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1

In this thesis we investigate a dedu
tive reasoning pro
edure that 
anhandle in
omplete �rst-order knowledge bases whi
h 
ontain disjun
tive in-formation. Mainly, the expressiveness of the underlying �rst-order logi
 andthe large amount of supported data (� 105 terms) are the essential featuresof the logi
al sound reasoning pro
edure of 
on
ern.We dis
uss several properties of the reasoning pro
edure itself and ap-ply some 
hanges that are also used in our implementation. Besides imple-menting the evaluation-based reasoning pro
edure, our work investigates theeÆ
ien
y of this kind of dedu
tive reasoning when employing large datasets.The ability to apply dedu
tive reasoning eÆ
iently on a �rst-order knowl-edge base that 
onsists of a large set of fa
ts, rules, in
omplete knowledgeand disjun
tive information is the main topi
 dis
ussed in this work.
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Chapter 1Introdu
tion
1.1 The Trade-O� between Expressivenessand EÆ
ien
yKnowledge in the sense of AI requires more than knowledge about the worldthat is suÆ
ient to allow a
ting in the domain of dis
ourse in an appropriateway. In AI a knowledge-based system additionally should behave and a
t likeit does be
ause it makes use of the representation of that knowledge (e.g.,world-knowledge) [41℄. In other words, it is required that an intelligentlyintera
ting 
omputer system needs a large body of knowledge about theworld known as 
ommon sense [48℄. The idea to provide 
omputer systemswith su
h kind of knowledge by representing knowledge expli
itly is knownas the Knowledge Representation Hypothesis [66℄.It has been argued that at least �rst-order logi
 is ne
essary to representworld-knowledge [50℄. Espe
ially, the ability to handle in
omplete knowl-edge like disjun
tive information plays a major role to model the suggestedknowledge in an appropriate way. Sin
e it is ne
essary that a knowledge-based system must be able to infer impli
it knowledge and it is a well-knownfa
t that 
lassi
al logi
al impli
ation is unde
idable in the �rst-order 
asethere is a problem. There exist various approa
hes that deal with that prob-lem, but none of them 
an satisfy both expressiveness and eÆ
ien
y. Notethat while reasoning in �rst-order knowledge bases is intra
table in generalhumans 
an reason very e�e
tively on extremely large and 
omplex datasets,although, of 
ourse, they 
annot draw all possible 
on
lusions.In the 
ontext of knowledge representation reasoning is in general a formalmanipulation of the symbols that represent the fa
ts and believed proposi-3



4 CHAPTER 1. INTRODUCTIONtions1 to produ
e representations of new propositions [41℄.In this work we apply dedu
tive reasoning in in
omplete �rst-order knowl-edge bases that is logi
al sound. Dedu
tion is in some sense the dire
t appli-
ation of knowledge in the produ
tion of impli
it knowledge [69℄.Until now only the query evaluation over databases supports dedu
tive rea-soning on very large �rst-order knowledge bases eÆ
iently [40, 36℄. But a
lassi
al database is a knowledge base that allows no in
omplete knowledgesin
e it makes use of the 
losed world assumption (CWA) [56℄. In general, adatabase is equivalent to a maximally 
onsistent set of fun
tion-free groundliterals [36℄.For example, if we have a database that 
ontains information about studentsat a university, we 
ould ask if there is a student from Argentina. Then thisquery would be answered positively only if the database would 
ontain a fa
tor an entry that supports the query expli
itly. If the fa
ts are not expli
itly
ontained in the database the query is answered negatively be
ause of theCWA. In fa
t, no further reasoning takes pla
e at all.Now suppose the following terms to be 
ontained in a knowledge base:(isArgentinan(Mary) _ isArgentinan(John)):isStudent(Mary):isStudent(John):This kind of disjun
tive information 
annot be handled by the relationalalgebra used in 
lassi
al database. But we would like to be able to answerqueries like "Is there a student from Argentina?", whi
h would require theability to handle disjun
tive information.In our work we use a dedu
tive reasoning pro
edure that supports in
om-plete knowledge and in parti
ular disjun
tive information 
ontained in theknowledge base. For instan
e, the just mentioned query would be answeredpositively by the reasoning pro
edure of 
on
ern even while we do not ex-pli
itly know whether Mary or John are from Argentina. The only thingwe know is that one of them is from Argentina, but this fa
t is suÆ
ient toanswer the query positively.At this point it is important to mention that we are interested in large knowl-edge bases, say more than 105 terms. This guarantees that relatively 
omplexknowledge 
an be modeled sin
e we support both a huge set of terms andthe ne
essary expressiveness introdu
ed by the underlying �rst-order logi
.At the same time the dedu
tive reasoning pro
edure should be tra
table.Sin
e logi
al sound and 
omplete dedu
tive reasoning is unde
idable in gen-eral, the used dedu
tive reasoning pro
edure is logi
al sound, but not 
om-plete to preserve tra
tability [36℄. The trade-o� between the properties of the1An idea that is expressed by a simple de
larative senten
e [41℄.



1.2. RELATED WORK 5reasoning pro
edure and the tra
tability of the pro
edure is the main key tomaintain eÆ
ien
y while supporting logi
al sound reasoning on in
ompleteknowledge as well on disjun
tive information.In fa
t, the dedu
tive reasoning pro
edure that is of 
on
ern here pla
esitself between the eÆ
ient databases that support only very restri
ted rea-soning 
apabilities and the unde
idable and intra
table reasoning pro
eduresthat are used in theorem provers for example.In this work we dis
uss the eÆ
ien
y of the reasoning pro
edure. Therefore,we determine how eÆ
ient reasoning with in
omplete �rst-order knowledgebases that 
ontain disjun
tive information is when using the given reasoningpro
edure. In other words, we determine if the underlying logi
 and the rea-soning pro
edure itself are too expressive to maintain eÆ
ien
y at the sametime.We will implement a logi
al sound and de
idable reasoning pro
edurenamed X that 
an handle disjun
tive information in �rst-order knowledgebases. The reasoning pro
edure itself was introdu
ed in [36℄. In addition,we will prove several properties of the reasoning pro
edure 
on
erning itseÆ
ien
y and present experimental results.
1.2 Related Work1.2.1 Reasoning with In
omplete First-Order Knowl-edge BasesIn [46℄ the tra
tability for reasoning with in
omplete �rst-order knowledgebases is dis
ussed. It 
ould be shown, that the eÆ
ien
y of dedu
tive reason-ing with in
omplete �rst-order knowledge bases is 
omparable with 
lassi
alquery evaluation in databases if the knowledge base is of a spe
i�
 format.Note that this result does not hold for arbitrary �rst-order knowledge bases.The general idea was to redu
e a dedu
tive reasoning pro
edure todatabase query evaluation. To rea
h this result a bottom-up database queryevaluation algorithm was adapted. The underlying query evaluation algo-rithm is mainly based on work introdu
ed and extended by [3, 29℄.The reader is referred to the original paper. At this moment, the readershould only be aware of the fa
t that there exists a tra
tability result for rea-soning with in
omplete �rst-order knowledge bases. Note that no disjun
tiveinformation is 
ontained in the knowledge base.



6 CHAPTER 1. INTRODUCTION1.2.2 Limited ReasoningThere exists various work that presents limited forms of reasoning in boththe propositional 
ase and the �rst-order 
ase.In the propositional 
ase the 
lassi
al logi
al entailment is restri
ted mostfrequently by only allowing a limited use of Modus Ponens or by not sup-porting it at all [45℄. For limited reasoning there exist two logi
al languages ingeneral. Namely, the 
lassi
al language with a adapted semanti
 or a modallanguage with a belief operator. The belief operator leaves the 
lassi
al sub-language that deals with the 
lassi
al semanti
 un
hanged, but implementsat the same time an entailment that is weaker than that of the 
lassi
allanguage [45℄. For instan
e, suppose a belief operator named B. Then entail-ment 
orresponds to the validity of formulas like (B� � B�) in 
ontrast tothe 
lassi
al entailment based on the validity of formulas like (� � �).In [12, 14, 15, 24℄ the 
lassi
al language is used with a non-standard semanti
to provide a de
idable reasoning pro
edure. For instan
e, [12℄ implements atra
table proof system that is based on a non-deterministi
 truth table andwhose entailment 
onsists mainly of unit propagation. On the other handin [33, 39℄ reasoning is a

omplished within a newly introdu
ed logi
 of be-lief. The proposed belief impli
ation in [39℄ that uses two modal operatorsto handle impli
it and expli
it belief is tra
table for formulas in 
onjun
tivenormal form (CNF). The reasoning is mainly based on tautologi
al entail-ment, a fragment of relevan
e logi
 [2℄.But espe
ially the reasoning based on tautologi
al entailment 
ould not betransferred in an appealing way from the propositional 
ase into the �rst-order 
ase [36℄ whi
h will be explained in the next 
hapter. In [35, 55℄ the�rst-order 
ase was dis
ussed and it 
ould be shown that the reasoning re-quired not only 
onsiderable ma
hinery, but additionally the expressivenesswas de
reased at the same time [36, 45℄.In 
on
lusion, these approa
hes are not a solution yet sin
e they areineÆ
ient or support only an inadequate expressiveness or both. Furtherdetails 
on
erning limited reasoning 
an be found in [45℄.1.2.3 DatalogIn 
ontrast to limited reasoning there also exist approa
hes that allow fullinferen
e, but restri
t the underlying logi
al language at the same time. Oneexample for this kind of approa
h is Datalog whi
h we will dis
uss herebrie
y. In general, the family of knowledge representation languages knownas des
ription logi
s belong to this approa
h. For an in-depth survey ondes
ription logi
s the reader is referred to [4℄.



