In the �gure the user-de�ned level of reasoning by ases orresponds to themaximally allowed level of reasoning by ases.4.2 The use of InequalityWhile proper+ terms allow inequalities as part of the equality term, we willnot allow inequalities in our implementation beause of the following rea-sons.Inequalities ause a major drawbak in omplexity as we disussed in thelast hapter. For example, if the Disjuntive Normal Form (DNF) is usedto represent an equality term then the size of equality terms will grow ex-ponentially with regard to the number of unit propagations applied (hapter3). Furthermore inequalities introdue a huge impat on ineÆieny whenapplying reasoning by ases. Remember how X implements reasoning byases. It adds every literal of one single ground instane one by one, appliesunit propagation and tests if for eah of the literals of the hosen term thequery is implied by the knowledge base.Suppose that you hoose a proper+ term like (X 6= a) � P (X) _ Q(X) forreasoning by ases. Sine we are only allowed to add one single ground in-stane (e.g. (X = b) � P (X)) this would imply that we an hoose from theentire set of onstants in the domain of disourse exept the onstant a.Now think of the following terms ontained in the knowledge base:(X 6= a � P (X) _Q(X))(X = a � :P (X) _Q(X))Additionally we have the query 9X:Q(X). If we hoose the �rst term forreasoning by ases we would have to add as many ground instanes of thisterm as there are onstants in the domain of disourse to prove that thequery does not hold.And sine we think of knowledge bases that onsist of more than 105 proper+terms the set of onstants is of a omparable size. Consequently this would



4.2. THE USE OF INEQUALITY 51ause at least the same number of operations to be exeuted and thereforeit would require a large amount of time in total.This is of ourse a worst ase senario sine we assume that we have to gothrough all onstants, but there are other more ommon ases that also ausenotable ineÆieny. Think for example of the ase where you have only somepossible ground instanes introdued by inequality but more than one levelof reasoning by ases.For eah of the possible ground instanes you now have to go through thelevels of reasoning by ases. Then the searh spae belonging to reasoningby ases is multiplied by the number of possibilities aused by the mentionedinequalities. Note that additional possibilities may also exist at eah level ofreasoning by ases.Comprising, all of the reasons mentioned above show that inequalities preventan eÆient implementation in our approah. Note that there might existother approahes that an handle inequalities eÆiently.At this point we will also disuss the use of inequalities. Inequalitiesare mainly used to assign a possible in�nite set of onstants to a prediate.For example, (X 6= a) � P (X) depits the fat that P (X) holds for everyonstant exept a.We ould not suggest a pratial ase where the use of inequalities would beruial or not be replaeable by another feature like a prediate for example.Think for example of the following proper+ term ontained in the knowledgebase: (X 6= John � isStudent(X))This term states that everybody exept John is a student. In our point ofview suh kind of statements are required very seldom and are of no use inthe ontext of the example.Consequently, the use of inequalities with regard to single individuals (on-stants) is very seldom. Normally inequality is used with properties, but notwith individuals.In ontrast we support inequalities in the query sine the use of inequal-ities allows us to ask queries of the following kind:Query = (X 6= John ^ isStudent(X))The query asks, if there is another individual besides John that is a student.We think that this use of inequalities is very useful and would not be possiblewithout inequalities.Inequalities from a query are not diretly involved in the reasoning proess



52 CHAPTER 4. IMPLEMENTATIONitself and are only used when testing if a prediate is ontained in the knowl-edge base or not. Therefore they an not ause any drawbaks onerningeÆieny.In onsequene, we onsider inequalities ontained in the knowledge baseto introdue a major drawbak on eÆieny, are diÆult to handle and sup-port no features that are essential in pratie. Hene, we do not supportinequalities in our implementation.4.3 Enoding proper+ terms4.3.1 How we enode proper+ termsIn order to meet the requirements mentioned above, we will �rst of all haveto �nd a way to loalize prediates and the orresponding equality-terms ina simple way. In partiular we would like to solve this task with as few SQL-Statements as possible.We will present an enoding now that allows an eÆient aess of all detailsof proper+ terms.Therefore we enode proper + KB-terms in a ompound of numbers (orletters) beause of two reasons mainly:1. equality-terms are enoded in a way that allows simple omparing withother equality-terms2. by using the enoding we have an easy and quik aess of the prediateswhere Unit Propagation an be applied onThis allows a fast appliation of unit propagation and more features arepresented when the enoding is introdued. Reall that unit propagationomprises two steps:1. mathing prediates2. mathing equality termsEssentially we reate two types of tables to represent proper+-terms, but itwill be four tables in total sine we need one type of tables multiple times.The �rst type is able to ontain disjuntive terms as well as unit terms whilethe seond holds all equality terms of the proper+ terms in the knowledgebase.We will make use of one table that ontains only disjuntive terms and two



4.3. ENCODING PROPER+ TERMS 531 2 3 4 5 6Term ID Prediate ID Variables At. RbC-Level Ori. RbC-Level NewTable 4.1: The de�ned olumns in the table "pTerm-pred" holding the prediatesof a proper+ term1 2 3 4 5Term ID Equality Term ID Equality Enoding RbC-Level UpdatedTable 4.2: The de�ned olumns in the table "pTerm-equal" holding the equalityterms of a proper+ termthat will only hold unit terms - therefore we need four tables in total. Notethat there are only two types of tables in total.At this point it is only important to remember that there exist di�er-ent tables, but their funtion will be disussed when the main features unitpropagation and reasoning by ases are introdued. Espeially, the presenteddetailed examples will provide a deeper insight.The �rst type of table named "pTerm-pred" ontains six olumns (seetable 4.1):1. a term identi�er2. a prediate identi�er3. variable names4. atual Reasoning by Cases level5. origin Reasoning by Cases level6. a ag named "new"The term identi�er is a unique mapping to a single proper+-term; theprediate identi�er does the same for prediates. We need the variable namesto extrat the right equalities from the entire equality-term orrespondingto the atual term and to determine if two equalities are uni�able. Theremaining olumns will be used for Unit Propagation, Reasoning by Cases,or both.The seond type of table named "pTerm-equal" ontains �ve olumns(see table 4.2):



54 CHAPTER 4. IMPLEMENTATION1. a term identi�er2. an equality term identi�er3. the enoded equality term4. the Reasoning by Cases-level5. a ag named "updated"The term identi�er establishes the onnetion between the two types oftables. The equality term identi�er is needed to store disjuntive equalityterms that orrespond to one proper+-term. Again the last two remainingattributes are used to apply unit propagation and reasoning by ases.The equality term is enoded as desribed in the table. An enoded equalityterm ontains four elements, namely the label of the variable, the positionof the variable in the argument array of the prediate, a sign with values 0and 1 to determine if the variable equals the following onstant or may haveany other value assigned exept that onstant mentioned. Please note thatwe ould handle equality terms like (X = Y ^ Y 6= Z), but they are notsupported in our implementation.We handle variables that are not restrited in any way by assigning the 'don'tare' symbol '�' to the attributes sign and onstant. If a prediate has morethan one variable the equality enoding of eah variable are ombined whileusing a delimiter.We need both the attribute variable names and the attribute variable posi-tion sine we use the �rst to extrat the required equalities for a term fromthe enoded equality term in the table "pTerm-equal" and the seond to om-pare equalities of the same variable position when applying unit propagationlater on. This is due to the fat that variable identi�ers might be di�erentalong various terms.Please note that we need to onvert equality terms of the proper+ knowledgebase into DNF. Only this onversion makes our representation of equalityterms possible and additionally allows us a very fast method to test if equal-ities are ful�lled.First of all when the equality terms are in DNF it is possible to split andstore them in di�erent entries in a table. This allows us to hek equalitiesin a very simple way, sine we only have to test if all the equalities of a singleentry are ful�lled.If they would not be in DNF the test if a given assignment to a variable holdswould be rather diÆult sine it ould be neessary to test various equalitiesand their possible ombinations inside the entire equality term.



4.3. ENCODING PROPER+ TERMS 55proper+-term Variable Name Variable Position Sign Constant(X = a) � P (X) X 1 1 a(X 6= ) � P (X) X 1 0 P (X) X 1 � �Table 4.3: How equality-terms are enoded; e.g. the equality-term of (X = a) �P (X) will be enoded as Xj1j1jaIn other words it would be neessary to apply some kind of satis�ability testthat is not needed when using DNF (see previous hapter).We need at least one additional di�erent kind of table that ontains themapping of prediates to numbers whereby prediates with a negative signare mapped to the negated number of the positive prediate. These are thenumbers that are used as the prediate identi�er in the table "pTerm-pred".If it is required we an make use of one more table that ontains a mappingfor onstants. It might be neessary to onvert onstants in some domain ofdisourse into a more ompat representation like a numerial identi�er.As mentioned before we use the table type "pTerm-pred" three times. In the�rst table we store proper terms that ontain multiple prediates, the seondand third table ontain proper terms having only one prediate (unit terms).We use the third table only when we reason by ases.As we will see later on, this fragmentation is very useful when we implementX sine it will allow us to redue the amount of data that has to be inspetedwhen reasoning by ases, for example.In our enoding there exists exatly one entry for eah Unit Term with thesame prediate and sign. For example, the Unit Terms (X = a) � :P (X)and (X = b) ^ :P (X) will have one entry in the table "pTerm-predU". Thedi�erent equality terms are stored with the help of the equality identi�er inthe table "pTerm-equal".It follows that it is quite easy to identify if a Unit Term with a spei�prediate is ontained in the knowledge base or not, beause we only have todetermine if there exists one entry for the prediate in the table.If we need to hek the equalities of this prediate we an do so by readingall equalities from the table "pTerm-equal" with the atual term identi�er.Sine nearly every database allows the use of indies we reate an index onthe prediate identi�er whih results in a searh time that is logarithmi inthe size of the database [65℄. This is how we establish a quik aess ofprediates.



56 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Prediate Identi�er Variable Names1 �1 X1 2 X; YTable 4.4: The enoding of (X 6= a ^ Y = b) _ (X = d) � :P (X) _ Q(Y;X) inthe table "pTerm-pred"Term Identi�er Equality Identi�er Equality Enoding1 1 Xj1j0ja� Y j2j1jb1 2 Xj2j1jd� Y j1j � j�Table 4.5: The enoding of (X 6= a ^ Y = b) _ (X = d) � :P (X) _ Q(Y;X) inthe table "pTerm-equal"4.3.2 An Example EnodingWhile we talked about properties of single parts in the enoding so far, wewould like to present all parts of the enoding in one example now. Tables4.4 and 4.5 show how the term(X 6= a ^ Y = b) _ (X = d) � :P (X) _Q(Y;X)is enoded in the database table "pTerm-pred" and "pTerm-equal".In our example the prediate P is mapped to 1 and Q to 2. We exluded thevalues for the RbC-Level and other ags, beause they are not of onernhere and will be disussed later on.All together we presented a quite simple enoding of proper+-terms, thatallows us a fast omparison of equalities and a useful foundation to deide ifa prediate is inluded in the knowledge base or not in a quik way.4.4 Unit Propagation4.4.1 ImplementationFor the given representation of proper+-terms, we will now present an al-gorithm for unit propagation. The algorithm tries to use as muh databasefeatures as possible given the urrent enoding of proper+-terms.Here unit propagation an basially be applied if we have a proper+-termwith more than one prediate (disjuntive term) and a proper+-term withexatly one prediate (unit term) whih is the negated version of one of theprediates of the disjuntive term.



4.4. UNIT PROPAGATION 57At this point the reader must be aware of the ruial di�erene betweenan appliation of unit propagation in the propositional ase and the �rst-order ase.When unit propagation is suessfully applied on a lause this original lauseis deleted in the propositional ase. But sine proper+ terms an representeven an in�nite number of ground instanes, we are not allowed to delete thedisjuntive term where unit propagation was applied to.Only when the proper+ term represents exatly one ground instane we areallowed to delete the disjuntive term sine this ase is equal to the propo-sitional ase (e.g. (X = a � P (X) _ Q(X))). An example is given in thesubsequent hapter.As a onsequene, the number of proper+-terms in our knowledge base willinrease in general instead of derease when we apply unit propagation. Onlyredundant terms and terms that represent exatly one ground instane anbe deleted. This fat has an obvious disadvantage sine it auses a growthof the original knowledge base (see previous hapter).And an inreased number of disjuntive terms will also inrease the set ofdisjuntive terms that will be of onern when reasoning by ases is applied.Consequently, more possibilities than introdued by the original knowledgebase must be tested as we will see when we present the implementation ofreasoning by ases.In our presentation of unit propagation we will not always state expliitlythat the disjuntive terms remain in the knowledge base. But we have ofourse to take are of this property when implementing unit propagation.Therefore we will �rst disuss how unit propagation is applied in general andthen we present how we handle the just mentioned topi.In general a single suessful appliation of unit propagation in our aseexists of three steps:1. Identify those pairs of proper+-terms where unit propagation an beapplied on2. Chek the equalities of eah pair for ompatibility3. Adapt equalities in the disjuntive proper+-termAs said in the last setion our enoding of proper+-terms allows a fastexeution of the �rst step. To explain how we do this, we have to say whihdata is atually stored in the four tables used.The �rst table ontains disjuntive proper+-term ("pTerm-pred") only, theseond and third only store unit terms ("pTerm-predU1" and "pTerm-predU2") and "pTerm-equal" is the one and only table that holds the equal-ities.