1.2. RELATED WORK 7Datalog is a simpli�ed logi
al programming language that is integrated indatabase management [22℄. The term Datalog refers to PROLOG-like ruleswithout fun
tion symbols that are treated like logi
 programs [70℄. Re
all,that rules are equivalent to Horn-
lauses. From a database point of view,Datalog is an extension to the relational algebra that allows re
ursion [22℄.In general, the used predi
ates 
an be divided into two groups. The �rstgroup 
onsists of the extensional predi
ates that are relations 
ontained inthe database and the se
ond group 
onsists of intensional predi
ates or rules
ontained in the Datalog program [70, 22℄.Hen
e, a relational database is identi�ed with a set of ground 
lauses or fa
ts[17℄. The Datalog program - 
onsisting of a set of rules - uses the relationaldatabase as input to answer queries [17℄. In fa
t, an answer to a query is aresulting database that 
ontains ground 
lauses gained by the 
orrespondingDatalog program applied on the original database.There exist several extensions to the original Datalog like presented in[71℄, but this issues are not further addressed here. The 
omputational 
om-plexity was examined in [1℄. It 
ould be shown that Datalog only 
apturesqueries that 
an be answered in polynomial time.At this point it is only important to note that Datalog is restri
ted to Horn-
lauses and the CWA is still used. Therefore, the expressiveness of Datalogis not as powerful as the one that is supported by the underlying logi
 of thereasoning pro
edure presented here.An extensive overview 
on
erning the entire relationship between logi
 anddatabases is given in [49℄.1.2.4 Propositional Satis�abilityThe following se
tions give a brief introdu
tion to the Satis�ability Problem(SAT), its solutions and why it is essential to take a look at the algorithmsthat solve SAT albeit we deal with �rst-order logi
 here.The aim of this se
tion is to show how mu
h resear
h is done in thepropositional 
ase and how diÆ
ult it is to validate the eÆ
ien
y of a newalgorithm in this area even while there exist a lot of ben
hmarks and 
ompe-titions [57℄. In 
ontrast, there do not exist any ben
hmarks and results that
orrespond to knowledge bases and dedu
tive reasoning pro
edures as theyare suggested in this work here.The Satis�ability Problem (SAT)SAT is the problem of de
iding if there is an assignment for variables in apropositional formula that makes the formula true. Even if we deal with �rst-



8 CHAPTER 1. INTRODUCTIONorder logi
 here, it is 
lear that propositional satis�ability (SAT) is 
loselyrelated to dedu
tive reasoning in �rst-order logi
. Simply, be
ause of thefa
t that the propositional 
ase is a sub-problem of �rst-order logi
. Theborder between propositional and �rst-order reasoning is often blurred [26℄.One example are problems that make use of quanti�ed formulas but are
onstrained to �nite domains with expli
itly named domain elements.SAT was the �rst problem shown to be NP-
omplete [10℄ and thereforeintra
table in general. Sin
e then - 1971 - there has been a large amount ofresear
h 
on
erning the satis�ability problem. Moreover it 
ould be shownthat there are many pra
ti
al instan
es of SAT that 
an be solved very eÆ-
iently.There are several huge groups of resear
hers involved into SAT like theAI resear
h and the theorem proving group. Many AI problems like planning[31℄ are en
oded into SAT quite naturally. Theorem proving is for example
on
erned with satis�ability sin
e the question if a formula ' is inferablefrom a set of formulas � 
an be answered by showing that � [ :' is notsatis�able and vi
e versa.Solving the ProblemThere exist two essential di�erent goals for methods that solve SAT - methodsthat 
laim to be 
omplete and those whi
h are in
omplete or approximate.A 
omplete algorithm is the famous David-Putnam algorithm [18℄. Unfor-tunately, all 
omplete algorithms are exponential in spa
e or time. As longas P 6= NP holds, it is not feasible to over
ome this intra
tability in gen-eral, but resear
hers all over the world are highly motivated to improve theiralgorithms as far as possible.Many 
omplete algorithms are based on the David-Putnam algorithmand implement extensions like bran
hing heuristi
s, intelligent ba
ktra
king,parallelization, et
. [26℄. An upper bound for the original David-Putnamalgorithm is O(1:696N) where N is the number of variables. But extensionslike presented in [5℄ 
an solve problems easy whi
h are beyond the s
ope ofthe normal David-Putnam algorithm and it is furthermore suggested that itperforms as good or better than sto
hasti
 SAT algorithms in most of the
ases.While [58℄ and the improvement made in [60℄ introdu
e an algorithm withthe best known running time for randomized 3-SAT to date, [16℄ a
tuallypresents a deterministi
 algorithm for k-SAT based on lo
al sear
h that runsin time 1:481N up to a polynomial fa
tor. Additionally, these bounds seemto be better than all previous deterministi
 k-SAT algorithms 
ould obtain.Aside from 
omplete algorithms there are many approximate algorithms



1.2. RELATED WORK 9[26℄. Firstly, [34℄ presents a greedy algorithm that 
hooses truth assignmentat random. It is greedy in the following sense: it 
ips the truth value of avariable that in
reases the number of satis�ed 
lauses. Flipping the truthassignment of a variable without raising the number of satis�ed 
lauses is
alled a sideway move.While in [34℄ no sideway moves are allowed and 
ipping is repeateduntil no improvement is possible, [61℄ 
omes up with an algorithm 
alledGSAT that allows sideway 
ips. Starting with a random truth assignment,it 
hanges the variable assignment via hill 
limbing to the largest possiblenumber of satis�ed 
lauses. If there is no assignment that does not 
hangethe number of satis�ed 
lauses, sideway moves are allowed. Without side-way moves the performan
e of GSAT degrades immensely. [28℄ shows that ahuge part of sear
h is 
on
erned with exploring large plateaus where sideway
ips predominate. GSAT guarantees relatively good performan
e even onlarge instan
es of SAT [61℄. But note that no dedu
tive tasks are a

om-plished by GSAT and it works only on problems that 
an be formulated in apropositional language [40℄.There are a lot of implementations that are based on GSAT. Some algo-rithms make use of 
lause weights [51℄ and 
an a
hieve good improvementswhen applied to 
ertain 
lasses of problems. GSAT with random walk [63℄
ips a variable with probability p and otherwise hill-
limbs normally. Walk-SAT [63℄ makes the idea of GSAT with random walk even more 
entral tothe algorithm. Hill Climbing returns the variables in an unsatis�ed 
lause,and the next 
ip of a variable is based on random or greediness [26℄.Although simulated annealing is a famous lo
al sear
h algorithm it is notthat popular for solving SAT even when [68℄ says that it works better thanGSAT on hard random 3-SAT problems. Surprisingly, other approa
hes thatuse neural networks and geneti
 algorithms to solve SAT are 
omparably rare[26℄. In [67℄ there is a Hop�eld Network introdu
ed that works very well onhard 3-SAT problems. One further interesting approa
h are hybrid methodsthat make use for example of GSAT and the Davis-Putnam algorithm tosolve spe
ial 
lasses of SAT [72℄.The Ben
hmark ProblemAs shown above there are lots of algorithms that solve SAT. The problemis to 
lassify those algorithms by there eÆ
ien
y, be
ause some algorithmsmight work very well on some instan
es of SAT but underlie an exponentialblow up on other instan
es.Besides there are many di�erent opinions on how to 
hara
terize a hardand easy instan
e of SAT. The 
onventional pi
ture drawn is like easy-hard-



10 CHAPTER 1. INTRODUCTIONeasy. Formulas with few 
lauses are under-
onstrained [easy to solve℄ andhen
e have many satisfying assignments. Therefore it is easy to �nd a sat-isfying assignment. Formulas with very mu
h 
lauses are over-
onstrained[easy to solve℄ and usually unsatis�able whi
h will lead to a fast sear
h too[64℄.Formulas lying in between are the so 
alled 
riti
al 
onstrained [hard to solve℄formulas and mu
h harder to solve, be
ause they have relatively few satisfy-ing assignments if they have any at all. '...the hardest area for satis�abilityis near the point where 50% of the formulas are satis�able' as said in [64℄.Empiri
al 
on
luded in [64℄ is that the region of 50% satis�able 
lauses o

ursat a �xed ratio of the number of 
lauses to the number of variables.Very hard instan
es of SAT out
rop when the number of 
lauses is 4.3times the number of variables . This phenomena is 
alled a phase transition.Re
ent resear
h has shown that if the 
omputing time grows polynomiallywith problem size a 
ontinuous transition is found, but a dis
ontinuous tran-sition is observed when exponentially mu
h time is required [52℄.In [27℄ it is said that this 
onventional drawn pi
ture is inadequate. Thereare problems not lying in the 
lassi
al phase transition region that 
an beeven harder than those lying in the median of the transition. Relying onexperimental data it is suggested that there are regions whi
h underlie a
onstraint gap, where the number of 
onstraints on variables is minimal whilesimultaneously the depth of sear
h required to solve the problems is maximal.Hen
e, while it is not obvious where the hardest instan
es of SAT arehidden and it seems that satis�ability testing might be quite easy on average[64℄, this se
tion should emphasize how diÆ
ult it is to verify having aneÆ
ient algorithm developed.Last thing to be mentioned is that there is a suggested general format(like from [19℄) to save SAT instan
es so that resear
hers 
an easily ex
hangefor example hard instan
es and do not over
ome the fault to 
hoose instan
esat random, be
ause a randomly 
hosen instan
e of SAT will be easy to solvewith utmost probability. This has the advantage that algorithms 
an be
ompared in a fair and broad sense.As we will see later on we are not able to 
ompare our results withother approa
hes, be
ause there do not exist in
omplete �rst-order knowledgebases of this type and reasoning pro
edure of this expressiveness as suggestedhere [36℄. We do not even have the opportunity to make use of an existingknowledge base. Simply, be
ause of the fa
t that appropriate test knowledgebases do not exist. For instan
e, it would be of 
onsiderable advantage if we
ould make use of the Cy
 knowledge base [13℄ or a suitable subset.



1.3. THESIS STRUCTURE 111.3 Thesis Stru
tureThis thesis is stru
tured as follows:� In Chapter 1 we motivate our work, introdu
e dedu
tive reasoninginformally and present related work while we 
on
entrate espe
ially onresear
h done in the propositional 
ase.� Chapter 2 introdu
es the required notations and elementary de�ni-tions to enable a deeper understanding of the reasoning pro
edure. Ad-ditionally, all main features of the reasoning pro
edure are explainedhere.� In Chapter 3 we dis
uss several properties of the reasoning pro
edureitself. Espe
ially, the use of inequalities plays a major role in this
hapter.� In Chapter 4 we present the implementation of all major featuresin
luded in the reasoning pro
edure. This 
hapter also 
ontains variousexamples to 
larify the pro
eeding of the algorithms presented.� Chapter 5 
ontains several results 
on
erning the eÆ
ien
y of ourapproa
h. We show that the 
hara
teristi
 of the knowledge base hasa major in
uen
e on the eÆ
ien
y of the reasoning pro
edure.� In Chapter 6 we assess the work that was done during this proje
tand present ideas for future resear
h.Additionally, we like to mention that we assume that the reader is fa-miliar with basi
 �rst-order logi
 and PROLOG, or any other similar logi
alprogramming language.
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Chapter 2Fundamentals
2.1 Introdu
tionIn this 
hapter we introdu
e the basi
s required to enable a 
omplete un-derstanding of the reasoning pro
edures presented some subse
tions later.Furthermore the logi
al language 
orresponding to the reasoning pro
edureis introdu
ed brie
y.But we will not only dis
uss notation and de�nitions here, but we willadditionally present V - the pre
ursor of the reasoning pro
edure X whi
his of 
on
ern here. We do so, be
ause we would like to provide a step by stepintrodu
tion.While V 
an handle some in
omplete knowledge by not using the CWA [56℄,X is even able to handle disjun
tive information additionally. Sin
e bothpro
edures operate on �rst-order knowledge bases it is a known fa
t thata 
omplete logi
al reasoning pro
edure would be unde
idable when allowingin
omplete knowledge. Therefore both pro
edures are in
omplete but de-
idable and 
an handle in
omplete knowledge and disjun
tive informationrespe
tively.At the end of this 
hapter we will introdu
e X itself.While it is not ne
essary to follow ea
h detail of the pro
edure V, it is
ru
ial for the following 
hapters to get in tou
h with the notations, de�ni-tions and the equations of X. Espe
ially, the features Unit Propagation andReasoning by Cases introdu
ed by X should be understood very well sin
ethey belong to the main topi
s of the entire work. So, even if the reader isonly interested in the pra
ti
al part of this work he or she has to go throughthis.We use the same notations and de�nitions as presented in [40, 36℄. Read-ers that are 
ommon with this literature may skip the entire 
hapter.13



14 CHAPTER 2. FUNDAMENTALSHere, we only summarize the main ideas underlying the work by Lakemeyerand Levesque. For an in-depth survey the reader is referred to the originalpapers [40, 36℄.2.2 First-Order Knowledge BasesThe reasoning pro
edure is based on a standard �rst-order language L with-out fun
tion symbols ex
ept 
onstants and an equality predi
ate. Whilemaking use of the unique name assumption [25℄ an in�nite set of 
onstantsC= f
1; 
2; :::g is assumed.NotationFirst of all elements of L are 
alled formulas and formulas without free vari-ables are 
alled senten
es. The standard symbols for quanti�ers, negations,et
. are used while only :, _, 9 belong to the logi
al language. In someexamples we will use ^, 8 and � as an abbreviation. In addition, 8 is forinstan
e used as an abbreviation for 8x.The symbol l will range over literals and l will express its 
omplement. �will range over substitutions of all variables by 
onstants, so that �� is theresult of applying the substitutions to �.Furthermore, �xd denotes � with all o

urren
es of the variable x substi-tuted by the domain 
onstant d. The symbol � will range over atoms whosearguments are distin
t variables, so that �� will range over ground atoms.Note that neither atoms nor literals in
lude equalities.Finally, e will mean quanti�er-free formulas whose only predi
ate is equality.Furthermore it is assumed that quanti�
ation is interpreted substitution-ally with regard to C. This assumption is founded on the fa
t how standardinterpretations of L are de�ned:De�nition A standard interpretation I of L is one where equality (=) isinterpreted as identity, and the denotation relation between C and the domainof dis
ourse is bije
tive.This kind of standard interpretation 
an be des
ribed by the followingset of axioms about equality given that the 
onsidered logi
al theory only
onsiders a �nite number of 
onstants. Of 
ourse �nite knowledge bases willalways ful�ll this restri
tion.



2.3. A DEDUCTIVE REASONING PROCEDURE 15De�nition The set " is the axioms of equality, whi
h in
ludes equivalen
erelation and substitution of equals of equals, and the set of formulas f
i =
j j i 6= jg.On those de�nitions and assumptions the interrelationship between thesatis�ability of equality and a 
losed formula and the existen
e of a standardmodel was proven [40℄. The following theorem states this 
oheren
e:Theorem 1 Suppose S is any set of 
losed formulas, and that there is anin�nite set of 
onstants that do not appear in S. Then " [ S is satis�able i�it has a standard model.Sin
e we now introdu
ed the essential properties of the logi
al language L, weare able to present the de�nition of the form of the used �rst-order knowledgebases. The following de�nition belongs to knowledge bases where V operateson.As you will see the de�nition does not allow 
lauses and thereby no dis-jun
tive information at all. When introdu
ing X later on the de�nition isextended to 
ontain disjun
tive information.De�nition A knowledge base is 
alled proper if " [ KB is 
onsistent andKB is �nite and of the form 8(e � �) or 8(e � :�).For example the following term would be a valid entry in a proper KB :8(X 6= a � :P (X))In 
ontrast, 8(X 6= a � P (X) _Q(X)) is not a valid entry sin
e 
lauses arenot allowed (yet). Please note that equality terms may 
onsist of any kindof logi
al 
ombination like negations, disjun
tions and 
onjun
tions.2.3 A Dedu
tive Reasoning Pro
edureWhile dedu
tive reasoning was introdu
ed brie
y in the last 
hapter, we nowget step by step in tou
h with the dedu
tive reasoning pro
edures to be usedin �rst-order knowledge bases that are of 
on
ern in this work here.As already said in the introdu
tion we think that there exists an highdemand in AI to work with extremely large knowledge bases that hold morethan 105 fa
ts [36℄. Currently there are very few dedu
tive reasoning pro
e-dures that 
an handle su
h kind of sets. As seen in the introdu
tion GSAT[28℄ and other methods are 
apable to perform good results on huge data



16 CHAPTER 2. FUNDAMENTALSsets, but 
an not a
hieve dedu
tive tasks and are restri
ted to propositionallanguages [40℄. Again, the following se
tions are mainly based on [40, 36℄.In the following se
tions reasoning pro
edures are introdu
ed that are
apable of working on large knowledge bases. Although the knowledge basesare large they are restri
ted in their expressiveness.While the �rst pro
edure presented handles quanti�ers, equality and in
om-plete knowledge and a knowledge base (KB) that 
onsists of fun
tion-freeground literals, the se
ond pro
edure introdu
ed allows fun
tion-free ground
lauses in a knowledge base in addition. By supporting 
lauses the lastmentioned de
ision pro
edure is able to handle disjun
tive information.2.3.1 The V-Pro
edureIntrodu
tionV is a dedu
tive reasoning pro
edure that works on proper �rst-order knowl-edge bases by evaluating the query. In 
ontrast to a normal database theknowledge base may 
ontain both 
omplete and in
omplete knowledge. Infa
t this is the one and only di�eren
e to 
ommon databases - the 
losed worldassumption (CWA)[56℄ does not hold anymore. Even though this might beinterpreted as no big di�eren
e - only allowing in
omplete knowledge - thepri
e to pay is high.This in
rease in expressive power makes 
omplete logi
al reasoning unde-
idable in the �rst-order 
ase. For example, the knowledge base that isequivalent to an empty set of literals requires that all valid formulas mustbe known when the CWA is not longer assumed. This problem is already
o-NP hard in the propositional 
ase and unde
idable in the �rst-order 
ase[40℄. Therefore V is an in
omplete but de
idable and logi
al sound reasoningpro
edure that 
an handle in
omplete knowledge.As said before it is not ne
essary to read the following subse
tions, butit is re
ommended to get a better feel for dedu
tive reasoning and on thepro
eeding of su
h a pro
edure if you are not 
ommon to it. In the followingsubse
tion we glimpse at V when presenting the 
orresponding equations asde�ned in [40℄ and give some further explanations and examples.The EquationsAs 
an be seen from the following equations the reasoning pro
edure de-termines the return value of a query by evaluating it. When evaluating anexistential we make use of the set H+k that 
ontains the union of 
onstants,that appear in the knowledge base and the query and k new 
onstants that