58 CHAPTER 4. IMPLEMENTATIONIn other words the tables "pTerm-predU1" and "pTerm-predU2" will notontain multiple lines with the same term identi�er as "pTerm-pred" has tohave multiple lines with the same term identi�er.For the moment it is only neessary to know that we have one table for dis-juntive terms, one for unit terms and one for equalities. The table "pTerm-predU2" used for unit terms will be of onern when we introdue reasoningby ases in the next setion.We now identify the required pairs of terms by using the Join-Operatorof SQL and apply it to the table that ontains only disjuntive term andthe table that holds only unit terms. Our join attribute is the prediateidenti�er and the join ondition is that the disjuntive term must hold theomplementary prediate of the unit term.For example if a disjuntive term ontains the prediate P mapped to 1 thejoin ondition is satis�ed when a unit term holds the negated prediate :Pmapped to �1.It is ommonly known that a join operation is one of the most expensiveoperators in databases in general [23℄ sine it requires quadrati omplexityin relation to the number of datasets in both tables.There exist di�erent types that redue omplexity like the use of bukethashing and the use of indies [65, 23℄. While our implementation is buildon MySQL we make use of the Index Join.At this point we will not delve into omplexity issues and will ontinue withthe introdution of our approah. In the following hapter more details willbe disussed.So far we determined the possible unit propagation pairs. For eah of thosepairs we �rst opy the atual disjuntive term and set the orresponding"new" ag to the value 2. The value 2 indiates that this disjuntive term isa newly generated one. Handling things this way is neessary to allow everypossible appliation of unit propagation.As said before one disjuntive term may represent various ground instanes.And if we would not opy the disjuntive term and apply all hanges onthe opy the update of equalities might prevent further appliation of unitpropagation.Suppose the following set of terms:X = a _X = b � P (X) _Q(X)X = a � :P (X)X = b � Q(X)If we now would apply reasoning by ases opying the disjuntive term before,we would gain the following set of terms:



4.4. UNIT PROPAGATION 59X = a � Q(X)X = a � :P (X)X = b � :Q(X)As you an see no further appliations of unit propagation are possible,beause of the updated equality term and the fat that no disjuntiveterm is available anymore. Hene, we would not be able to gain the term(X = b � P (X)) although this would be required by a orret appliation ofunit propagation.We mark the opy of the disjuntive term with a spei� value, beause thesenewly generated terms must be reonsidered by all unit terms. Consider thefollowing example:X = a _X = b _X =  � P (X) _Q(X) _ R(X)X = a � :P (X)X = a _X = b � :Q(X)X =  � :R(X)This would generate the following new terms:X = a � Q(X) _R(X)X = a _X = b � P (X) _R(X)X =  � P (X) _Q(X)From this set for example the seond term must be reonsidered by the origi-nal unit terms sine unit propagation an be applied again. In fat, the termX = b � R(X) results when using the original unit term X = a � :P (X)with the seond term of the above set.Note that a reonsideration with all of the unit terms has not to take plaewith the already inluded disjuntive terms (new = 1), beause every possi-ble ombination has been already determined.Therefore, we will use the join operator with all unit terms and newly gener-ated disjuntive terms and with all new unit terms and all disjuntive terms.We an do so, beause we an identify the new unit terms as well as thenewly generated disjuntive terms by using the ag "new".When we have opied the disjuntive term we are ready to hek if theequalities of the onerned prediates are ompatible. Therefore we use thedata generated by the join of the two tables whereby we use the term identi�erof both terms of the pair to selet the orresponding equalities from the table"pTerm-equal".Two equality terms are ompatible if they are not mutually exlusive. Forexample, (X = a) and (X 6= b) are ompatible, but (X = a) and (X 6= a)are not (see also Chapter 3).



60 CHAPTER 4. IMPLEMENTATIONIn a few lines of Prolog ode we an hek if the equalities math. If they doso it might be neessary to adapt the equality term of the disjuntive term.Consider again the example onsidered before: the updated equality term ofthe ombination of (X = a) and (X 6= b) will result in (X = a).Realize that inequalities add up in the updated equality term; e.g. X 6= aand X 6= b result in X 6= a ^ X 6= b. We already remark at this pointthat this is the reason for a major drawbak onerning omplexity. A loserexamination of equality terms and their interation will be disussed in thenext hapter. Note that an equality term of a unit term will never be hanged.When updating equalities we make use of the ag "updated" to take arethat we do not use any new generated equality term during one appliationof unit propagation. After a single and omplete appliation the value of theag is reset.If equalities math we an apply the essene of unit propagation sine weare working on a opy and simply delete the line from the table with theorresponding term- and prediate identi�er from "pTerm-pred". If only oneprediate remains, we opy the term to a table that ontains only unit terms.To summarize our implementation of unit propagation, we sketh thealgorithm in the following lines:1. Determine all possible pairs where unit propagation ould be appliedwhile onsidering the following sets of terms:� All disjuntive terms (new = 1) and all new unit terms (new = 1);then set the ag "new" to 0 at all unit terms� All new disjuntive terms (new = 2) and all unit terms; then setthe ag "new" to 1 at all disjuntive terms2. For eah pair do the following:� Copy the atual disjuntive term and proeed on the opy only.Use the ag "new" to mark this opy as a newly generated dis-juntive term (new = 2); if the disjuntive term already exists donothing.� Test if equalities of the unit- and disjuntive term are ompatible� If so apply unit propagation and adapt equalities in the disjuntiveterm and if there is only one prediate left in the disjuntive termthan opy the term to the table "pTerm-predU" and delete theentry in "pTerm-pred"; else delete the opy of the disjuntive termagain



4.4. UNIT PROPAGATION 613. Repeat the steps 1 and 2 until the set of possible unit propagation pairsis emptyNote that the meaning of the ag "new" is di�erent among disjuntiveand unit terms. Unit terms an be new (1) and old (0). Disjuntive termsare always new (1) when unit propagation is applied sine they always haveto be onsidered when we determine the set of possible unit propagationpairs. Additionally, we need the value 2 to indiate newly generated disjun-tive terms in the last yle of the algorithm. The value 0 is used when wereasoning by ases is applied later on.We do not have to hek the validity of a pair, beause one single prediatewill be ontained only one in the tables that ontain only unit terms. Hene,it is not possible that some earlier pair deletes the prediate in the same termthat is of onern in the atual pair.We use the ag "new" indiret as termination riterion of our algorithm.In the beginning the ag is set to 1 and every unit term is thought of whendetermining possible unit propagation pairs. After we have applied prepro-essing for example all unit terms will be marked as visited.After determining the �rst set of possible pairs all unit terms are onsideredto be visited and onsequently the ag is set to 0. We an at in this way,beause if a unit term is not to be onsidered a part of a possible unit propa-gation pair - in other words the omplement of the prediate is not ontainedin any disjuntive term - it will be never a part of a possible unit propagationpair.So in the next turn those visited unit terms are not of onern anymore -at least when we onsider only the old disjuntive terms in the knowledgebase. As desribed before the newly generated disjuntive terms reonsiderall available unit terms sine this is neessary. But the ag "new" of thesedisjuntive terms is diretly set to "1" again, so that in the next turn theyonly are of onern in ombination with new generated unit terms.Please note that a newly generated unit term is only marked as new, whenit is not already inluded in the knowledge base.The algorithm terminates when the set of pairs is empty. Sine the setdepends on the newly generated unit terms and disjuntive terms it is obviousthat this algorithm will always terminate.While it is legal to mark the visited unit terms and not to onsider themanymore with the old disjuntive terms, it is not orret to do the same fordisjuntive terms. If a disjuntive term is redued to a unit term by applyingunit propagation all remaining disjuntive terms must be reonsidered todetermine the possible unit propagation pairs. Simply, beause of the fatthat the newly reated unit term was not of debate before and therefore an



62 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Prediate Identi�er Variable Names new1 1 X 11 2 X; Y 11 3 X; Y; Z 1Table 4.6: The enoding of ((X 6= e) ^ (Y = a)) _ ((X = a) ^ (Y 6= e) ^ (Z =b)) � P (X) _Q(X;Y ) _R(X;Y;Z) in the table "pTerm-pred"ause new pairs.Comprising the presented algorithm is used to implement one of the mainfeatures introdued by X. As we said before we need an eÆient implemen-tation of unit propagation to enable a eÆient implementation of the entirereasoning proedure. For this reason the use of database features was essen-tial.4.4.2 ExampleTo give a more intuitive feel how our approah applies unit propagation, wegive a detailed example at this point. In this example we only like to showhow unit propagation is exeuted in our implementation. Again you shouldbe aware of the ruial di�erene between unit propagation applied in thepropositional ase and the �rst-order ase.Additionally, note that we allow inequalities even if we assume that they arenot ontained in our knowledge base. Hene our presented method supportsinequalities as said before and is therefore fully ompatible with the originalreasoning proedure.Suppose the following proper+ terms are in our knowledge base:1. (X 6= e ^ Y = a) _(X = a ^ Y 6= e ^ Z = b) � P (X) _Q(X; Y ) _R(X; Y; Z)2. X = a � :P (X)3. :P (X)4. (X = a ^ Y = g) _ Y 6=  � :Q(X; Y )The tables 4.6 and 4.7 show the enoding of the disjuntive proper termand the unit terms while table 4.8 holds the orresponding equality terms.The prediates are mapped to numbers in their alphabetial order.When we now go through the algorithm step by step we �rst of all deter-mine all possible unit propagation pairs. Here a pair simply onsists of two



4.4. UNIT PROPAGATION 63Term Identi�er Prediate Identi�er Variable Names new2 �1 X 13 �2 X; Y 1Table 4.7: The enoding of (X = a) � :P (X);:P (X)) and 8(((X = a) ^ (Y =g)) _ (Y 6= ) � :Q(X;Y ) in the table "pTerm-predU1"Term Identi�er Equality Identi�er Equality Enoding1 1 Xj1j0je� Y j2j1ja� Zj3j � j�1 2 Xj1j1ja� Y j2j0je� Zj3j1jb2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0jTable 4.8: The enoding of all equality terms mentioned in the exampleterm identi�ers, in our implementation it ontains as muh data as possibleto redue aess to the database.As said before we join the two tables using the omplement of a prediate asjoin ondition. The result of this operation an be seen in table 4.9.Consequently we have the two pairs (1,2) and (1,3). First we opy thedisjuntive term (term identi�er of opy: 4) and then we hek the equalitiesof the pair (1,2).Sine both disjuntive term and unit term have multiple disjuntive equalityterms and all of them are ompatible, the number of equality terms inreasesand reahes three in total. In fat there exist four terms, but two are identialto eah other.Equal terms are not stored in the knowledge base, beause every entry mustbe unique in regard to a term identi�er and a reasoning by ases level. Thisfeature is implemented by the table de�nition and MySQL.dt.Term ID dt.Prediate ID ut.Term ID ut.Prediate ID1 1 2 �11 2 3 �2Table 4.9: The join of the two tables "pTerm-pred" and "pTerm-predU1" fromthe example where "dt" indiates the table with disjuntive as "ut" indiates thetable with unit terms



64 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Prediate Identi�er Variable Names new1 1 X 11 2 X; Y 11 3 X; Y; Z 14 2 X; Y 14 3 X; Y; Z 15 1 X 15 3 X; Y; Z 1Table 4.10: After the �st appliation of unit propagation the line with the termidenti�er "4" and prediate identi�er "1" is deleted in the table "pTerm-pred"
The same is done for the other pair and after the �rst yle in our algo-rithm the tables "pTerm-pred" and "pTerm-equal" look like depited in thetables 4.10 and 4.11. The seond opy of the disjuntive term has the termidenti�er 5.Aording to the introdued sheme we again identify the possible pairsfor unit propagation. Sine there are no new reated unit terms from thelast yle, but new disjuntive terms we ombine them with all unit termsontained in the knowledge base.The resulting pairs are: (4,3) and (5,2). As desribed before, we again opythe disjuntive term, hek equalities and sine there are ompatible equalityterms, we an apply unit propagation suessfully.And this time a new unit term is generated. In fat both pairs generate anew unit term, but they are idential to eah other, so that there is only onenew unit term and therefore only one additional term identi�er in the end.The result is shown in the table 4.12. This time we only show the entries of"pTerm-predU", whih also holds the just generated new unit term, sine thetable "pTerm-pred" holds no new disjuntive terms. Additionally we depitthe equality terms of all unit terms in the table 4.13Note that in all entries of the table "pTerm-predU" the value of the ag"new" is set to 0 exept of the just reated unit term.Now that we have �nished the seond yle of our algorithm, the algorithmterminates although we generated a new unit term, beause there are nomore possible unit propagation pairs in the knowledge base left.



4.4. UNIT PROPAGATION 65Term Identi�er Equality Identi�er Equality Enoding1 1 Xj1j0je� Y j2j1ja� Zj3j � j�1 2 Xj1j1ja� Y j2j0je� Zj3j1jb2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0j4 1 Xj1j0je� Y j2j1ja� Zj3j � j�4 2 Xj1j1ja� Y j2j0je� Zj3j1jb4 3 Xj1j1ja� Y j2j1ja� Zj3j � j�5 1 Xj1j0ja� Y j2j1jg � Zj3j1jb5 2 Xj1j0je� Y j2j1ja� Zj3j � j�5 3 Xj1j1ja� Y j2j0j� Y j2j0je� Zj3j1jbTable 4.11: The enoding of all equality terms mentioned in the example afterthe �rst appliation of unit propagationTerm Identi�er Prediate Identi�er Variable Names new2 �1 X 03 �2 X; Y 06 3 X; Y; Z 1Table 4.12: After the seond appliation the following unit terms are stored inthe table "pTerm-predU"Term Identi�er Equality Identi�er Equality Enoding2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0j6 1 Xj1j0je� Y j2j1ja� Zj3j � j�6 2 Xj1j1ja� Y j2j0je� Y j2j0j� Zj3j1jb6 3 Xj1j1ja� Y j2j1ja� Zj3j � j�6 4 Xj1j1ja� Y j2j1jg � Zj3j1jbTable 4.13: The enoding of all equality terms orresponding to the unit termsafter applying unit propagation twie



66 CHAPTER 4. IMPLEMENTATION4.5 Evaluation of the Query4.5.1 IntrodutionIn the following setions we will desribe how disjuntions, onjuntions,quanti�ers and single prediates are evaluated in our implementation. Sinewe already disussed one of the two main features of X we now fous on howqueries are deomposed and evaluated. In fat, we will use the deompositionas introdued in X in general.Think for example of the following query 9X:P (X). In X it is de�nedthat this query is answered by using the set of onstants H+k+1 and therebygenerating many ground instane of the query and test if this ground instaneis inluded in the knowledge base.When you reall that we would like to deal with large knowledge bases thatontain more than 105 terms whih implies round about the same number ofonstants it is quite obvious that substituting a variable with eah onstantof the set is not an eÆient way to answer the query.Therefore we will present methods that are more eÆient espeially forthe two quanti�ers. At this point we will make use of the fat that we donot support inequalities in our implemented reasoning proedure.Finally, we would like to mention that we did not invest in a user friendlyinput of the query. The input of a query is prede�ned by a given struture andvery omplex queries are not supported yet although they ould be handledby the reasoning proedure itself.We ated in this way beause normally we only have very short queries andthe main fous of this work lies on the eÆieny and implementation of thereasoning proedure itselfWe already mentioned in the seond hapter that the reursive de�nitionof the reasoning proedures presented are not diÆult to implement. Forexample, the deomposition of omplex formulas is quite similar to languageproessing with grammar rules whih is a well known strength of PROLOG[9℄.From there those parts of the implementation - namely the skeleton of X -will not play any major role here. Of ourse we will desribe how we evaluatea query as said before, but we will not present solutions how very omplexqueries are deomposed.4.5.2 Format of the QueryIn our implementation we assume �rst of all that the query Q is in DNF.We assume that every formula �i has the following form when ei denotes



4.5. EVALUATION OF THE QUERY 67equality terms and Pj a prediate or its omplement:�i = (e1 ^ ::: ^ ej ^ P1 ^ ::: ^ Pk)Then a query Q must have the following format:8X18X2 ...8Xn9Y19Y2 ... 9Ym (�1 _ ::: _ �n)The reason why we do not support queries like 9X:8Y: � is due to the im-plementation of the 8-quanti�er that we will disuss in a subsequent setion.To give you a more intuitive feel whih kind of queries the implementationan answer we provide some example queries:� (X = a ^ P (X)) _ (X = b ^Q(X))� 9X:(X 6= a ^ P (X))� 9Y:((X = a ^ P (X; Y )) _ (X =  ^Q(X; Y )))� 8X:9Y:(P (X; Y ) ^Q(X; Y ))In general, we do not support queries like (e � P ). Only 8(e � P ) is handledin our implementation.We do not support the evaluation of equality terms only. For instane, we annot handle a query like 8(X 6= a). In addition, queries like 8(X = a ^X 6=a � P (X)) are not supported. This is due to the fat that equality termsare not evaluated in a distint way. We think that it would be no majorproblem to evaluate equality terms only, but mainly lak of time aused thisrestrition.4.5.3 Quanti�er-free QueriesWe begin with the desription of the way how queries only ontaining a singleprediate like (X = a ^ P (X)) is tested. By using the table that holds theenoding of every prediate, we would searh the table that stores the unitterms for the orresponding enoding. If it would ontain the enoding, wewould determine the orresponding equality term and test if the equalitiesfrom the equality inluded in the query and in the database math. If itwould not ontain the enoding we answer "unknown".The equality of proper+ terms (t1 = t2) does not play a major role in ourimplementation, but it would be possible to ompare the enoding of proper+terms in a simple way.If the query onsists of a onjuntion of prediates all of them must beknown to be true. Every single prediate is tested as desribed before. Note



68 CHAPTER 4. IMPLEMENTATIONthat X does not support reasoning by ases when the query only onsists of aonjuntion. Reall, that in our implementation the appliation of reasoningby ases does not depend on the struture of the query, but only on theuser-de�ned value. Hene, a query only onsisting of onjuntions ould beanswered with the help of reasoning by ases.And sine the query is in DNF we simply have to test if one of the disjuntionsis known to be true.A query an be of a omplex format and will then be deomposed asde�ned in X. Suppose the following query:Query = ((X = a ^ Y = b ^ P (X) ^Q(Y ))) _ (X = a ^ R(X))This query would be deomposed in the two parts ((X = a^Y = b^P (X)^Q(Y ))) and (X = a ^ R(X)) and eah of the parts would be tested by themethods presented before.Comprising, our implementation of quanti�er-free queries is nearly equalto the de�nitions presented within X.4.5.4 The ExistentialIntrodutionIn the proedure X the existential is implemented through the substitutionof domain onstants that are ontained in H+k .Reall that the set H+k holds every onstant from the query, every on-stant ontained in the knowledge base and k additional onstants ontainednowhere else.In fat this implies that a query that ontains an existential is answered bysubstituting the orresponding variables by domain onstants and for eahreated ground formula it is tested if it is ontained in the knowledge baseor not.It is obvious that this an not be done eÆiently sine we have a large numberof onstants when we assume knowledge bases with more than 105 proper+terms.There exist di�erent ideas to solve this problem. One idea would store allonstants used among a single prediate and thereby derease the number ofpossible onstants in an essential way, beause it would be only neessary tosubstitute the variables with these onstants.This is due to the fat that a prediate an only be ful�lled by the onstantsthat are onneted to it. Suppose the following proper+ terms to be ontainedin the knowledge base:



4.5. EVALUATION OF THE QUERY 69X = a ^ Y = b � Q(X; Y )X = d ^ Y = f ^ Z = e � R(X; Y; Z)X = g � P (X)Now assume the query 9X:P (X). Then it would make no sense to substitutethe variable by all the onstants ontained in the knowledge base, beauseonly the onstant g is onneted to the prediate P .Consequently, if you use the method of only using onstants that are on-neted to one prediate you have dereased the number of possible onstantsimmensely.This should provide a deeper insight in the problem desribed above. In ourexample there exist �ve onstants and thereby �ve ground instanes thatwould serve as input for the reasoning proedure.This might ause reasoning by ases for eah of the ground instanes, but atleast the appliation of the test if a ground instane is part of the knowledgebase although it is predetermined that none of them will sueed. Note thatthe majority of onstants is useless for this task.And now assume that there are thousands of onstants ontained in theknowledge base. This is the reason why we had to derease the set of on-stants in a more restritive way than done in X to solve the existential.The approah that we use in our implementation to solve the existentialis even more e�etive than the �rst presented idea.If the query exists of only one prediate we simply hek if the prediate fromthe query is inluded in the knowledge base.If it is ontained in the knowledge base there must be a onstant that ful�llsthe query otherwise the existential fails. If the query onsists of onjuntionsof prediates we hek if the di�erent equalities for the same variable arenot mutually exlusive. If they are not mutually exlusive there exists asubstitution that satis�es the prediates.Further details onerning this method and the orresponding assump-tions are presented in the following subsetions.Deomposition of the QueryAdditionally to the assumptions about the query made in the last setion weassume at this point that the query ontains no other quanti�ers than theexistential.Taking those assumptions into aount the format of a general query on-taining an existential is given by:9X19X2 ... 9Xn �, � is in DNF



70 CHAPTER 4. IMPLEMENTATIONSine � is in DNF we an split it up into the onjuntions �1 to �m.Therefore we an subdivide the query into the following distint queries [59℄:Query1 = 9X19X2 ... 9Xn �1Query2 = 9X19X2 ... 9Xn �2...Querym = 9X19X2 ... 9Xn �mWe use those parts of the original query to answer the entire query. So ifwe an show that a Queryi is known to be true the query an be answeredimmediately. If this an not be shown for any of the queries the answer tothe query is unknown. We an at in this way sine � is in DNF.Testing the QueryIn this setion we present the testing method that is used when the queryontains an existential. This method will be used in the entire algorithm tohek if the knowledge base implies the given existential.The test we apply for eah of the mentioned queries is depited in thefollowing tasks:1. Test if eah prediate of the onjuntion is stored as unit term in thedatabase2. If so, read all of the orresponding equalities into the memory and testif the equalities with regard to the existential and the query itself arenot mutually exlusive.If they are mutually exlusive fail, else return true.The �rst task (1.) an be easily aomplished by as many SQL-statementsas there are prediates in the query. The "SQL-Selet" will return a termidenti�er for eah of the prediates. If there exists no unit term for one ofthe prediates the query an not be known to be true.For the seond task (2.) we use the set of term identi�ers returned by the�rst task. We use them to read the orresponding equalities from the table"pTerm-equal". Now we have to examine the equality terms arefully. Firstof all we have to take are of the restritions introdued by the existential.For example, if we have the following query:9X9Y:(P (X; Y ) ^Q(Y; a))In this example it is implied that the equalities of the variable Y must beompatible. Now suppose the following unit terms to be in the knowledgebase:



4.5. EVALUATION OF THE QUERY 71(X1 = a ^X2 6= b � P (X1; X2)(Y1 =  ^ Y2 = a � Q(Y1; Y2)Note that we allow inequalities in our example sine our testing methodonerning the existential supports the use of them.To identify the orresponding equalities in eah unit term we use the variableposition in eah of the prediates that is oupied by the variable that isbound to the existential. The variable position provides the identi�ation ofthe mathing equality term within eah of the unit terms.Returning to the example we have to test ifX2 6= b and Y1 =  are ompatiblesine they are restrited by the variable Y within the existential. In thisexample they are not mutually exlusive and therefore ompatible.As said before two equality terms are ompatible if they are not mutuallyexlusive. For example (X = a) and (X 6= b) are ompatible, but (X = a)and (X 6= a) are not as (X = a) and (X = b) are neither.In fat the test if the equalities of all the unit terms of onern are notmutually exlusive is a key feature here.Additionally, we have to test if the equality term of the unit term satis�es therestritions made by the onstants ontained in the query. In our examplethose are also satis�ed.If all tests sueed the query is answered as known to be true. Otherwisethe test will fail and if there is no reasoning by ases allowed, the query willbe answered as unknown.While testing the equalities of a query it is important to be aware of thefat that it is not required to determine one spei� value for the variable sothat the urrent prediate holds. An existential only implies that there is asubstitution that makes the prediate true.Take a look at the following example where we apply reasoning by ases:KB = f(P (a) _Q(b)); (:P (a) _Q(a))gQuery = 9X:Q(X)In partiular that means that when we add P (a) to the KB it follows thatQ(a) is in the KB and hene the query holds for the �rst prediate.If we now add Q(b) - as it is required by reasoning by ases - again thequery is known to be true. So, when we apply reasoning by ases there is noonnetion between the equalities of the prediates that are used in reasoningby ases.As said when we presented the implementation of reasoning by ases thetest of a query is a subroutine in the entire algorithm.



72 CHAPTER 4. IMPLEMENTATION4.5.5 The 8-Quanti�erThe 8-quanti�er is handled within the reasoning proedure X in a similarway as the existential. But now every substitution of a variable by a onstantof the set H+k must ful�ll the orresponding prediate. Hene, it is neessaryto test every possible ground instane. It is obvious that this approah wouldinvolve a large set of ground instanes to be tested.But sine we do not support inequalities it is not neessary to substituteevery possible onstant from the set H+k . Our implementation is based onthe following properties.Lemma 13 (Levesque, [38℄)Let � be a sentene that ontains no equalities and � denotes a surjetionfrom C to C. Then I j= �� i� I� j= �.Proof This was shown and disussed in [38℄. In general, the proof is basedon the surjetion � while every onstant that is ontained in KB or � ismapped bijetively and the new onstant n� is mapped to a onstant i, sothat i 2 KB or i 2 �.To make use of this result in our ase the knowledge base nor the query mayontain equality terms. Sine we do not support inequalities and equalityterms are in DNF we an generate a orresponding e-free knowledge basef8()g that is equivalent to the original knowledge base, but ontains noequalities at all (see Chapter 3).In the following we use the notation of the e-free KB f8()g. Reall, that weuse KB j=� � as an abbreviation for " [KB j= � to indiate the use of thestandard model of equalities.Lemma 14 Let KB be an e-free KB f8()g and � a sentene that ontainsno equalities. Then KB j=� �Xn� ) KB j=� �Xi , i 2 CProof Let I j=� KB. Then I j=� KB�. By Lemma 13 I� j=� KB holds.Provided that I� j=� �Xn� holds, also I j=� (�Xn�)� holds.Then I j=� �Xi , i 2 C.