2.3. A DEDUCTIVE REASONING PROCEDURE 17are not mentioned in the knowledge base or the query.V uses a 3-valued answer from n0; 12 ; 1�. Returning 0 means known to befalse, 12 means unknown and 1 means known to be true.Note that we do not say that the pro
edure de
ides if a query is true or false.The return values only state answers that are implied by the reasoning me
h-anism used in V whi
h is due to the fa
t that the reasoning a

omplished byV is not 
omplete for arbitrary queries. We give a simple example to showin
ompleteness some lines later.The �rst step in the reasoning pro
edures 
onsists of the re
ursive de
om-position of the query by the mat
hing equations of the reasoning pro
eduresprovided that the query is 
omposed one.For example the query P (x) _ Q(x) is de
omposed by V to V [P (x)℄ andV [Q(x)℄ (see equation 2.4). Besides negation also the existential is de
om-posed by using the set H+1 to substitute the free variables in the query by
onstants (see equation 2.5).As 
an be seen in the equations, de
omposition has an quite intuitiveimpa
t on the return value of V. For example, when handling a disjun
tivequery the maximum value of the disjun
tive parts is returned, a negationsimply 
auses the inverse return value.After de
omposing a formula � the single parts of the formula are redu
edto ground atomi
 formula by substituting free variables by domain 
onstants(��).In general the knowledge en
oded in a query - respe
tively a formula - willbe redu
ed to knowledge of ground atomi
 formulas.V [��℄ = 8><>: 1 : if there is a 8(e � �) 2 KB su
h that V [e�℄ = 10 : if there is a 8(e � :�) 2 KB su
h that V [e�℄ = 112 : otherwise (2.1)V [t = t0℄ = 1 if t is identi
al to t0, and 0 otherwise. (2.2)V [:�℄ = 1� V [�℄: (2.3)V [� _ �℄ = maxfV [�℄; V [�℄g: (2.4)V [9x:�℄ = maxd2H+1 fV [�xd ℄g: (2.5)At this point the pro
edure determines the return value by de
iding if theterm (e � �) is 
ontained in the knowledge base whereby the substitution



18 CHAPTER 2. FUNDAMENTALS� is applied on e also and the return value of V [e�℄ is tested (see equation2.1). If the query 
onsisted of a 
omposed formula this return value may bemodi�ed as des
ribed before and as de�ned within the pro
edure.Comprising, the answer of V is a
quired by de
omposing the query, redu
-ing the knowledge en
oded in the query to the knowledge of ground atomi
formulas and de
iding if this knowledge is 
ontained in the a
tual knowledgebase.For example, if we assume V [p℄ = 0 and V [q℄ = 1, KB = fp; qg, V [p _ q℄would return 1. To show in
ompleteness we 
an give a simple example. Sup-pose V [p℄ to be 12 then V [p _ :p℄ = 12 and not the wanted answer 1.Levesque proved logi
al 
ompleteness if the query is in a 
ertain normalform named NF [40℄. In general NF is an extension to the Blake Canoni
alForm (BCF)[7℄. In addition to the properties that hold for formulas in BCF ,formulas that are in NF are also 
losed under negation and may 
ontainarbitrary 
ombinations of _ and ^.It is said in [40℄ that every query 
an be equivalently transformed into thisspe
ial normal form. However, this property was only proven in the propo-sitional 
ase, but not in the �rst-order 
ase.Anyway, transforming the query into this normal form is intra
table ingeneral [40℄. Hen
e, if the reasoning pro
edure eÆ
iently returns logi
al
orre
t answers, the query has to be transformed in an 
omputationally in-tra
table way. In [40℄ there are appli
ations like problem solvers and plannerssuggested that depend on very large knowledge bases and in whi
h the trans-formation of the query 
ould be done o�ine. Then the appli
ation 
ould besure of a logi
al sound and 
omplete answer evaluated by the reasoning pro-
edure.It was also shown in [36℄ that V is 
omplete for arbitrary queries whenonly tautologi
al entailment [2℄ and not the 
lassi
al logi
al entailment is
onsidered. In general the propositional tautologi
al entailment allows be-sides the standard two-valued assignment, that formulas 
an additionally beassigned neither true nor false or both values. Consequently, the 
onne
tionbetween the falsity and truth of a senten
e is not existent anymore [36℄. Forexample, p^ (p � q) does not tautologi
ally entail q, be
ause p as well as :p
an be supported by some setup1.Therefore tautologi
al entailment is a mu
h weaker notion than impli
ationas known in standard logi
 due to the four-valued setups whi
h in
lude theset of two-valued assignments [11℄. This weaker kind of entailment enablesV to be sound as well as 
omplete for tautologi
al entailment and arbitrary1A setup was originally de�ned by using the four truth values true, false, neither orboth [20℄.



2.3. A DEDUCTIVE REASONING PROCEDURE 19queries [36℄.While we will not dis
uss the implementation of V in our work here wewould like to mention that it 
ould be shown in [46℄ that V itself 
an beimplemented eÆ
iently in some 
ases. Here the word "eÆ
ient" means thatqueries 
an be evaluated in a 
omparable 
omplexity as they 
an be evalu-ated in 
lassi
al databases. Sin
e it is assumed in [46℄ that a given query isin NF the reasoning a

omplished is also logi
al 
orre
t.The general idea was to redu
e V to database query evaluation and to gainthis result a bottom-up database query evaluation algorithm was adapted.The underlying query evaluation algorithm is mainly based on work intro-du
ed and extended by [3, 29℄.This is a very important result sin
e we would like to implement the su

es-sor of V that introdu
es additional expensive features to handle disjun
tiveinformation and if V would be intra
table then it would be of no questionthat X would be intra
table too.To give a more pra
ti
al insight 
on
erning V suppose you would imple-ment V in PROLOG as fun
tion with two parameters, v(Query,ReturnValue)namely. Then you 
ould depi
t the existential for example as:v(exists(Variable,Query), ReturnValue) :-isSingleFormula(Query),member(Constant, DomainConstants),substitute(Variable, Constant, Query, GroundFormula),inKnowledgeBase(GroundFormula, ReturnValue).This is of 
ourse a very simple and shortened version of the implemen-tation, but it is just to emphasize the fa
t that there are only few featuresin V that would prevent an eÆ
ient implementation. The amount of termsand espe
ially 
onstants is one of the antagonists to eÆ
ien
y.The de
omposition of formulas a

omplished by the re
ursive de�nition ofV 
an be intuitively transferred into PROLOG. This is of 
ourse true for X,too.Although even with V as it will be with X the question arises how to storeand how to manage more than 105 proper terms. But before we go intodeeper detail now we leave this topi
 for a later 
hapter to 
ome.In 
on
lusion, V is a de
idable and logi
al sound reasoning pro
edurethat infers if a query is known to be true, known to be false or unknownby evaluating it while supporting knowledge bases that 
an 
ontain both
omplete and in
omplete knowledge.



20 CHAPTER 2. FUNDAMENTALS2.3.2 The X-Pro
edureproper+ Knowledge BasesWhile [40℄ presented a dedu
tive reasoning pro
edure that operates onfun
tion-free ground literals in [36℄ an extension is drawn that handles dis-jun
tive information.This extension was motivated by the fa
t that in
omplete knowledge aboutsome individuals has various appli
ations. While proper knowledge basesand V allow reasoning in huge sets of predi
ates, in
luding positive as wellas negative instan
es and handling predi
ates that are left open for 
ertainindividuals it is for example not possible to in
lude the following term in theknowledge base: (isStudent(Mary) _ isStudent(John))But espe
ially this kind of terms that 
ontain in
omplete knowledge aboutsome individuals and the 
orresponding reasoning are of great interest asstated in the introdu
tion.Sin
e X 
an handle 
lauses among other things we have to extend theproper knowledge bases used with V to in
lude 
lauses. Therefore the fol-lowing de�nitions are introdu
ed:De�nition If 
 is a disjun
tion of literals whose arguments are distin
t vari-ables, 8(e � 
) is 
alled a 8 � 
lause.De�nition Then a KB is 
alled a proper+ KB when the KB is a �nite andnon-empty set of 8 � 
lauses. Given a proper+ KB, gnd(KB) is de�ned asf
� j 8(e � 
) 2 KB and " j= e�g.In regard to the de�nition of standard interpretations some se
tions ago, thismeans that a proper+-KB is a �nite representation of the normally in�niteset gnd(KB). The set is usually in�nite be
ause in gnd(KB) every formulaof the KB is in
luded with all possible substitutions of variables. Note thatwe have an in�nite set of 
onstants.To give an example for a valid proper+ KB the following knowledge basewould be one:KB = f8(x 6= a � P (x)); 8(x = y � :P (x) _Q(y))gSin
e 
lauses have many appli
ations in general, they have two predom-inate ones [36℄. First they 
an be used to represent rules and se
ondly in-
omplete knowledge about individuals.