4.5. EVALUATION OF THE QUERY 73Theorem 15 Let KB be an e-free knowledge base f8()g. � is a sentenethat ontains no equality terms.Then KB j=� 8X:� i� KB j=� �Xn�, n� a new onstant.Proof ")": obvious. "(": By the assumption and Lemma 14 KB j=��Xi ; i 2 C and onsequently, KB j=� 8X:�.This result allows us to test if � is true for all possible values of the variableX by applying only one single substitution.Until now we assumed that � does not ontain any equality terms. First wewill add inequalities. For simpliity, we only examine the ase of a singleunary prediate and a single binary prediate, respetively. The general aseof a disjuntion of prediates of any arity follows by a similar argument. Notethat inequalities are allowed in the query only.Lemma 16 Let KB be an e-free KB f8()g.Then KB j=� 8X:(X 6= a) � P (X) i� KB j=� 8X:P (X).Proof "(": obvious. ")": Let KB j=� 8(X 6= a) � P (X). Then KB j=�P (n�), when n� is a new onstant. By Lemma 15, KB j=� 8X:P (X) follows.This shows that it is possible to handle a semi-restrited variable ontainedin a prediate in the same way as a free variable.Now we allow besides inequalities also equalities and gain the following result.Lemma 17 Let KB be an e-free KB f8()g.Then KB j=� 8X:8Y:(X = a ^ Y 6= b) � P (X; Y ) i� KB j=� 8X:8Y:(X =a) � P (X; Y ).Proof "(": obvious. ")": Let KB j=� 8X:8Y:(X = a ^ Y 6= b) � �,then KB j=� 8Y:(y 6= b) � P (a; Y ). Then KB j=� P (a; n�), when n� isa new onstant. By Lemma 15, KB j=� 8X:8Y:P (a; Y ). Consequently,KB j=� 8X:8Y:(X = a) � P (X; Y ).This means that if a variable is bound to a onstant we test if the orre-sponding equality term in the knowledge base ontains a mathing equalityfor the variable. If an inequality is ontained in the equality term of thequery we bind the variable of onern to a new onstant and then test if theorresponding equality mathes.Comprising, these observations allow us to implement the 8-quanti�er witha minimum of required substitutions.



74 CHAPTER 4. IMPLEMENTATION4.5.6 The Combination of Quanti�ersUntil now we only disussed the two quanti�ers distint from eah other. Inthis setion we will investigate, if the presented implementations for eah ofthe quanti�ers an be ombined. Espeially, we explore whih onnetionsthe quanti�ers introdue among the quanti�ed variables when we ombinethe two quanti�ers.In our implementation we only support queries that ontain both kind ofquanti�ers if they an be onverted into the following format:8X18X2 ...8Xn9Y19Y2 ... 9Ym �, � in DNFNote that this format of the query is neessary to allow an eÆient handlingof the quanti�ers in our approah. Espeially the way we implemented the8-quanti�er does not allow a ombination of quanti�ers like 9X:8Y:P (X; Y ).If we now simply apply our methods as introdued in the two setions before,we would test for every X1 to Xn that are ontained in eah of the disjuntiveparts of � if they hold for every possible onstant. In the same way we wouldtest if the equality terms belonging to the variables Y1 to Ym within a singledisjuntive part of the query would math.For example, suppose we have the following knowledge base:KB = f(Y = a � P (X; Y )); (Y = b � Q(X; Y )))gThe query 8X9Y:(P (X; Y )_Q(X; Y )) would be answered by X as known tobe true. The same answer is gained when using our implementation, beausethe variableX has an empty equality term (Xj1j�j�) so that the new onstantmathes. Additionally, there exists an onstant that substitutes Y and ful�llsthe prediate.Note that when the two prediates in the query would be onneted by anonjuntion the query would be answered with "unknown" even while thetwo prediates from the knowledge base are single unit terms, beause thenthe existential would link the seond arguments of eah of the prediates witheah other and would require them to be equal. The query 8X9Y:(P (X; Y )^Q(X; Y )) would be answered by X as unknown. The same answer is gainedwhen using our implementation, beause then the existential would link theseond arguments of eah of the prediates with eah other and would requirethem to be equal.We implement the mentioned ombinations of quanti�ers while we make useof the results gained in the last setion onerning the 8-quanti�er and weprovide that existential variables that are used in prediates onneted byonjuntions are not mutually exlusive.



4.6. REASONING BY CASES 754.6 Reasoning by Cases4.6.1 IntrodutionSine we introdued the idea of reasoning by ases in the seond hapteralready, we now desribe how we implemented reasoning by ases in ourapproah.As said in the seond hapter the main problem with reasoning by ases isto determine the next lause to hoose. There is no riterion that wouldallow us to make the "right" hoie diretly or at least it would be too timeonsuming to preompute the most useful lause. The only thing we an dois to restrit the searh spae slightly as desribed in the following setion.Reall, that in our implementation reasoning by ases is restrited toa user-de�ned level and does not depend on the struture of the query assuggested in X.We will �rst of all present the riterion that we use to restrit the set ofpossible lauses that an be used at a spei� appliation of reasoning byases. At the same time we will see that there are various riterion that �lterout spei� possibilities, but an not be generally applied.Additionally, we will disuss the fat that it is not possible to preproess theknowledge base to gain better results onerning the set of possible lauseswhen more than one level of reasoning by ases is of onern. We will disussthis topi also in the setion preproessing.Thereafter we present the algorithm that implements reasoning by asesin our approah.4.6.2 The Criterion of Reasoning by CasesIn our implementation reasoning by ases is applied while making use of thefollowing riterion.Before we present the riterion �rst note that lauses are onneted to eahother if they share the same prediate. We use the absolute value of a predi-ate, hene the lauses (P (X)_Q(x)) and (:P (X)_Q(x)) are onneted byP and Q. Suppose the query would onsist of the prediate P only, then thelause (:Q(X) _R(X) _ S(X)) would be indiretly onneted to the query.The �rst two lauses are diretly onneted to the query.The riterion allows us to pre-ompute a onservative estimate of the disjun-tive terms that are onneted with eah other [42℄. This set is used whenreasoning by ases is applied.



76 CHAPTER 4. IMPLEMENTATIONCriterion Reasoning by CasesThe set of lauses that will be used for reasoning by ases at any level will onlyontain the lauses that are onneted by prediates diretly or indiretly tothe prediates of the query.Note that this riterion requires the knowledge base to be onsistent in theontext of the reasoning proedure of onern. Hene, our �rst step when ap-plying reasoning by ases is to determine all proper+ terms in the knowledgebase that ontain the prediate from the query. Seondly, we determine allof the disjuntive terms that are onneted to the �rst set of proper+ termsby prediate. Note that this also inludes lauses that are not diretly re-lated to one of the disjuntive terms of the �rst set. The following proedurerepresents the method how the possible set of lauses for reasoning by asesis determined.||||||||||||||||||||||||||||||Initialize:� Determine all prediates from the query and store them in the variablePrediateIDsnew� PrediateIDsused, PrediateIDstemp, and TermIDsRbC are emptyvariablesRepeat� Identify all disjuntive terms that ontain a prediate that is inPrediateIDsnew or its omplementary prediate is ontained inPrediateIDsnew� Store the identi�ed terms in TermIDsRbC if they are not already on-tained� Set PrediateIDsused=PrediateIDsnew and delete all prediates fromPrediateIDsnew� Determine all prediates ontained in the newly identi�ed terms andstore them in PrediateIDstemp� Selet only newly determined prediates by omparing the prediatesstored in PrediateIDstemp and PrediateIDsused and store them inPrediateIDsnewUntil PrediateIDsnew ontains no prediates||||||||||||||||||||||||||||||



4.6. REASONING BY CASES 77After the appliation of this proedure the variable TermIDsRbC ontainsall disjuntive terms that are of onern when reasoning by ases is applied.The proedure is initialized by storing the prediates ontained in thequery in PrediateIDsnew. The prediates from the query are used to deter-mine the diretly onneted disjuntive terms. All further reursions of theproedure identify the indiretly onneted disjuntive terms.As the reader an observe we searh for a prediate and the omplement ofa prediate at the same time. This proeeding is motivated by the fat thatwe an aomplish this task in one single SQL-Statement:SELECT * FROM pTerm-pred WHERE prediateId IN (PrediateIDsnew)The indiret way would look for the atual prediates only and then look inthe following yle only for the omplementary version of the prediate. Inthe end both approahes will return the same set of disjuntive terms.We use the variable PrediateIDsused to keep trak of the prediates thathave been already used to determine disjuntive terms. Then, it is possibleto selet only new prediates in the newly disovered disjuntive terms. Atthe same time this will terminate the proedure after all disjuntive termsfor reasoning by ases are determined.In Prolog this algorithm ould be implemented by the following snippetof ode:% Detemine the terms that will be used by reasoning by asesget_Clauses([℄,_,[℄).%% PIDList holds the prediate identifiers (initial: Query)get_Clauses(PIDList, PrevPIDList, [ReturnTIDs|ReturnTIDList℄) :-% reate the list of the omplementary prediatesmaplist(times(-1),PIDList,InversePIDList),append(PIDList,InversePIDList,CompletePIDList),% get all orresponding disjuntive termsgetall_DisjuntiveTermIDs(CompletePIDList, ReturnTIDs),% get all prediates that are ontained in ReturnTermIDsgetall_PrediateIDs(ReturnTIDs, AtualPIDList);% add to visited prediateIDsListappend(CompletePIDList,PrevPIDList, VisitedPIDList),% delete all previous used prediateIDs from the urrent PIDlistsubtrat(AtualPIDList, VisitedPIDList, NewPIDList),% start the next yle with the new prediatesget_Clauses(NewPIDList, VisitedPIDList, ReturnTIDList).



78 CHAPTER 4. IMPLEMENTATIONAs said earlier we have to determine the set of lauses that will be used byreasoning by ases online. Consequently, the algorithm must be fast. In fatthis is the reason why we an not take are of equalities for example. Itis obvious that the observation of equality terms would restrit the set ofpossible lauses in a more e�etive way.But we only use a prediate and its omplement version to explore the on-netions among di�erent lauses, beause the analysis of the equality termswould be too time onsuming.There exist also other methods to restrit the set of lauses, but as far aswe know they an not be applied eÆiently. We will disuss some methodsbriey in a later setion. At this point we have hosen in favor of a large setof possible lauses and a fast method of determination.Note that when all the lauses in a knowledge base are onneted diretlyor indiretly to a given query all lauses of the entire knowledge base must beonsidered when reasoning by ases is applied. It is obvious that those kindof knowledge bases an not be handled eÆiently with our implementation.A better riterion would improve this, but we think that those kind of knowl-edge bases an not be handled eÆiently in general. Additionally, thoseknowledge bases do not belong to the �eld of appliation of onern.We an not preproess the set of possible lauses sine we allow morethan one level of reasoning by ases. At the �rst level of reasoning by ases asingle prediate is added to the knowledge base and this might have essentiale�ets on it. And sine a subsequent level in reasoning by ases uses theknowledge base in the status the previous levels have hanged the originalknowledge base there is no way to preproess the set of lauses. Although wewill purpose a method to preproess the knowledge base in a later setion.But this method an only be used when exatly one level of reasoning byases is of onern.Finally, we presented a method in this setion to preompute a onser-vative estimate of the set of lauses to be used by reasoning by ases inadvane.4.6.3 ImplementationIn this setion we present our implementation of reasoning by ases. Sineunit propagation is a part of reasoning by ases the algorithm inludes the twomain features introdued by X. Therefore, the algorithm desribed here showshow we answer a query in general. The testing of a query is aomplished asdesribed in an earlier setion. In the following algorithm we will make useof those variables:



4.6. REASONING BY CASES 79� RbCLevel: atual reasoning by ases level, the initial level is �1� MaxRbCLevel: maximum reasoning by ases level (user-de�ned)� RbCTermsi: Set that ontains the term identi�ers that are of onernat the reasoning by ases level i1. Test the query while using the atual knowledge base2. If the test did not sueed for any of the queries apply reasoning byases:(a) Inrement the atual RbCLevel(b) If RbCLevel > MaxRbCLevel then fail() Determine the set of lauses that will be used for reasoning byases (as desribed in the setion before), delete already usedterms (marked) from the set and store it in RbCTermsRbCLevel(d) Until not every term in RbCTermsRbCLevel is visited or not return1 do the following:i. Add the atual prediate of the urrent term to the KB asunit term. If there is more than one equality term use oneequality term that was not used before. Note that only onesingle ground instane an be added at one. Mark the entireterm as used.ii. Apply Unit Propagationiii. Go to step 1. (test if query is implied by the KB and applyreasoning by ases again if neessary and possible)iv. If iii) sueeds (returns 1) proeed to the next prediate inthe atual term and go to step a), else fail and if there areunused equality terms go to i) and else go to the next term inRbCTermsRbCLevel and undo all hanges (e.g. unmark usedterms, delete added unit terms and all hanges done in theknowledge base) aused by this RbCLevelv. If step iv) is suessful for every prediate of one term, thenreturn 1(e) If step e) does not sueed for any of the terms in RbCTermsithen return 03. If the test sueeds for the query then return 1



80 CHAPTER 4. IMPLEMENTATIONNote that we will provide a detailed example in the following setion.Sine those steps sketh the algorithm briey we go through it step by stepnow.In step 1.) we apply the test that we have introdued in an earlier setion. Itheks if the given query is supported by the atual knowledge base or not.If the query is not known to be true we apply reasoning by ases. Thisauses the inrease of the atual RbC-Level whih is simply neessary to beable to limit reasoning by ases by the user-de�ned maximum (see 2.a) and2.b)). Note that we start with the initial RbC-Level �1.In the setion 2.) we determine the set of lauses that will be of onernwhen we apply reasoning by ases. At this point we use the method presentedin the setion before. Every lause that is onneted diretly or indiretly byprediates to the prediates ontained in the query will be inluded in theset RbCTermsRbCLevel.We prevent yles in reasoning by ases simply by marking the term that hasbeen used for the atual appliation of reasoning by ases. As an be seen in2.d)iv) we unmark the term that was marked at the atual level again if weproeed to the next term.The entire setion 2.d) ontains the essene of reasoning by ases. Wetake the �rst term from the previous generated set of term identi�ers. Nowwe add the �rst prediate and the orresponding equality term in this hosenterm to the database. In fat this is of ourse a unit term (2.d)i)).At this point it is important to mention that we only add one single groundinstane to the knowledge base. For example, suppose the hosen term to bethe following one: (X = a) _ (X = b) � P (X) _Q(X)Then we add at �rst the unit term (X = a � P (X)). If reasoning by asesdoes not sueed then, we do not proeed to the following term, but �rsttry the other equality X = b. In general, we �rst add every possible groundinstane of the atual term before proeeding to the next possible proper+term. We add a prediate that ontains unrestrited variables by using equal-ities that are used by other proper+ terms in the knowledge base and ontainthe idential prediate. If this does not sueed we use a "don't are"-symbolto generate a ground instane and keep trak of an assignment to this vari-able so that the variable an have only one spei� value during the atualreasoning proess. Note that the variable might be assigned to a onstantontained in the query, so that we take are of onstants that are not usedin the knowledge base but in the query only. This approah is similar tothe implementation of the 8-quanti�er. It prevents the substitution of every