2.3. A DEDUCTIVE REASONING PROCEDURE 21KB1 KB2P (a) _ P (b) _ P (f) P (a) _Q(e) _Q(
)P (a) _ P (e) _Q(f) Q(d) _ P (b) _Q(a)P (a) _Q(e) _ P (
) P (a) _ P (e) _ P (f)P (a) _Q(e) _Q(
) P (
) _Q(e) _ P (a)Q(a) _ P (b) _ P (d) Q(a) _Q(b) _Q(g)Q(a) _ P (b) _Q(
) P (a) _ P (e) _Q(f)Q(a) _Q(b) _Q(g) Q(b) _Q(a) _ P (g)Q(a) _Q(b) _Q(g) Q(a) _ P (d) _ P (b)Table 2.1: Two knowledge bases that 
ontain in
omplete knowledge about indi-vidualsAs dis
ussed in [36℄ the �rst appli
ation of 
lauses 
an be ful�lled by X, butthe se
ond whi
h requires solving a 
ombinatorial puzzle is nearly given upfor the sake of eÆ
ien
y.To give you a brief impression what kind of 
omplexity o

urs when in
om-plete knowledge about individuals is involved, 
onsider the following example.In the table 2.1 two di�erent knowledge bases are depi
ted 
ontaining thetwo predi
ates P and Q.If you now try to answer the query 9X:(P (X)^Q(X)) you will observe thatis quite hard to determine that only one of the two knowledge bases supportsthe query.As we will see, X deals with in
omplete knowledge introdu
ed by 
lausesin a limited way.Unit PropagationNext we present one of the main features that is in
luded in the reasoningpro
edure X :De�nition If S is a set of ground 
lauses, then UP (S) is the least set whi
h
ontains S and if flg [ 
 and l are in UP (S), then so is 
. In other wordsUP (S) is simply the appli
ation of Unit Propagation to the set S.X uses UP (S) to de
ide if a literal 
an be inferred or not.While we introdu
ed unit propagation formally, we would like to give someexplanations and examples at this point, be
ause it is important to under-stand how unit propagation works and when it 
an be applied su

essfully.As said in the introdu
tion unit propagation is an often used method inthe propositional 
ase. There exist various eÆ
ient implementations of unit



22 CHAPTER 2. FUNDAMENTALSpropagation for the propositional 
ase like presented in [73℄, [44℄ and [30℄.In fa
t the 
omplexity of the applian
e of unit propagation is linear in thepropositional 
ase [73℄.The use of unit propagation ensures simple appli
ations of Modus Ponens asshown in the following example that 
onsists of literals only:KB = fp;:s; (:p _ q); (:q _ s _ r)gAfter applying unit propagation (�rst time):KB = fp;:s; q; (:q _ r)gAfter applying unit propagation (se
ond time):KB = fp;:s; q; rgSin
e X makes use of unit propagation (see equation 2.6) the answer toX[KB; r℄ will equal 1. As you 
an see in the example the unit 
lauses p and:s are propagated along the disjun
tions in a way that new unit 
lauses arise- like q - what 
onsequently 
auses r to be known to X.Note that X while using unit propagation supports simple appli
ations ofModus Ponens in 
ontrast to tautologi
al entailment, for example.While the use of literals only makes unit propagation similar to applyingunit propagation in the propositional 
ase we must be aware of the fa
t thatwe have to 
onsider the equality terms when using unit propagation withproper+-terms in general.At this point we again present a simple example that shows what is ne
essaryto apply unit propagation su

essful:KB = f(X = a) � P (X); (X = b) � (:P (X) _Q(X))gHere we 
an not apply unit propagation be
ause of the mutual ex
lusiveequalities. And even if equalities mat
h the equality term of the resultingterm must be adapted a

ordingly.This means that in 
ontrast to the propositional 
ase we do not only have topropagate unit 
lauses and delete the inverse predi
ate from the disjun
tions,but additionally have to take 
are of the 
orresponding equality terms. Thiswill belong to the main topi
s in the 
hapters to 
ome.While it is not ne
essary at this point to know everything about the 
onse-quen
es on equality terms when applying unit propagation in a proper+ �KB, you should be aware of the di�eren
e to the propositional 
ase.When we investigate the intera
tion of equality terms and unit propagationlater on (
hapter 3) we will see that this parti
ular di�eren
e 
alls the use ofunit propagation in 
onne
tion with proper+-terms into question - at leastfor some spe
i�
 types of proper+-terms.



2.3. A DEDUCTIVE REASONING PROCEDURE 23Reasoning by CasesAs we mentioned before, X deals with in
omplete knowledge introdu
edby disjun
tive information. X handles su
h kind of knowledge by usingreasoning by 
ases.Hen
e, besides unit propagation the appli
ation of reasoning by 
ases is afurther main feature 
ontained in X. And be
ause this feature will play amajor role in our work we will introdu
e the prin
iple of it here brie
y andwill examine it more 
losely when presenting our implementation.Suppose the following knowledge base:KB = f(P (a) _Q(b)); (:P (a) _Q(b))gSin
e reasoning by 
ases assumes every part of a disjun
tion ea
h byea
h as to be true and then testing a given formula or query, it follows that9X:Q(X) would be true.Simply be
ause of the fa
t that adding P (a) to the knowledge base would
ause Q(b) to be true by unit propagation and the e�e
t of adding Q(b) willof 
ourse support the query. A

ordingly we will see that X answers in thesame way.If reasoning by 
ases with more than one level is supported, the pro
essis started again while the added terms of the previous levels remain.At this point the reader should be aware of two fa
ts. First reasoning by
ases is a mu
h more 
ompli
ated method than unit propagation sin
e itmakes use of unit propagation as sub-pro
ess for example.Se
ond in general the 
omplexity of reasoning by 
ases grows exponentiallywith the level that is de�ned, be
ause we do not have a 
riteria that pre-vents the growth of the sear
h spa
e suÆ
iently. In the next 
hapter we willintrodu
e the 
riteria we used in our implementation.The EquationsUntil now we des
ribed whi
h features the reasoning pro
edure uses and atthis point we present X itself in the following equations as de�ned in [36℄.In the next se
tion we determine in whi
h equations the main features areapplied. X[KB; l℄ = ( 1 : if l 2 UP (gnd(KB)); l a literal0 : otherwise (2.6)X[KB; t = t0℄ = ( 1 : if t is identi
al to t00 : otherwise (2.7)



24 CHAPTER 2. FUNDAMENTALSX[KB;:(t = t0)℄ = 1�X[KB; t = t0℄: (2.8)X[KB;::�℄ = X[KB;�℄: (2.9)
X[KB;� _ �℄ = 8>>>>>><>>>>>>: 1 there is a 8(e � 
) 2 KB and a � 2 H+ksu
h that X[KB; e�℄ = 1and for all l 2 
;X[KB [ fl�g; �℄ = 1 or X[KB [ fl�g; �℄ = 1;where k is the number of free variables in 
0 otherwise (2.10)X[KB;:� _ �℄ = minfX[KB;:�℄; X[KB;:�℄g: (2.11)

X[KB; 9x:�℄ = 8>>>>>><>>>>>>: 1 there is a 8(e � 
) 2 KB and a � 2 H+ksu
h that X[KB; e�℄ = 1and for all l 2 
;there is a d 2 H+k+1 su
h that X[KB [ fl�g; �xd℄ = 1;where k is the number of free variables in 
0 otherwise (2.12)X[KB;:9x:�℄ = mind2H+1 fX[KB;:�xd ℄g: (2.13)Properties of XWe begin this se
tion by presenting the 
ase where the reasoning of bothintrodu
ed pro
edures is equivalent. The following proof was given in [36℄:Corollary 2 If KB is proper then for any senten
e �,X[KB;�℄ = 1 i� V [KB;�℄ = 1Hen
e, when X is used on proper KBs its reasoning is equivalent to that ofV. In 
ontrast to its pre
ursor X returns only 0 and 1 and is therefore not athree-valued pro
edure anymore. Nevertheless it is possible to gain the sameanswers like V does be
ause of the fa
t that using the query and its negationtogether yields the same response in total.V answers a single query � by returning if � is known to be true, known to
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h the same result with X we have to use twoqueries, namely � and :�. Hen
e, the return value 0 here means unknownand not known to be false anymore.The major di�eren
es to V 
an be found in equations 2.7, 2.10 and 2.12.In fa
t those are the lines that are 
on
erned with literals, disjun
tions andthe existential.The �rst mentioned equation uses UP (S) to de
ide if a literal 
an be inferredor not.Equations 2.10 
on
erning disjun
tions and 2.12 
on
erning existential quan-ti�ers allow reasoning by 
ases, but only with respe
t to a single 
lause in S.Note that the number of appli
ations of reasoning by 
ases is limited by thestru
ture of the query. In fa
t, reasoning by 
ases is allowed exa
tly on
e forea
h appearan
e of a disjun
tion and existential in the query.In our implementation we allow a user-de�ned level of reasoning by 
ases.This di�eren
e to X was inspired by a slightly di�erent version of X - namelyW presented in [37℄.This means for example that the user 
an de�ne that the query 9X:P (X)should be answered by using two levels of reasoning by 
ases.In the pro
edure there is nothing said on how to 
hoose the next 
lausefor reasoning by 
ases - the 
hoi
e is a non-deterministi
 one. This of 
oursemust be 
hanged in the pra
ti
al implementation sin
e our algorithm musthave some 
riteria at least to 
hoose the next 
lause to enable an eÆ
ientimplementation. It is obvious that we 
an not try every 
lause of the 105possible ones. The 
riteria used is presented in the next 
hapter.While we will not talk about every detail of X we would like to say somewords on the role that H+k plays.First of all writing � 2 H+k means that the substitutions may only range overthe 
onstants in
luded in H+k .As denoted in equations 2.10 and 2.12 X does not allow 
ase splitting for any
lause in
luded in the knowledge base, but is restri
ted to split substitutioninstan
es over H+k of a 
lause in the knowledge base only. So the 
hoi
e of a
lause is restri
ted by H+k .Both V and X a