4.6. REASONING BY CASES 81possible onstant inluded in the entire knowledge base. If a proper+ on-tains no unrestrited variables at all, we simply add eah possible disjuntiveequality term one by one if neessary.Sine we have a new unit term in our database we apply unit propagationagain as desribed in some earlier setion. This may ause that some otherunit terms are reated and our query ould now be known to be true. Thisis why we test the query again (see 2.e)iii.)).The return to step 1.) is in fat a reursion. If the test sueeds we go to thenext prediate in the atual term. But if the test fails we apply reasoning byases again. But now not on the original database but on the database thatinludes the hanges from the previous reasoning by ases level. The depthof reursion is restrited by the maximum reasoning by ases level (2.b)).If it is not possible - even with the highest reasoning by ases level - then weleave the atual term, undo all hanges aused by the atual RbC-Level, gobak one level and try all other possible terms at this level.This proeeding is repeated until we again reah level zero. Then we proeedto the next term in the set of lause at RbC-Level 0, restart the entire proessand proeed until there are no more possible terms at RbC-Level 0. In fatthis proeeding is ommonly known as baktraking.Note that every single di�erent term may additionally have several groundinstanes due to multiple equalities what of ourse auses an additional om-plexity.At this point it should be obvious that the appliation of reasoning by asesis a omplex proess sine there are not only possibilities in reasoning in-trodued by the set of lauses ful�lling the riterion, but additionally bydi�erent equalities.Consequently, the reader should be aware of the fat that high levels ofreasoning by ases an not be applied eÆiently. And even small level ofreasoning by ases may ause long answering times sine the number of pos-sibilities depends also on the trait of the knowledge base.Think for example of a knowledge base where every lause is diretly or in-diretly onneted to a given query. Then all lauses ontained in the entireknowledge are of onern when reasoning by ases is applied. But this is atopi of the following hapter.Undoing all hanges for example inludes deleting added unit terms andunmark the term that was involved in this atual appliation of reasoning byases at the urrent level.Note that we only undo hanges applied by the atual level and not allhanges. If we go bak from RbC-Level 1 to 0 the database is again in itsoriginal state.



82 CHAPTER 4. IMPLEMENTATIONBe aware of the fat that we have to onsider all possibilities at eah levelsine we will test all of the terms that are atual in the urrent level (weagain apply 2.d)). This inludes that we sometimes go just one level bakin reasoning by ases, go to the next term, test it and inrement the levelagain.Note that when we return to step 1. in 2.d)iii) we support the strategyof "depth-�rst" when reasoning by ases. This means that we go to themaximum RbC-Level eah time when we add a new unit term (a singleprediate) and the query is not tested suessfully at any level before.If we reahed the maximum level and the query is not known to be truealthough we tried every possible term at eah level we proeed to the nextterm in the set RbCTerms0.We have hosen the strategy of "depth-�rst" beause of two main reasons:� If we would use "breadth-�rst" we would always have to rereate thedata that was ahieved in the reasoning by ases levels before� We assume only very small maximum RbC-Levels (normally 1 or 2)We think that an improvement onerning the implementation of thispart of reasoning by ases would be to use the strategy of breadth-�rst anda data struture that supports to keep data of di�erent terms and levels ofreasoning by ases distint.This approah would of ourse be more spae onsuming than our urrentimplementation, but sine the amount of generated lauses ould be handledby a database and this approah would be more e�etive and eÆient, wethink that it would be at least useful when you would like to support highermaximum values for reasoning by ases than two or three.If all prediates of one term of the �rst identi�ed set turn out to supportthe query by applying reasoning by ases one or as often as required andallowed the query is known to be true.In ontrast, if we do not �nd any term that supports the query with all ofits prediates at any allowed level of reasoning by ases the query is unknown(2.f)).The step 3.) is used as diret return value when we do not need to applyreasoning by ases at all (step 1. sueeds) or as return value in one of thereursive alls.In general, "return 1" as �nal return value states known to be true as "return0" denotes unknown.The presented algorithm implements the main part of X sine it inludesthe two main features reasoning by ases and unit propagation. Every kindof query will be answered by this algorithm.



4.7. PREPROCESSING OF THE KNOWLEDGE BASE 83Of ourse there are some features of X left, but this algorithm belongs tothe essential parts of the implementation.4.7 Preproessing of the Knowledge BaseWhile we already introdued all main features of our implementation we nowpresent whih kind of preproessing takes plae before any query is answered.As mentioned before preproessing espeially regards to the enoding of agiven proper+ knowledge base and the appliation of unit propagation.In the following we will disuss both topis and we will additionally brieydisuss methods that ould be used to enable a fast proessing when we applyreasoning by ases.First of all we have to enode a given proper+ knowledge base. Atuallythis is done as desribed in the orresponding setion. Note that this not onlyinludes the enoding of eah term of a proper+ knowledge base, but also theenoding of prediates and onstants. Sine this is done during preproessingwe are not tied to the bounds of eÆieny and therefore it is for example noproblem to onvert every equality term into DNF.However, at this point we would like to mention a fat that we will disussalso in a later setion. At the moment there exist no proper+ knowledgebases at all. Hene, it ould be even possible that knowledge bases arediretly reated in a given format (like our suggested one), so that nearly noenoding has to take plae.While this ould be an advantage aused by the fat that there exist noproper+ knowledge bases until now, the fat also auses a major problem:we do not have any opportunity to test our approah. But this topi will beof onern later on.The most important feature of our preproessing is the appliation ofunit propagation on the entire knowledge base. This is of suh importane,beause it allows us to have a large number of unit terms in our knowledgebase.This is due to the fat that after we tested every unit term with every dis-juntive term during preproessing we will never again have to onsider theseunit terms when we apply unit propagation later on.If a unit term does not sueed on a disjuntive term it will not sueedat any later test. If a unit term an be applied the resulting disjuntive orunit term is stored in the knowledge base and there is no need to redo thisappliation.Of ourse we will need to aess the entire set of unit terms, but we do nothave to onsider all of the possible unit terms when we apply reasoning by



84 CHAPTER 4. IMPLEMENTATIONases. Then we only have to take are of the new generated terms in theurrent reasoning proess.In fat, this is the reason why we have hosen three distint tables that holddisjuntive terms, "old" unit terms and new unit terms. Preproessing allowsus to have a large number of unit terms in our original knowledge base sineit does a�et our reasoning proedure only slightly as we show in the nexthapter.As said before we need to searh the table of unit terms during every reason-ing proess, but sine we restrit ourself to have maximally 106 unit termsthis an be handled eÆiently by the MySQL-database (see next hapter).And sine unit propagation is applied during preproessing there existqueries that an be diretly answered. Espeially queries that would requiresimple appliations of Modus Ponens an be answered immediately.Suppose the following proper+ terms ontained in the original knowledgebase: P (X), :S(X), :P (X) _Q(X), :Q(X) _R(X) _ S(X)After enoding these terms and preproessing the knowledge base the follow-ing result are ahieved:P (X), :S(X); :P (X) _Q(X), :Q(X) _ R(X) _ S(X), Q(X), R(X)Hene, if we now ask 9X:R(X) we an diretly answer that the query isknown to be true, sine the prediate is ontained in the preproessed knowl-edge base as unit term.Consequently, queries that require the appliation of Modus Ponens an beanswered instantly and therefore an be answered very eÆiently (see nexthapter).Note that the appliation of unit propagation will ause the original knowl-edge base to grow. We will disuss this topi in the subsequent hapter.Another kind of preproessing ould allow us to apply reasoning by aseseÆiently at least if we restrit the level of reasoning by ases to be maximally1.For example, if you determine the lauses that are diretly or indiretly linkedto the query and this set does not ontain any lause that has exatly twoprediates there must be a lause that holds exatly the omplement of theprediates ontained in the query.This is due to the fat, that further haining in reasoning aused by unitpropagation an only our, when there exist lauses that ontain exatlytwo prediates. Hene, if they do not exist and we allow only one level ofreasoning by ases there must exist a lause that holds the inverted prediatesof the query. Otherwise it is not possible that reasoning by ases sueeds.



4.8. WORST-CASE COMPLEXITY 85Sine this is a rather simple riterion you might wonder why we did notinlude it in our approah. The reason why we did not inlude this riterionamong other possible riterion is that we support more than one level ofreasoning by ases in general.And then the onnetions between the lauses and the possibilities in haininginreases in a way that they an not be handled as eÆient as with theriterion that we used. As said before we deided in favor of a riterion thatan be applied eÆiently.All in all preproessing in our implementation reates the foundation ofour approah by enoding a given proper+ knowledge base and allows us toanswer queries that would only require the appliation of unit propagationinstantly. In fat, one main method of reasoning introdued by X is appliedafter we preproessed the given knowledge base. Furthermore preproessingand the hosen data struture enable us to handle round about 106 unit termswithout any major drawbaks onerning eÆieny.Additionally, we think that during preproessing other tasks like a prepara-tion for a later use of reasoning by ases ould be applied to inrease eÆienyfor speial kind of queries.4.8 Worst-Case ComplexityIn this setion we disuss the worst-ase omplexity of the presented imple-mentation in terms of the number of applied unit propagations. In the fol-lowing we assume that a single appliation of unit propagation requires lineartime omplexity in the number of proper+ terms in total. This assumptionis for instane based on the fat that we an assign a maximal length to asingle proper+ term and this length is very small ompared to the size of theentire knowledge base. Additionally, in the propositional ase [73℄ presentsan algorithm with linear time omplexity. In addition, we assume that ev-ery term is of onern when reasoning by ases is applied. Furthermore, weuse an e-free KB f8()g (see Chapter 3) during our observations. Reall,that this representation is equivalent to proper+ knowledge bases f8(e � )gwhen e in DNF and e ontains no inequalities.We will use the following parameters:n = jKBj =jCKBjl = Maximal number of prediates ontained in a disjuntive termk = Maximal number of variables in a termRbCLevel = Maximally allowed level of reasoning by ases



86 CHAPTER 4. IMPLEMENTATIONNow we determine the number of applied unit propagations to approximatethe worst-ase omplexity. Thereby, we make use of Theorem 6 from Chapter3. As it was shown in Chapter 3 an e-free knowledge base with n termsresults under the losure of unit propagation in a knowledge base whose sizeis maximally nk+1 while k denotes the maximal number of variables in eahof the terms.Therefore, we an assume that every single added unit term during reasoningby ases at the �rst level an only ause less than nk+1 appliations of unitpropagation. Note that this requires besides other properties that every termis diretly or indiretly onneted to every other term in the knowledge base.Sine there are n terms and every term has maximally l prediates and weapproximate the number of argument values of a single prediate by themaximal number of variables ontained in a term (k) we an not add morethan about n �nk unit terms while we neglet l sine l << n. Mainly, this isdue to the fat that every variable an be substituted by n onstants sinejCj= n. Reall, that we an only add one single ground instane during anappliation of reasoning by ases.In total, we apply unit propagation n2k+2-times at the �rst level of reasoningby ases.Note that we neglet the time that is used to hoose a term, to add anappropriate ground instane and to undo all hanges when going bak onelevel of reasoning by ases.If we set RbCLevel = 2 we try for every added unit term at the �rst levelof reasoning by ases to sueed while adding one other possible unit termwhih may ause again about nk+1 appliations of unit propagation for eahadded term. Note that we an again add about nk+1 unit terms.In general, the worst-ase omplexity is:O((n2k+2)RbCLevel)Note that the worst-ase omplexity is exponential in the number of theapplied level of reasoning by ases, but not in the size of the knowledge base.Additionally, note that k is a very small onstant ompared to n.Sine we only disussed the worst-ase omplexity until now, please notethat the number of possible substitutions is muh smaller and haining inreasoning takes plae only two or three times in the pratial ase. As men-tioned before, we assumed in the disussion of the worst-ase senario thatevery term is onneted to every other term like it is ommon in a SAT in-stane. But this is not the �eld of appliation of this reasoning proedureused here.



4.9. A DETAILED EXAMPLE 87Example Knowledge Base(X = a) � Q(X) _ P (X; Y )(Y = d) � R(X) _ P (X; Y )(X = a ^ Y = d) � S(X) _ P (X; Y )(X = a) � :Q(X) _ :R(X) _ :S(X)Table 4.14: An example knowledge base where all of the features of the introduedapproah will be applied onHowever, the omplexity of the algorithm will be exponential in the user-de�ned level of reasoning by ases even with the just made assumption forthe pratial ase. This is a onsequene of the fat that high levels of reason-ing by ases ause reasoning to get lose to lassial logial entailment whihis intratable in general. Therefore we suggest small levels of reasoning byases. As we will see in the following Chapter, the answering time of thealgorithm also depends on the number of terms that are of onern duringan appliation of reasoning by ases whih orresponds to the observationsmade in the worst-ase senario.4.9 A detailed ExampleSine we desribed separately how proper+ terms are enoded, unit propaga-tion and reasoning by ases are applied, and how queries are evaluated in ourimplementation, we now turn to a detailed example to larify how di�erentpiees of the introdued approah �t together.Note that when we apply unit propagation we will not denote every reateddisjuntive term to enable a better readability.Suppose the example knowledge base as depited in table 4.14.Of ourse we �rst of all have to enode the knowledge base into thedata struture on whih our algorithm works on. The enoding requires twotables in essene as said before. Table 4.15 and 4.16 hold the orrespondingenoding while the enoding of the single prediates is not shown; they aresimply mapped to the numbers 1 to 4 aording to their alphabetial order.Preproessing of the knowledge base will leave the KB una�eted sinethere are no unit terms in the KB at all. Therefore, the table "pTerm-predU1" will ontain no entries. Reall that preproessing only applies tounit propagation.Now we would like to answer the following query while we allow two stepsof reasoning by ases



88 CHAPTER 4. IMPLEMENTATION
termId prediateId variables rbLevel oldrbLevel new1 2 X 0 0 11 1 X; Y 0 0 12 3 X 0 0 12 1 X; Y 0 0 13 4 X 0 0 13 1 X; Y 0 0 14 �2 X 0 0 14 �3 X 0 0 14 �4 X 0 0 1Table 4.15: The table 'pTerm-pred' holding one part of the example knowledgebase
termId equalityId equalities updated rbLevel1 1 Xj1j1ja� Y j2j � j� 0 02 1 Xj1j � j � �Y j2j1jd 0 03 1 Xj1j1ja� Y j2j1jd 0 04 1 Xj1j1ja 0 04 2 Xj1j1jb 0 0Table 4.16: The table 'pTerm-equal' depits the equalities of the example knowl-edge base



4.9. A DETAILED EXAMPLE 899X; Y:P (X; Y )At this point we would like to mention again that X in its standardde�nition does not support reasoning by ases at any higher level than one.The extension implemented here is founded on [37℄ as said before.First the algorithm searhes the table 'pTerm-predU1' if there is an unitterm with the 'prediateId=1'. While this is not suessful sine the table isempty, the algorithm makes use of reasoning by ases, beause it is allowedto by the user.At this point we use the method to determine the possible set of disjun-tive terms that an be used by reasoning by ases while we use the presentedriterion. In our ase this are the terms with the identi�ers 1; 2; 3 and 4,sine all lauses are diretly or indiretly onneted to the query whih onlyontains the prediate P . In our example the fourth disjuntive term is in-diretly linked to the query while all other terms are diretly linked.The algorithm always hooses the lause with the smallest term identi�er('termID') and so (X = a) � Q(X) is added at �rst to the knowledge base,namely to the table "pTerm-predU2" (see table 4.17).Note again that we do not support inequalities at this point. Supposethat the atual equality from the example would be not (X = a) but (X 6= a).Then the set of possible ground instanes would be immense and it is nottrivial to deide whih of them to hoose. Hene, there would exist too manypossibilities of ground instanes that ould be added to the knowledge baseand therefore this ould not be implemented eÆiently.Please note that we add this lause to the table "pTerm-predU2". Only unitterms ontained in the table "pTerm-predU2" are onsidered when unit prop-agation is applied within reasoning by ases. In addition the table 'pTerm-equal' is a�eted of ourse, but we will not show the hanges made in thattable here.Now the algorithm applies unit propagation again what obviously a�ets(X = a _X = b) � :Q(X) _ :R(X) _ :S(X). Consequently, the resultingterm (X = a) � :R(X) _ :S(X) is added to the table that ontains thedisjuntive terms only (table 4.18).At this point the algorithm will hek again if there exists a unit term withthe "prediateId=1" in the knowledge base. Again, this is not suessful andsine the algorithm is allowed to inrease the level of reasoning by ases oneagain, it will add R(X) as unit term next and apply unit propagation.At this stage the appliation of unit propagation results in a new disjun-tive term and a new unit term, namely:X = a � :Q(X) _ :S(X)X = a � :S(X)



90 CHAPTER 4. IMPLEMENTATIONtermId prediateId variables rbLevel oldrbLevel new5 2 X 1 1 1Table 4.17: The table 'pTerm-predU2' after adding the �rst prediate Q(X) ofthe hosen lause in the beginning of reasoning by asesConsequently, the exeution of unit propagation proeeds sine this unitterm an be used to a�et the term (X = a ^ Y = d) � S(X) _ P (X; Y ) forexample and results again in a new unit term, namely (X = a ^ Y = d) �P (X; Y ). Note that also other disjuntive terms are e�eted.And now the algorithm will hek again if there exists a unit term withthe 'prediateId=1' in the table "pTerm-predU2" (see table 4.19).This time this will sueed and sine we do not need to hek equalities whilewe only searh for the existene of P (X; Y ), we proeed to the next and lastprediate in the atual lause.Hene, (X = a ^ Y = d) � P (X; Y )) is added to the KB and this of ourseimplies that 9X; Y:P (X; Y ) holds, sine we only want to determine if P existswith any arbitrary assignment of the variables X and Y .At this point we showed that P (X; Y ) holds when adding the �rst pred-iate of the �rst hosen lause. Furthermore, we have to hek the seondprediate of the lause, namely (X = a) � P (X; Y ); it is obvious that theaddition of a orresponding ground instane will satisfy the query.Aordingly, the algorithm answers that 9X; Y:P (X; Y ) is known to be true.Note that the use of our depth-�rst strategy and the allowane of twolevels of reasoning by ases prevented the use of the fourth term. If we wouldrestrit reasoning by ases to only one level the algorithm would still answerknown to be true.This is due to the fat that after trying every other lause without suessthe last lause supports the query by one single appliation of reasoning byases.4.10 SummaryIn this hapter we presented an implementation of all main features intro-dued by X. We started the disussion of our implementation by restritingproper+ terms to ontain no inequalities for several reasons.This restrition has major e�ets on the evaluation of a query and the ap-pliation of reasoning by ases. For example quanti�ers ould be solved veryeÆiently and within reasoning by ases we an easily add single ground in-



4.10. SUMMARY 91
termId prediateId variables rbLevel oldrbLevel new1 2 X 0 0 01 1 X; Y 0 0 02 3 X 0 0 02 1 X; Y 0 0 03 4 X 0 0 03 1 X; Y 0 0 04 �2 X 0 0 04 �3 X 0 0 04 �4 X 0 0 06 �3 X 1 1 16 �4 X 1 1 1Table 4.18: The table 'pTerm-pred' after adding the unit term (X = a) � Q(X)to the table 'pTerm-predU2' and applying unit propagation at the �rst level ofreasoning by ases. Note the new disjuntive term.
termId prediateId variables rbLevel oldrbLevel new5 2 X 1 1 07 3 X 2 2 18 �4 X 2 2 19 1 X; Y 2 2 1Table 4.19: The table 'pTerm-predU2' after adding the unit term R(X) andapplying unit propagation at the seond level of reasoning by ases



92 CHAPTER 4. IMPLEMENTATIONstanes. Both aspets would not be possible with inequalities inluded.Additionally, we ould not think of any pratial use of inequalities with re-gard to single domain onstants, exept of the use in a query. And sine weallow inequalities to be ontained in a query there are no pratial restritionsaused.While we presented the algorithms orresponding to unit propagation andreasoning by ases the usefulness of our enoding was lari�ed. Apart fromthe way we enode proper+ terms the use of database features was essential,e.g.: fast searh in large datasets and index join.The appliation of reasoning by ases is as mentioned a omplex proess.We hose for a riterion that an be applied very fast. Hene, it is possibleto eÆiently determine the set of lauses that is of onern when reasoningby ases is applied.The number of possible ombinations of lauses aused by higher levels ofreasoning by ases and di�erent equality terms orresponding to one sin-gle proper+ term is immense and therefore hard to implement eÆiently.Therefore we suggested very small levels of reasoning by ases (� 2) and ad-ditionally proper+ terms should not ontain many disjuntive equality terms.This topi will be of onern in the next hapter.Furthermore we showed the features that preproessing introdues andwhih impliations preproessing has on the reasoning proedure itself. Forinstane, it allows to instantly answer queries that require simple appliationsof Modus Ponens.Even more important for the ase of reasoning by ases is the fat thatpreproessing allows us to restrit the set of possible unit propagation pairsin a ruial way. This is due to the fat that all original unit terms have beenonsidered already after preproessing is applied.The main ontribution of our work is that all main features of X an behandled by our implementation while allowing large datasets. We addition-ally support an eÆient answering of queries based on the following features:unit propagation by employing database features, the eÆient handling ofquanti�ers, and preproessing of the knowledge base.



Chapter 5EÆieny
5.1 IntrodutionWe begin this hapter by introduing a major problem onerning the gen-eration of a test knowledge base.The problem is that there do not exist any proper+ knowledge bases at all.And as said before we think that there is a use for large �rst-order knowledgebases in the �eld of arti�ial intelligene, but until now they are not existent[36℄.Consequently, we had no opportunity to take a given knowledge base and testour approah or to ompare our results with other approahes. In ontrast tothe worldwide SAT ompetition [57℄ that involves thousands of ompetitorsand test instanes, large �rst-order knowledge base as suggested here are notof suh onern.Therefore, we annot present as signi�ant and preise test results asthey are ommon in the ontext of the propositional ase. We will disussfor example the relations between the size of the knowledge and the answeringtime, and answering times that are aused by queries that do not make useof reasoning by ases.Additionally, we will see that the answering time depends immensely on theharateristis of the proper+ terms ontained in the knowledge base whenreasoning by ases is applied.A simple example of this fat is a large set of terms that is diretly orindiretly onneted to a prediate from the query. Then the set of lausesthat will be used when reasoning by ases is applied is also large and onse-quently there exists a high number of possibilities for our implementation ofreasoning by ases (see Chapter 4). Hene, the answering time will inreasein a non-reasonable way. 93
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Figure 5.1: A brief overview on the ow of data when a query is send fromECLiPSe PROLOG to the database and the answer to the query is send bak.Comprising, we will disuss how we generated a test knowledge base andwhih fators inrease the answering time of the presented implementationand whih irumstanes support an eÆient evaluation of the query.
5.2 EnvironmentWe use a 1; 7 GHz dual proessor system (512 MB RAM) as database server.The lient (1; 7 GHz, 128 MB RAM) is onneted to the server by a 100MBit/s loal area network (LAN).Furthermore, we use the MySQL version 4:01 [53℄ and the version 5:5of ECLiPSe PROLOG [21℄. The used version of MySQL is publi domainand an be downloaded freely at the given web address in the bibliography[53℄. ECLiPSe PROLOG is not publi domain, but is available for free touniversities and non-pro�t researh institutions.Additionally, we use a MySQL-interfae to handle the database queries,whih is available at [21℄ and was reated by [32℄. In fat the MySQL-interfae onsists of a C-interfae to MySQL whih is integrated in ECLiPSePROLOG.The ow of data between ECLiPSe PROLOG and the database is de-pited in Figure 5.1. As an be seen in this �gure a single query originatingin PROLOG is �rst send to the MySQL-Interfae, seond to the LAN and �-nally to the MySQL-Database. The answer to the query has to take the sameway bak. Note that these osts introdued by the PROLOG/C-Interfae,the MySQL-Interfae and the lient/server on�guration are inluded in theanswering times presented later on.



5.3. THE TEST KNOWLEDGE BASE 955.3 The Test Knowledge BaseAs said before there do not exist any �rst-order knowledge bases that are ofthe size and type as suggested in our work [36℄.Therefore we have to generate a test knowledge base on our own. Aswe know from the introdution it is even very hard to generate appropriatepropositional instanes. For example, instanes reated by random an besolved very eÆiently with high probability. Consequently, these instanesan not be used to test an approah in an appropriate way.In the �rst-order ase we disuss here, we have the additional problem thatwe need large datasets (> 105) to test our implementation. Note that theproblem size in the propositional ase onsists of 1000 lauses maximally atmost of the time [57℄.Now suppose that you have to generate about 105 proper+ terms thatare onsistent and ontain disjuntive terms that support queries like9Y:(P (a; Y ) ^ Q(X; Y )). Note that this also inludes large set of onstantsand prediates.It is of ourse possible to generate this set of terms by random, but thefollowing two topis introdue major problems that have to be solved then:1. Consisteny of the entire knowledge base2. Coherenes in a set of termsReall, that we require onsisteny for our riterion of reasoning by ases.After adding one new term the onsisteny of the whole knowledge basemust be tested. Sine we have more than 105 terms the needed onsistenytest would be very omplex and time onsuming. For example, think of thefollowing terms in the knowledge base:(P (X))(:P (b) _ :Q(a)Now suppose the next term to add would be the unit term Q(a). Then we�rst had to apply unit propagation before we ould determine that this termwould ause the knowledge base to be inonsistent.After generating this set of terms we still have to solve the seond problem.Sine the knowledge base is generated randomly we are not aware of theonnetions between the lauses. Consequently, it is hard to deide whihquery to ask.The generation of an appropriate test knowledge base is not trivial andis not entirely solved in the propositional ase. Espeially, if a onsistentknowledge base is generated suessfully there is no information about the



96 CHAPTER 5. EFFICIENCYhardness of this instane (see Introdution). Hene, it is not possible todetermine how well an implementation works in general.As shown in the �rst hapter many researhers are working on the sat-is�ability problem and therefore there exist well known test instanes andresults that an be used to test the eÆieny of a new algorithm.Sine large �rst-order knowledge bases as we suggest them are very seldomin AI [36℄ we an not take advantage of any knowledge bases reated before.Our test knowledge base onsists of terms generated in the following twoways:� Unit terms are generated by random� Disjuntive terms are lauses of SAT instanes (from [57℄)Sine every unit term in our database holds a single prediate that is notontained anywhere else in this table we simply use the atual unique termidenti�er with some o�set as prediate identi�er. We hoose a single equalityterm by random by using a single onstant from a set of onstants. Reallthat prediates and onstants are mapped to numbers.We use lauses that ontain three literals eah from SAT instanes togenerate disjuntive terms. Hene, every reated disjuntive term onsists ofthree prediates and a equality term generated by random.But none of these terms will be of onern diretly when a query is an-swered, beause we add inomplete information about individuals, rules andfats manually for every query we want to ask. In fat, we satter the spe-i� problem instanes over the entire dataset and then ask the orrespondingquery.In other words, we take a small set of proper+ terms that have spei�and known internal onnetions and add those terms to the entire knowledgebase.Comprising, we an not present a test knowledge base that an be usedin its entire size. We simply generate a test knowledge base that onsists of alarge number of proper+ terms, but only a small set will be of onern whenanswering a spei� query.Nevertheless, the entire set of terms must be onsidered to determine theorresponding terms of the atual problem instane.5.4 Test ResultsIn this setion we present the results of our approah applied on test knowl-edge bases of the type that was disussed in the previous setion.



5.4. TEST RESULTS 975.4.1 PreproessingSine preproessing itself is done o�ine and is therefore not of onern whendetermining the eÆieny of our approah we have no orresponding testresults.This is also due to the fat that the type of the generated knowledge basehas nearly no onnetion between disjuntive terms and unit terms. Hene,the appliation of unit propagation would be without an e�et at most ofthe time. Consequently, test results would not be representative. Note thatthe result of preproessing will be of onern in the next setion.Furthermore, the enoding of proper+ term is not applied sine we gen-erate terms in the suggested format diretly.At this point we only would like to disuss the following disadvantageaused by preproessing. The growth of the knowledge base when unit prop-agation is applied (see Chapter 3) has a great impat during preproessingsine every disjuntive term and unit term is of onern when unit propa-gation is applied. While we disussed the theoretial ase in Chapter 3 wenow turn to the pratial ase and make several assumptions onerning theharateristis of the knowledge base.Suppose that we have 10.000 disjuntive terms and 100.000 unit terms.Every disjuntive term ontains two prediates. Then the growth of theknowledge base would be of minor onern, beause every suessfully appliedunit propagation would generate a new unit term only. Consequently, onlythe number of unit terms would inrease. This has no drawbak to eÆienyas we will see later on.But if the disjuntive terms ontain more than two prediates the numberof disjuntive terms will inrease in addition. For example, onsider thefollowing set of terms: (P (X) _Q(X) _R(X)):P (a), :Q(a)After the appliation of unit propagation the set ontains the following termssine we are not allowed to delete any disjuntive terms if they are not re-dundant (Chapter 3): (P (X) _Q(X) _R(X))(Q(a) _R(a))(P (a) _ R(a)):P (a), :Q(a), R(a)Note the growth in the number of disjuntive terms. When a disjuntiveterm ontains more than two prediates than the number of disjuntive term



98 CHAPTER 5. EFFICIENCY2 Prediates 3 Prediates more than 3Number of Disjuntive Terms 80% 15% 5%Table 5.1: The number of disjuntive terms in the knowledge base with regardto the number of prediates ontainedinreases by the number of unit propagations suessfully applied.Additionally note that the number of unit propagations an be bigger thanthe number of prediates inluded in a term. For instane, the reader anobserve this if we add the unit terms :P (b) and :Q(b) to the set of termsfrom above.We assume that disjuntive terms that ontain only two prediates aremainly used in the knowledge bases that are of onern here. Nevertheless,there remains a onsiderable growth of disjuntive terms.Assume the perentages depited in the Table 5.1 onsidering the numberof prediates ontained in the disjuntive terms in a knowledge base. If weadditionally assume that on every disjuntive term that ontains more thantwo prediates, unit propagation an be applied twie the number of termswill be multiplied by a fator about 3.For example, if we have 10:000 disjuntive terms in total, then there are 2:000terms that ontain more than two prediates with regard to the assumptionmade. In the following we also assume that there are only three prediatesin these disjuntive terms.If we now apply unit propagation one on eah of these terms the numberof disjuntive terms doubles sine the original disjuntive term remains andthe new disjuntive term is added. Hene, we have now 12:000 disjuntiveterms in total. When we apply unit propagation again the number of originalterms is doubled again and 4:000 new unit term are generated in addition.The generation of unit terms is due to the fat that the 2:000 disjuntiveterms that were reated by the �rst appliation of unit propagation ontainonly two prediates (see last example). And sine we assume that we anapply unit propagation twie on eah original disjuntive term there mustbe a prediate ontained in the new generated disjuntive term where unitpropagation an be applied on suessfully.Hene, a unit term is reated sine the new generated disjuntive term on-tains only two prediates. The same holds for the other generated disjuntiveterms and onsequently another 2:000 unit terms are generated.In total we have 14:000 disjuntive terms after we have applied prepro-essing. We will see in the next setion that this kind of growth will notintrodue any major drawbaks onerning eÆieny even if the number of



5.4. TEST RESULTS 99Query 100.000 unit terms 1.000.000 unit terms(X = a ^ R(X)) 9mse 10mse(X 6= a ^ R(X)) 10mse 10mse9X:R(X) 9mse 10mseTable 5.2: The answering times of the queries while using 100.000 unit terms inthe �rst ase and 1.000.000 in the seonddisjuntive terms would double or triple.Note that this disussion here is mainly based on assumptions and empirialresults. Additionally, note that when we will refer to a number of terms tobe ontained in the knowledge base we always refer to the number of termsafter preproesing.Additionally, we will disuss the positive results that are gained by prepro-essing in the next setion.5.4.2 Answering Queries without Reasoning by CasesWe begin this setion by disussing results that are ahieved when no rea-soning by ases is used. In the last hapter we mentioned that queries thatrequire no reasoning by ases at all an be answered instantly due to pre-proessing. These queries inlude ases that require simple appliations ofModus Ponens (see previous hapter).For instane, suppose the following set of terms to be ontained in the knowl-edge base before preproessing:(X = a _X = b � :P (X) _Q(X))(X = a _X = b � :Q(X) _R(X) _ S(X))P (X);:S(X)After preproessing the database holds the unit term (X = a _ X = b �R(X)) among others.The Table 5.2 holds sample queries and the orresponding answering times.The �rst test knowledge base ontains 100.000 unit terms and the seond1.000.000 unit terms. Note that the number of disjuntive terms plays norole in this ontext.Note the small di�erenes between the answering times onerning thedi�erent queries and the di�erent sizes of the knowledge base. All statedqueries will be answered with known to be true. Most notably these resultson�rm that the handling of the existential quanti�er is aomplished veryeÆiently by our implementation.



100 CHAPTER 5. EFFICIENCYQuery 10.000/100.000 100.000/1.000.000P (a; Y ) 56mse 61mse8X:9Y:P (X; Y ) 56mse 61mse(P (X; Y ) ^Q(X; Y )) 67mse 74mse8X:9Y:(P (X; Y ) ^Q(X; Y )) 68mse 76mseTable 5.3: The answering times of the queries while using 10.000 disjuntive termsin the �rst ase and 100.000 in the seond.The very small di�erene aused by the di�erent number of unit terms inthe knowledge base is due to the fat that databases an handle millions ofdatasets very eÆiently [23℄. Note that no reasoning at all takes plae exeptthe evaluation of the query.In onsequene these results on�rm that queries that require simple ap-pliations of Modus Ponens or unit terms only an be answered eÆiently.This is mainly due to the enoding sheme of proper+ terms and preproess-ing.5.4.3 Answering Queries while using Reasoning byCasesSuppose the following two terms to be ontained in the knowledge base:P (X; a) _ P (X; b)(Y = a _ Y = b � Q(X; Y ))Now we ask the queries as stated in Table 5.3. Note that we now have 10.000disjuntive terms in the �rst ase and 100.000 disjuntive terms in the seond.Reall that it was assumed in [40℄ that the number of disjuntive terms is 10%of the entire number of terms in the knowledge base. Additionally note thatthe prediates P and Q are ontained nowhere else in the entire knowledgebase exept in the terms stated above.All queries require reasoning by ases, but no unit propagation is applied.Note again the eÆient handling of the quanti�ers. In this senario it is veryimportant to note that there exists only one lause that an be used whenreasoning by ases is applied. This implies that it is not neessary to hoosefrom a set of lauses when reasoning by ases is applied.In the next senario we will show that the number of lauses that are usedwhen reasoning by ases is applied auses a major drawbak to eÆieny.First of all we present the terms that are of onern in this test ase:



5.4. TEST RESULTS 101(X = a ^ Y = a � Q(X) _ P (X; Y ))(Y = a � R(X) _ P (X; Y ))(Y = b � S(X) _ P (X; Y ))(X = a � :Q(X) _ :R(X) _ :S(X))Additionally, we have the query 9Y:P (a; Y ). Reall, that this query an beanswered orretly already when allowing only one level of reasoning by ases(see previous hapter).Note that every appliation of reasoning by ases inludes several appli-ations of unit propagation depending on the allowed level. Furthermore thetest of the query is applied multiple times (refer to the example in the lasthapter).This query is answered in 280mse when allowing one level of reasoningby ases, and onsidering 10.000 disjuntive terms and 100.000 unit termsare ontained in the knowledge base. If we allow two levels of reasoning byases then the answering time is 210mse.The reason why the answering time of the query that allows two levels ofreasoning by ases is faster than the one that supports only one level is dueto the fat that we use a depth-�rst strategy in our approah when applyingreasoning by ases. If we use the �rst lause and two levels of reasoning byases are allowed, the query is known to be true and no further reasoninghas to be aomplished.But if we only allow one level of reasoning by ases we have to go through the�rst three lauses in the set and then sueed when using the last lause withreasoning by ases. This auses the di�erenes in the answer times here.Note that the lauses that are determined for the use with reasoning byases are sorted by there term identi�er and so it is possible to �x the orderof lauses to be used (see hapter 4).The answering time of 210mse, when two levels of reasoning by ases aresupported, shows that unit propagation is implemented eÆiently sine theevaluation of the query requires the testing of the query 5 times (� 10mseeah) and unit propagation itself is applied 4 times (see also Chapter 4).Note that 5 tests of the query require about 50mse sine testing a queryonly involves unit terms (refer to the results from the last setion). Hene,one appliation of unit propagation requires less than 40mse sine unitpropagation is only a subproess when reasoning by ases is applied. As wewill see later on the time used for unit propagation will only inrease in areasonable way when 100.000 disjuntive terms are of onern.To show that the number of disjuntive terms that are of onern whenreasoning by ases is applied ause a major drawbak onerning eÆienywe will add disjuntive terms that are indiretly onneted to the query.



102 CHAPTER 5. EFFICIENCYFor example, we add the disjuntive term (R(X)_T (X)) while the predi-ate T is nowhere else ontained in the knowledge base. And sine we add thedisjuntive term while using a smaller term identi�er than the other terms ofonern have, this disjuntive term will be used in an appliation of reasoningby ases at �rst.Additionally, unit propagation an be applied suessfully when addingthe �rst prediate of the lause. When a ground instane of R(X) is addedas unit term then this has an e�et on the disjuntive term (X = a �:Q(X) _ :R(X) _ :S(X)). Then the query is tested again, but withoutsuess.Consequently, the algorithm will proeed to the next lause in the set ifthere is no further level of reasoning by ases allowed. If a further level ofreasoning by ases is allowed then the query is known to be true with regardto the �rst prediate used in the urrent lause. This is due to the fat thatat the next level of reasoning by ases again every lause may be hosen fromthe determined set exept the atual one.For example, the term (X = a^Y = a � Q(X)_P (X; Y )) is hosen next forreasoning by ases at the seond level. Sine (X = a � :Q(X) _ :S(X)) isnow ontained in the knowledge base and adding a ground instane of Q(X)as unit term will reate the new unit term :S(X) the query is supported.The same holds of ourse for the seond prediate P of the urrent term.But sine the prediate T will not support the query at any level ofreasoning by ases the disjuntive term (R(X) _ T (X)) will never supportthe query. As we ould see, lauses of this kind ause several appliations ofunit propagation and the test of a query is applied multiple times.So, we guarantee that all features of reasoning are aomplished for everysingle added disjuntive term. At the same time we prevent that those kindof lauses an support the query by using an unique prediate (T ).In this test we will not only add one term of this kind, but up to sixtyterms. Every single newly added term will be onsidered before the term isreahed that supports the query.The result an be seen in Figure 5.2. While we have 4 terms in the originalset, we �rst add 4, then 12, 28, and �nally 60 terms. Note that none of theterms will support the query at any level of reasoning by ases, but they areall onsidered before the original set of terms is of onern. In the knowledgebase there are 10.000 disjuntive terms and 100.000 unit terms ontained.As we an see in the �gure the answering times inreases with the numberof terms that are onsidered when reasoning by ases is applied. The e�et isampli�ed by the number of levels of reasoning by ases that are allowed. Thisis explainable by the fat that eah level of reasoning by ases reonsiders allpossible terms again exept the atual used ones (see hapter 4).
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Figure 5.2: The inuene of the number of lauses onsidered when reason-ing by ases is applied on the answering time to a query. (10.000 DisjuntiveTerms/100.000 Unit Terms)If reasoning by ases fails for the atual term it goes to the next levelof reasoning by ases if it is allowed to and otherwise it will try all otherpossible terms at this level to support the query before it returns to theprevious level again. In fat this orresponds to the baktraking propertythat was explained in the last hapter.Note that the answering time when we use reasoning by ases with amaximal level of two is only faster than the answering time when allowingonly one level if the number of terms is only four.The problem is the riteria used when reasoning by ases is applied. Sineit is only tested if a prediate is diretly or indiretly onneted to the predi-ate in the query the set of terms that is of onern grows very fast. The sizeof growth depends on the struture or harateristi of the knowledge base.Think for example of SAT instanes where every literal is diretly or indi-retly onneted to every other literal in the instane. Consequently, if theinstane would hold 1000 lauses every single lause would be onsideredduring one appliation of reasoning by ases.Note that our approah is not able to solve suh kind of instanes, be-ause of the high number of lauses that have to be onsidered at eah levelof reasoning by ases and espeially the fat that suh kind of instanes re-quire very high levels of reasoning by ases. Reall, that the solution of theombinatorial puzzle introdued in Chapter 2 requires 8 levels of reasoning



104 CHAPTER 5. EFFICIENCYNr. of RbC-Terms RbC-Level 1 RbC-Level 2 RbC-Level 34 0; 28 0; 21 0; 218 0; 44 0; 85 1; 5716 0; 85 1; 59 2; 9432 2; 01 3; 84 7; 4564 5; 67 11; 11 21; 40Table 5.4: The answering times in seonds to the query 9Y:P (a; Y ) depending onthe number of terms that are onsidered when reasoning by ases is applied andthe allowed level of reasoning by ases.(10.000 Disjuntive Terms / 100.000 UnitTerms)by ases.Consequently, our approah is not able to answer queries eÆiently ifthe prediates of the query are onneted diretly or indiretly to a set thatontains more than 16 to 32 disjuntive terms. As an be seen in the Figure5.2 and the orresponding Table 5.4 the query is answered in 0; 85se whenonly allowing one level of reasoning by ases and 1; 59se when two levelsare allowed and if there are 16 terms of onern when reasoning by ases isapplied.We think that answering times at about 1 seond an be alled eÆientin our ase. As an be seen from the �gure the answering time to a queryinreases dramatially with the number of terms that are of onern withreasoning by ases. Espeially, the ampli�ed answering times when allowinga maximal reasoning by ases level of three suggest an exponential growth ofanswering times with regard to the user-de�ned level of reasoning by asesand the number of disjuntive terms that are used when reasoning by asesis applied. This result orresponds to the disussed worst-ase omplexity inChapter 4.Comprising, these results show that reasoning by ases with a maximal levelof 2 auses a major drawbak when the harateristi of the knowledge baseontains sets of terms that ontain more than 32 onneted disjuntive terms.5.4.4 The Size of the Knowledge BaseSine we already gave some test results onerning the size of the knowledgebase we now present further results in detail.As we said in the previous hapter the hosen data struture supports alarge set of unit terms (more than 1:000:000) in the original knowledge base



5.5. SUMMARY 105Nr. of RbC-Terms 10.000/100.000 10.000/1.000.000 100.000/1.000.0004 100% (0; 28s) +11% (0; 31s) +27% (0; 36s)8 100% (0; 44s) +9% (0; 48s) +20% (0; 53s)16 100% (0; 85s) +4% (0; 88s) +15% (0; 98s)32 100% (2; 01s) +6% (2; 14s) +19% (2; 38s)64 100% (5; 67s) +4% (5; 88s) +23% (6; 99s)Table 5.5: Comparison of the answering times orresponding to the number ofterms (disjuntive terms / unit terms) ontained in the knowledge base whileallowing only one level of reasoning by asessine those terms are not of onern when reasoning by ases is applied.At this point we present the orresponding results. In Figure 5.3 the testfrom the last setion is repeated in a knowledge base that ontains 10.000disjuntive terms and 1.000.000 unit terms. As you an observe the di�ereneto the ase where only 100.000 unit terms where of onern is negligible.Hene, the reasoning proedure is nearly independent of the number of unitterms.We also said in the setion "Preproessing" in this hapter that the growthof disjuntive terms aused by the appliation of unit propagation duringpreproessing does not ause any major drawbaks.Figure 5.4 supports this statement. Now the knowledge base ontains 100.000disjuntive terms and 1.000.000 unit terms. As you an observe the largenumber of disjuntive term has only a slight impat on the answering times.This is again mainly due to the fat that databases an handle datasets of thissize very eÆiently [23℄. Note, that this also implies that the implementationof unit propagation works eÆiently even when 100.000 disjuntive termsmust be onsidered.In the Table 5.5 we summarize the results onerning the topi of thissetion by omparing the answering times presented here with the times fromthe last setion. We ompare all answering times measured at the reasoningby ases level 1.5.5 SummaryIn this hapter we presented a method for generating test instanes and de-sribed the diÆulties that arise when generating a test knowledge base. Unitterms are generated by random and we use SAT instanes to generate dis-juntive terms. Small number of proper+ terms are added to the knowledge
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Figure 5.3: The inuene of the number of lauses onsidered when reason-ing by ases is applied on the answering time to a query. (10.000 DisjuntiveTerms/1.000.000 Unit Terms)

Figure 5.4: The inuene of the number of lauses onsidered when reason-ing by ases is applied on the answering time to a query. (100.000 DisjuntiveTerms/1.000.000 Unit Terms)



5.5. SUMMARY 107base whih ontain spei� rules or inomplete knowledge. This enabled usto ask the orresponding queries.We disussed the disadvantage aused by preproessing, namely thegrowth of the number of disjuntive terms aused by the appliation of unitpropagation. For the pratial ase we ould show under several assumptionsthat the number of disjuntive terms that hold more than two prediatesause the size of the knowledge base to double or triple. But additionallywe presented results that on�rmed that this kind of growth has no majordrawbak onerning eÆieny.As said in the last hapter we on�rmed in this hapter that querieswhih require no reasoning by ases an be answered very eÆiently. Thesame holds for queries that make use of reasoning by ases when the numberof disjuntive terms that are of onern is relatively small (< 30).At the same time we ould show empirially that the implementation of unitpropagation works eÆiently. Even if 100.000 disjuntive terms are ontainedthe implementation introdues no major drawbak.In ontrast, we ould show that the number of disjuntive terms that isof onern when reasoning by ases is applied has an major inuene on theanswering time to a query. In fat, if the set of disjuntive terms ontainsmore than about 30 terms, the evaluation of a query is not eÆient anymore.In onsequene, the implementation of reasoning by ases must be improved.Espeially, the riterion that determines the set of disjuntive terms that isof onern when reasoning by ases is applied must be improved to reduethe size of the set.Furthermore, we showed that the size of the knowledge base has only aslight impat on the performane of our approah. Espeially, the number ofunit terms inreases the answering times to a query in a negligible way only.
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Chapter 6Summary and DisussionIn this hapter we are going to provide a summary and a ritial assessmentof the work that was done during this thesis. Furthermore, we will disussdiretions for future researh.6.1 SummaryIn this thesis, we investigated and implemented a dedutive and logial soundreasoning proedure that is able to handle inomplete �rst-order knowledgebases that ontain disjuntive information.First, we introdued the dedutive reasoning proedure that is of onernin this work and then we examined the properties of the reasoning proedureitself. We ould show that one of the main features, namely unit propaga-tion, introdued by the reasoning proedure auses an exponential growthof the equality terms if equalities are represented in DNF. In addition, weould show that during an appliation of unit propagation only redundantterms an be deleted. Hene, the appliation of unit propagation is not asunproblemati as in the propositional ase. In addition, we observed thatthe use of inequality auses the major drawbak onerning omplexity inour implementation; therefore inequalities were no longer supported.The fat that we did not support inequalities had a major impat on theimplementation. Espeially, the handling of the 8-quanti�er was simpli�edin a ruial way sine we ould show that we do not have to substitute everypossible onstant to determine if the 8-quanti�er holds.Furthermore, we implemented all main features of the reasoning pro-edure while using an enoding sheme for proper+ terms and employingdatabase features to enable an eÆient handling of huge datasets. After-wards we disussed the eÆieny of our implementation and showed that we109



110 CHAPTER 6. SUMMARY AND DISCUSSIONahieved eÆient implementations onerning the evaluation of queries (e.g.,quanti�ers) and the appliation of unit propagation even if about 106 termsare ontained in the knowledge base.In ontrast, we ould show that the appliation of reasoning by asesan ause the answering times to a query to inrease dramatially. Besidethe user-de�ned reasoning by ases level the answering times depend on theharateristi of the knowledge base. Namely, the number of disjuntiveterms that are onneted to eah other by prediates plays a major role inthis ontext.6.2 Critial AssessmentAs said before it was possible to determine that the growth of equality termswas aused by the use of inequality when we use DNF to represent equalities.This was one of the main reasons to exlude inequalities from the entirereasoning proedure. As a downside, if we want to inlude inequalities lateron, perhaps in a limited form, this would require substantial revision of theimplementation.While the implementation of the reasoning proedure onerning the rep-resentation of proper+ terms and unit propagation aused only minor prob-lems, the implementation of reasoning by ases was very omplex and, ulti-mately, ould not be aomplished in a satisfying way. The reason for thisdiÆulty is originated in the theoretial de�nition of reasoning by ases givenin the reasoning proedure. The hoie of the lause that is used for reasoningby ases is non-deterministi in the de�nition. The riterion we used simplydetermined whih disjuntive terms ontained in the entire knowledge baseare diretly or indiretly onneted to the query. Depending on the har-ateristi of the knowledge base the number of terms an be too large forour approah to stay eÆient. Already small numbers (about 30) ause theanswering time to a query to inrease dramatially.In addition, we did not disuss the soundness and ompleteness of ourimplementation with regard to the original reasoning proedure in every ase.For instane, the format of the query is restrited so that we do not supportqueries suh as 8((X = a ^X 6= a) � P (X)).The implementation does also not support every feature of equality terms.Espeially, we an not handle equality terms of the following type: (X =Y ^ Y 6= Z).Furthermore, the arhiteture of the implementation an be improvedsine there exist several interfaes suh as the Prolog-C and the C-MySQLinterfae that onnet our program to the database. For instane, it would be



6.3. FUTURE WORK 111possible to derease the number of interfaes and therefore inrease eÆieny.Although we tried to establish an appropriate test environment to deter-mine the eÆieny of our implementation it remains to be seen if the resultswould be similar under real-world onditions. Reall, that there was no ap-propriate test knowledge base available. As in the propositional ase theharateristi of the test instane as a major inuene on the test results.Additionally, the presented implementation is a prototype that is onlysuitable to examine the feasibility of the dedutive reasoning proedure andto analyse its eÆieny in general. In partiular, the user interfae needs tobe improved for the use by others.6.3 Future WorkIn this setion we provide a brief outlook on future researh. We begin thisoutlook by presenting some proposals to improve the introdued implemen-tation. Additionally, we will propose an improvement of the given reasoningproedure.There exist many essential improvements that an be made onerningthe implementation sine it was the �rst attempt at all to implement thegiven reasoning proedure. For instane, the riterion used when applyingreasoning by ases. An enhaned riterion ould derease the answering timeto queries in an essential way, sine the answering time inreases with thenumber of disjuntive terms used when reasoning by ases is applied. Wethink, that this improvement would require an updated data struture or agraph that holds the neessary information to determine the lauses whihare used with reasoning by ases.Besides improving the approah by advaned algorithms there also exist sev-eral possibilities to inrease the performane by using the given infrastruturein a more e�etive way. For example, the use of database features an beenlarged and reti�ed (e.g., the use of nested SQL-queries).Furthermore, a disussion onerning soundness and ompleteness of everypart of our implementation is neessary. Also the set of possible queries mustbe extended.Additionally, there is a lot of researh neessary to enable an aurate andappropriate test environment to verify the performane of a given approah.While the researh ativities in the propositional ase are very intensive theresearh ativities that deal with huge inomplete �rst-order knowledge basesthat ontain disjuntive information are very seldom. Consequently, it isvery hard to determine the eÆieny of an implementation. Reall, thatthis problem is not yet entirely solved in the propositional ase. We ap-



112 CHAPTER 6. SUMMARY AND DISCUSSIONproximated the worst-ase omplexity by determining the maximal numberof applied unit propagations whih resulted in a worst-ase omplexity ofO((n2k+2)RbC�Level) when jKBj = jCKBj = n, RbC�Level is the user-de�nedreasoning by ases level and k denotes the maximal number of free variablesontained in one single term. In the pratial ase the exponent RbC�Levelremains, but the base n2k+2 is dereased in an essential way. For instane,the fats that knowledge bases in our �eld of appliation onsist of no termsthat are onneted by a prediate to every other possible term ontained inthe knowledge base and it is not neessary to substitute every variable byevery possible onstant derease the polynomial.While there exist several possibilities to advane the presented implemen-tation, we also think that the given dedutive reasoning proedure an beextended. One possible extension would for instane a�et the return value"unknown" of the reasoning proedure. The information ontent of this re-turn value is small, although an immense number of reasoning operations areexeuted most of the time when a query is answered. Therefore, we suggest areturn value like "unknown, but ..." to take advantage of the reasoning thatwas applied and the orresponding results.For example, suppose the following terms to be ontained in the knowledgebase: P (X) _ :Q(X) _R(X) _ T (X)Q(X) _ :R(X):Q(X) _ :T (X)R(X) _ :T (X)Then it would be possible to answer the query 9X:P (X) with"unknown, but P (X) _ :Q(X) and P (X) _ R(X) are implied by the KB".Note, that we do not use the expression "known to be true", beause onlysingle literals are known to be true.This approah would inrease the information ontent of the negative re-sponse to a query in an essential way. The suggested extension has its originin a brief disussion with Craig Boutilier [8℄.
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