omplish logi
al sound reasoning, but are not logi
al
omplete. Note again that X only supports reasoning by 
ases when anexistential or a disjun
tion is in
luded in the query. Suppose the followingterms to be 
ontained in the knowledge base:(P (a) _ P (b)) (:P (a) _ P (b))Although it is obvious that the query P (b) is supported by the given knowl-edge base, X will return "unknown", be
ause of the reasons des
ribed before.



26 CHAPTER 2. FUNDAMENTALSAnother example to show in
ompleteness of X is 
ontained in the examplepresented earlier (table 2.1). X is not able to handle this kind of knowledgebases, be
ause it is simply not suÆ
ient to apply reasoning by 
ases to onlyone 
lause when solving an existential or a disjun
tion.Although the knowledge base KB2 entails the given query �, X would re-turn the value "unknown" (X[KB2; �℄ = 0). The solving of the puzzle wouldrequire noti
eable more levels of reasoning by 
ases than one - in fa
t 8 arerequired. Note that the required number of levels is equal to the number of
lauses 
ontained in the knowledge base.The property that X is not able to solve this kind of 
ombinatorial puzzles isa desired e�e
t sin
e the reasoning a

omplished by X was planned to staytra
table [36℄. For instan
e, tautologi
al entailment is able to solve su
h kindof puzzles, but at the same time it is a subje
t to 
ause intra
tability [36℄.Note that tautologi
al entailment is tra
table in the propositional 
ase [39℄,but [35, 55℄ showed that this result 
ould not be transferred in the �rst-order
ase.One other interesting fa
t that 
ould be shown in [36℄ is that even if thequery is 
onverted to the earlier mentioned normal form NF the questionif the query is entailed by a proper+ knowledge base stays unde
idable ingeneral. As showed before this was di�erent when only proper knowledgebases were 
onsidered and therefore no 
lauses were of 
on
ern.Furthermore the following important property of X was proven in [36℄:Theorem 3 X is de
idable.The proof is mainly founded on the reasons that both the knowledge baseand the set H+k are �nite and that it is always possible to de
ide if a literall is a member of gnd(UP (KB)) due to the fa
t that no full Resolution isapplied.All in all it is quite obvious that the two features unit propagation andreasoning by 
ases are also the main di�eren
e in 
omplexity to the reasoningpro
edure V. As des
ribed in an earlier se
tion V does not make use of su
hkind of rather 
omplex methods. Details on this topi
 are presented in thesubsequent 
hapters.Consequently, it remains to be shown whether X is eÆ
ient 
omputable.2.4 SummaryIn this 
hapter we introdu
ed two dedu
tive reasoning pro
edures - V andX namely - as they were presented in [40, 36℄. Before the design and the



2.4. SUMMARY 27features of ea
h pro
edure were presented, we gave a brief introdu
tion tothe notation and de�nitions and the underlying logi
.While the importan
e of Unit Propagation and Reasoning by Cases wasdes
ribed, both are 
onsequently of spe
ial regard in the subsequent 
hap-ter sin
e they are 
ru
ial for the reasoning pro
edure itself and thereforeextremely relevant for an eÆ
ient implementation of X.Besides Lakemeyer and Levesque presented a new version of the reasoningpro
edure in [37℄ named W whi
h is very similar to X ex
ept the fa
t thatthe depth of reasoning by 
ases is user-de�ned. In our implementation we will
on
entrate on X mainly, but will allow the user-de�ned level of reasoningby 
ases.There is not only a new variant of the reasoning pro
edure presented butthere is also a new logi
 introdu
ed to give a more predi
table and intuitiveinsight on how those rather 
omplex and re
ursive pro
edures answer. Forfurther details please refer to [37℄.In 
on
lusion, X is de
idable and performs logi
al sound reasoning as Vdoes. But in 
ontrast to V it 
an also handle disjun
tive information byusing the main features unit propagation and reasoning by 
ases.
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Chapter 3Exploring Properties of theDe
ision Pro
edure
3.1 Introdu
tionIn this 
hapter we will dis
uss two properties introdu
ed by the de
isionpro
edure. The �rst se
tion will investigate the growth of the equality termsthat takes pla
e when unit propagation is applied. Con
erning this topi
re
all the following example knowledge base:KB = f(X 6= a � P (X)); (X 6= b � (:P (X) _Q(X))gIf we apply unit propagation this results in the following proper+ term:(X 6= a ^X 6= b � Q(X))Note the growth in the equality term.We show that inequality 
auses an exponential growth of the equality termswith regard to the number of unit propagations applied. This is one of themain reasons why we will ex
lude inequality from the equality term in generalwhen we implement X later on.Se
ond we will show the inter
hangeability in the order of the generationof ground terms and the appli
ation of unit propagation. This is ne
essaryto allow the appli
ation of unit propagation without generating all possibleground instan
es �rst as it was de�ned in the reasoning pro
edure X.Additionally, we will present in this se
tion the essential di�eren
e betweenunit propagation in the propositional 
ase and the �rst-order 
ase.29



30CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREEquality Term Restri
tionV ariable Not Restri
tedV ariable 6= Constant Semi Restri
tedV ariable = Constant Fully Restri
tedTable 3.1: The partitioning of equality-terms relating to the assigned value of avariable3.2 The Growth of Equality-Terms3.2.1 When growth takes pla
eIn this se
tion we will determine the growth of the equality terms 'e', whenwe apply unit propagation. First, we re
all why there is any growth of e ina proper term. Sin
e we dis
ussed in the last 
hapter how unit propagationworks, it is quite easy to realize that there are 
ases when applying unitresolution 
auses e to grow, be
ause the equalities of the resulting properterm have to be updated.Note that we 
an apply unit propagation only if there exists a proper termthat 
ontains more then one predi
ate and another proper term that 
ontainsexa
tly one predi
ate ('Unit Clause or Unit Term').Additionally a mat
hing unit term must 
ontain the negated version of apredi
ate whi
h is one of the predi
ates from the proper term with multiplepredi
ates. Furthermore the equalities of both proper terms must mat
h,that is equalities may not be mutually ex
lusive.Our �rst step to determine when growth takes pla
e and when the numberof equality terms stays 
onstant is that we divide equality terms into three
ategories. Those 
ategories are based on restri
tions relating to variables.As shown in table 3.1 a variable 
an be assigned three di�erent kinds ofvalues: all possible values (domain 
onstants), all possible values ex
ept oneor exa
tly one value. For ea
h of those assignments exist di�erent kinds ofproperties when unit propagation is applied and therefore we will pro
eedthrough them ea
h by ea
h.The three 
lasses 
an also be interpreted in a hierar
hi
al way sin
e every 
lassdes
ribes an expli
it level of restri
tion. Then the highest level of restri
tionwould be assigning a variable to a 
onstant and the lowest level would be norestri
tion at all.We will 
all the proper+ term whi
h 
ontains more than one predi
ate thedisjun
tive term and the other proper term as before unit term. Note thatat this point we deal only with proper terms where unit propagation 
an be
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ted Semi restri
ted Fully restri
tedNot restri
ted e1 = e2 e1 e1e2 Semi restri
ted e2 e1 ^ e2 e1Fully restri
ted e2 e2 e1 = e2Table 3.2: The resulting equality term depending on the 
lasses e1 and e2 belongtosu

essfully applied to.We assume for now that an equality term e 
ontains only one variable andone 
orresponding assignment. Furthermore, e1 
orresponds to the equalityterm of the disjun
tive term and e2 to the unit term.Con
erning the equalities we observe the following when unit propagationis applied:� If e1 restri
ts a variable not at all, it will be overwritten by e2 in any
ase, sin
e e2 restri
ts a variable on a higher level of restri
tion or atleast at the same level. It is obvious that no growth of equalities willtake pla
e if we only repla
e e1 by e2.� If e1 restri
ts a variable to have any value ex
ept one, it will be repla
edby e2 only if e2 restri
ts a variable to a 
onstant.� If e2 semi-restri
ts a variable, the equality term of the resulting dis-jun
tive term will be of the following form e1 ^ e2, if e2 6= e1. We notea growth in this 
ase.� If e2 does not restri
t the variable in any way, e1 just remains theequality term of the resulting proper term.� If e1 restri
ts a variable to be exa
tly one 
onstant, then e2 = e1, hen
ee1 resides and so there is again no growth at all.All these observations between the equality term of the disjun
tive term andthe unit term are depi
ted in the table 3.2.So there is only one 
ase where growth takes pla
e - namely if e1 ande2 both semi-restri
t a variable. For example, X 6= a � P (X) _ Q(X)and X 6= b � :P (X) will resolve to X 6= a ^ X 6= b � Q(X). All other
ombinations will resolve in a repla
ement of e1 by e2 or e1 simply remains.



32CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE3.2.2 The intera
tion between Growth and Unit Prop-agationSo far we dis
overed that in this kind of 
onstellation there is only one typeof growth possible.But the 
onsidered equality terms 
ontained only one variable ea
h. Thissimple 
on�guration allowed us to determine the worst 
ase of growth onthe lowest level. We will use that result while now equality terms 
an nowin
lude any number of variables.In our implementation that we will present in the subsequent 
hapterwe assume that all equality terms are in Disjun
tive Normal Form (DNF).We de
ided in favor of the DNF, be
ause we depend on a fast 
omparisonbetween equality terms of two proper+ terms when implementing X. Sin
eDNF allows us to split the equality term into the 
onjun
tions of single as-signments of variables and test the equalities one by one we 
an easily de
ideif equality terms are 
ompatible or not.In 
ontrast, if we would not use DNF we would trade o� time for spa
e. Atthis point the reader will realize that the growth 
aused by unit propagationpresented in the last se
tion and the use of the DNF will 
ause an exponen-tial growth. We will return to the topi
 
on
erning the 
hoi
e of the normalform later on.In this and in the subsequent se
tion we will make use of the following de�-nitions and properties.De�nition Two equality terms e1 and e2 mat
h if there is at least onesubstitution � for whi
h the following holds:� j= e1� and � j= e2�In other words two equalities mat
h if they are not mutually ex
lusive.Now we present an equivalent representation of proper+ KBs f(e � 
)gwhen e in DNF and e 
ontains no inequalities. Therefore, we need the fol-lowing notations. Given e, let �e be a substitution whi
h maps only variableso

urring in e to 
onstants. In a similar way �je restri
ts � to the variables
ontained in e.De�nition Let KB be a proper+ KB f(e � 
)g and e in DNF and 
ontainno inequalities. Then KBe�free = f 8(
0)j there exists a 8(e1_ :::_ en � 
) 2KB so that there is a ei and �ei and � j= ei�ei and 
0 = 
�eigNote that every proper+ knowledge base 
an be modi�ed to a e-free knowl-edge base in this way, if equality terms are in DNF and 
ontain no inequali-ties.



3.2. THE GROWTH OF EQUALITY-TERMS 33Lemma 4 For all standard interpretations I the following equation holds:I j= KB i� I j= KBe�freeProof ")": Let I j= KB and let 8(
0) 2 KBe�free. Hen
e, there exists8(e1 _ ::: _ en � 
) 2 KB, so that there exists an ei�ei and � j= ei�ei and
0 = 
�ei . Now I j= 8(e1 _ ::: _ en � 
) and by the assumption follows thatI j= ei� for some i. Then I j= (e1_ :::_en)�ei . Hen
e, I j= 8
�ei , i.e. I j= 8
0."(": Let I j= KBe�free and let 8(e1 _ ::: _ en � 
) 2 KB. We show thatI j= 8(e1 _ ::: _ en � 
). Suppose, I j= ei� for some substitution �. It suÆesto show I j= 
�. Then there exists a �ei = �jei, so that I j= ei�ei i.e. � j= ei�ei .By de�nition of KBe�free there is a 
0 2 KBe�free with 
0 = 
�ei. Hen
e,sin
e I j= 8
0 holds by the assumption we have I j= 8
�ei and therefore,I j= 
�.From Lemma 4 the next theorem follows immediately.Theorem 5 For every proper+ KB f8(e � 
)g with e in DNF and e 
on-tains no inequalities and the 
orresponding equality free KBe�free f8(
)g thefollowing holds: KB j= � i� KBe�free j= �Note that the original representation is more 
ompa
t, but the representationused here is equivalent and 
auses only a minor growth of the KB. Supposethat the maximal number of disjun
tive equality terms is k. Then the growthlies in O(m � k) while m denotes the size of the original KB.Before we 
ontinue the observations of the spe
ial 
ase mentioned at thebeginning of this se
tion we �rst of all present a result given by [47℄.Theorem 6 (Liu, [47℄)Let KB be an e-free knowledge base f8(
)g when jKBj = n and CKB denotesthe set of 
onstants 
ontained in KB while jCKBj � n. In addition, k denotesthe maximal number of variables in one 
lause 
.Then the 
losure under unit propagation applied to the entire KB results ina knowledge base KB0 while jKB0j � nk+1.Proof-Sket
h Let �CKB range over substitutions of all variables by 
onstants
i while 
i 2 CKB and gndCKB(KB) = f
�CKB j 8(
) 2 KBg.Then jUP (KBj � jgndCKB(UP (KB))j. By an extension of Theorem 12it would be possible to show jgndCKB(UP (KB))j = jUP (gndCKB(KB))j.Sin
e unit propagation applied to ground instan
es 
orresponds to unit



34CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREpropagation applied in the propositional 
ase the following equation holds:jUP (gndCKB(KB))j� jgndCKB(KB)j.While we have maximally k variables in ea
h of the n 
lauses 
ontainedin KB and have maximally n 
onstants the maximal number of possibleground instan
es equals n � nk. Hen
e, jgndCKB(KB)j� nk+1. Consequently,jUP (KBj � nk+1.At this point we return to the 
ase where inequalities are supported andexamine the growth 
aused by the appli
ation of unit propagation.While again e1 and e2 represent the equalities of the disjun
tive termand the unit term respe
tively, jejj will denote the total number of singleequalities in ej. In addition, e1i will indi
ate the i-th 
lause of an equalityterm. Furthermore, je1ij holds the number of 
onjun
tive equality terms thatare 
ontained in the i-th 
lause while n (m) stands for the total number ofdisjun
tive equality terms in e1 (e2).Sin
e we do not restri
t an equality term to hold exa
tly one variable any-more, the growth will now additionally in
rease by all possible 
ombinationsbetween disjun
tive equality terms in e1 and e2.For example, if we have the following equality terms:e1 : (X 6= C1 ^ Y 6= C2) _ (X 6= C2 ^ Y 6= C1)e2 : (X 6= C3 ^ Y 6= C4) _ (X 6= C4 ^ Y 6= C3)If we would apply unit propagation now we had to adept e1 in the waywe determined before. Sin
e this is not a matter of repla
ing or keeping aequality term, the single equality terms from e1 and e2 add up, but not in alinear way.The growth is not linear be
ause disjun
tions 
ause as mu
h 
ombinationsof e1i and e2j as there are disjun
tions in e1 and e2. This is in general thewell known drawba
k of a 
onversion of a formula to DNF. In our 
ase wehave to 
onvert two formulas that only 
onsist of disjun
tions 
onne
ted bya 
onjun
tion to a formula in DNF. This 
auses the mentioned growth.In our example one part of the resulting equality term whi
h only regardsthe �rst part of e1, namely e11, would be:(X 6= C1^Y 6= C2^X 6= C3^Y 6= C4)_(X 6= C1^Y 6= C2^X 6= C4^Y 6= C3).We 
ount 8 single equality terms for this part of adaption and the �nalresulting equality term would hold 16 single equality terms in total, so thatthe number of equality terms in this 
ase doubles in total.We again observed a worst 
ase s
enario here sin
e besides using semi-restri
ted equalities only, we also assumed that every variable whi
h is 
on-tained in e1 is also 
ontained in every single term in e2 whi
h is normally
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ase; re
all that e1 is the equality term of a proper term that holdsdi�erent predi
ates and e2 
onstraints variables that belong to exa
tly onepredi
ate only.When we assume that we only use semi-restri
ted equalities and every 
lausefrom e1 has to be 
ombined with every 
lause from e2, then we 
an deter-mine the number of single equality terms in the resulting equality term inthe following way.First we write e1 and e2 in detail as de�ned:e1 : e11 _ e12 _ ::: _ e1ne2 : e21 _ e22 _ ::: _ e2mSo the number of single equality terms (je1j) in e1 
an be 
al
ulated byPni=1 je1ij; je2j analogous.Consequently the resulting equality term is of the following form:eresulting : ((e11 ^ e21) _ (e11 ^ e22) _ ::: _ (e11 ^ e2m) _ (e12 ^ e21) _ ::: _ (e12 ^e2m) _ ::: _ (e1n ^ e21) _ ::: _ (e1n ^ e2m))Sin
e we are interested in the total number of single equality terms ineresulting, we 
an determine jeresultingj by the following equation:jeresultingj = nXi=1(m � je1ij+ mXj=1 je2jj) (3.1)While we re
ognize je1j and je2j in equation 3.1 and je2j is added upn-times the equation 
an be simply rewritten as:jeresultingj = m � je1j+ n � je2j (3.2)Consequently the growth of equality terms is determined by jeresultingj �je1j and hen
e:Maximum Growth of Equality Terms = (m� 1) � je1j+ n � je2j (3.3)As we 
an observe in equation 3.1 the growth of equality terms is the
omposition of the growth of semi-restri
ted variables and the 
ombinationof disjun
tive terms in je1j and je2j. We de
reased the number of equalityterms by e1 in this equation, be
ause we determined the growth and not thetotal size of the resulting equality term.Noti
e that we assumed that there are only semi-restri
ted variables aswell in je1j as in je2j and every je1ij has its 
ounterpart in every je2jj whi
h



36CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREis quite unusual as said before.In that we showed that only semi-restri
ted variables 
ause any growth at alland maximised the number of 
ombinations of single equality terms equation3.3 marks out the maximum possible growth of equality terms.To des
ribe the size of the resulting equality term in a more simple way weassume that n = m and je1j = je2j so that we get the following equation:jeresultingj = n � (2 � je1j) (3.4)With the assumptions made we noti
e that the number of single equalityterms doubles if we have no disjun
tive equality terms at all (n = 1). Ifn > 1, je1j is additionally multiplied by the number of disjun
tions in je1j.This might give a more intuitive feel of the growth of equality terms.As we showed before the resulting equality term will hold as mu
h assingle equality terms as denoted in 3.1.If we assume again that je1j = je2j, n = m and additionally je1ij = je2jj = 1for all i; j (
onsequently je1j = je2j = 1) and we apply unit propagation nownot only on
e, but several times the number of single equality terms willin
rease dramati
ally. The number of unit propagations applied is denotedas jUPsj.From 3.4 and sin
e Pni=1 je1ij=n be
ause je1ij = 1 we derive the size ofthe resulting equality term when we apply unit propagation the �rst time:jeresultingj = n � (2 � n) = 2 � n2 (3.5)At the same time the number of disjun
tive equality terms will be determinedby keeping in mind that m = n:jedisjun
tive�termsj = n �m = n2 (3.6)If we 
ombine the following equality terms for example where n = 3, wewill have the denoted values for the number of single equality terms andnumber of disjun
tive equality terms:e1 : e11 _ e12 _ e13e2 : e21 _ e22 _ e23jeresultingj = 18 jedisjun
tive�termsj = 9Note again that a disjun
tive equality term (e.g. e11) 
onsists of singleequality terms.If we now apply unit propagation a se
ond time with a unit term that hasas before m (in our example is m = 3) disjun
tive equality terms in total, we



3.2. THE GROWTH OF EQUALITY-TERMS 37must be aware of the a
tual number of disjun
tive equality terms and singleequality terms of the disjun
tive term generated by the �rst appli
ation ofunit propagation.Now n in equation 3.1 will be equal to jedisjun
tive�termsj (e.g. 9) and sin
ethe number of single equality terms simply add up when jej = 1 in ea
hdisjun
tive equality term and by ea
h appli
ation of unit propagation, we
an rewrite 3.1 in the following way:jeresulting2j = jedisjun
tive�termsjXi=1 (m � (je1ij+ je2ij) + mXj=1 je2jj) (3.7)Equation 3.7 denotes the number of single equality terms after applyingunit propagation twi
e. We add je1ij and je2ij be
ause now ea
h of the dis-jun
tive equality terms of the disjun
tive term 
onsists of the addition of theold number of single equality terms and the single equality terms of the �rstused unit term.Taking into a

ount the assumptions made above and sin
e we 
on-tinue applying unit propagation this will result in the re
ursive de�nitionof jedisjun
tive�termsj while jedisjun
tive�terms1j = n �m:jedisjun
tive�termsjUPsjj = m � jedisjun
tive�termsjUPsj�1j (3.8)While we assumed that n = m we have:jedisjun
tive�termsjUPsjj = njUPsj+1 (3.9)In fa
t this equation already states the exponentially growth of equalityterms with regard to the number of appli
ations of unit propagation very
learly. Note that we always use jedisjun
tive�termsjUPsj�1j when determiningjeresultingjUPsjj.Furthermore, we 
an rewrite the in
rease in size of a single equality term ina disjun
tive term in the following way sin
e je1ij = je2jj = 1:jegrowthjUPsjj = jUPsjXi=1 1 = jUPsj (3.10)Consequently, we 
an rewrite while we now also substitute m by n sin
em = n and je1ij = je2jj by 1:jeresultingjUPsjj = njUPsjXi=1 n � (jUPsj+ 1) (3.11)If we now apply unit propagation (n � 1)-times this will result in thefollowing equation:



38CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREjeresultingn�1j = nn�1Xi=1 n2 (3.12)Theorem 7 Let emax denote the equality term 
ontained in the KB so thatjemaxj � jeij for every ei 2 KB.Then there exist proper+ KBs f8(e � 
)g with e in DNF su
h that the 
losureunder unit propagation results in a KB so that emax grows exponential in thesize of emax.Proof Equation 3.12 determines the number of equalities 
ontained in theresulting equality term after unit propagation is applied n� 1-times while nis the length of the equality term of the original disjun
tive term. We now
onstru
t a general example knowledge base whi
h meets the assumptionsunderlying the equation.Suppose a KB that 
ontains a disjun
tive term that has an equality termemax with jemaxj = n while the disjun
tive term is of the following form:(X 6= 
1 _X 6= 
2 _ ::: _X 6= 
n) � P1(X) _ ::: _ Pn(X)Note that 
i 6= 
j if i 6= j. Hen
e, we need at least jCmaxj = n 
onstants inthe disjun
tive term.Additionally, the knowledge base 
ontains n�1 unit terms while the 
omple-ment of every predi
ate is 
ontained in the disjun
tive term and a predi
ateis not 
ontained twi
e in the n � 1 unit terms. At least the following n � 1unit terms must be 
ontained in the knowledge base:(X 6= a1 _X 6= a2 _ ::: _X 6= an) � :P1(X)...(X 6= u1 _X 6= u2 _ ::: _X 6= un) � :Pn�1(X)Note that the equalities 
orrespond to the same variable as they do in thedisjun
tive term and we have n equalities ea
h. However, none of the equal-ity terms 
ontains a 
onstant from the set Cmax nor a 
onstant that is usedin another equality term of the unit terms of 
on
ern. This prevents thatidenti
al equalities are 
ontained in the equality terms of the disjun
tive termand the 
orresponding unit terms.Thereby we ful�ll the assumption underlying Equation 3.12, espe
iallyjemaxj = jeunit1 j = ::: = jeunitn�1 j = n. In addition, unit propagation 
anbe applied su

essfully sin
e we only deal with inequalities and there existn� 1 mat
hing predi
ates.Therefore, we 
an apply unit propagation n� 1-times. Consequently, as de-pi
ted in Equation 3.12 we noti
e an exponential growth in the size of jemaxj
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on
erning the equality term emax. Hen
e, the 
losure under unit propagation
an 
ause an equality term to grow exponentially in its size.It is quite obvious that this 
an not be handled eÆ
iently even if the numberof the equalities, predi
ates and appli
ations of unit propagation are rathersmall. As said before this is one of the reasons why we ex
luded inequalitiesfrom equality terms. More reasons are dis
ussed in the following 
hapter.Now we return to the topi
 
on
erning the use of DNF. The reader mightthink at this point that the presented growth of equality terms is mainly
aused by the 
onversion to DNF and this is in fa
t true.If we would not 
onvert the equality terms to DNF we 
onje
ture that thegrowth would not be exponential anymore sin
e we would not have to take
are of the huge number of possible 
ombinations of the single equalities. Infa
t, after a su

essful appli
ation of unit propagation we would simply addthe 
orresponding equalities of the unit term to the equalities of the originaldisjun
tive term and no further pro
essing (e.g., normal form 
onversion)would take pla
e.But as mentioned before we haven 
hosen in favor of DNF, be
ause it allowsus to 
ompare equalities in a eÆ
ient way. And as also said before if we do notstore equality terms in DNF a rather 
omplex satis�ability test is required.For example, we would then have to take 
are of the above mentioned possible
ombinations and the 
onne
tions between the single variables when testinga single equality.We need the following notations for the next observations 
on
erning thesatis�ability test of equality terms. In this 
ontext, � denotes an arbitrarypropositional formula and p an atomi
 formula. Then we 
onstru
t a formulae� so that the following holds: � is satis�able i� e� is satis�able. In e� everyp 2 � is repla
ed by Xp = 
p respe
tively where X is a variable and 
i a
onstant. In addition, Vj= e i� " j= eX1:::Xnv(X1):::v(Xn) for all Xi in e.Lemma 8 Let I be a truth assignment of the the atoms p 2 �. Additionally,VI is a variable mapping so that VI(Xp) = 
p if I(p) = true and VI(Xp) = 
�if I(p) = false when 
� 6= 
p.Then I j= � i� VIj= e�Proof The proof is by indu
tion on the stru
ture of �. In the base 
ase wehave I j= p i� VI(Xp) = 
p i� VI j= Xp = 
p."(�1 _ �2)": I j= (�1 _ �2) i� I j= �1 or I j= �2 i� VIj= e�1 or VI j= e�2 i�VI j= (e�1 _ e�2).



40CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE"(�1 ^ �2)": I j= (�1 ^ �2) i� I j= �1 and I j= �2 i� VIj= e�1 and VI j= e�2i� VI j= (e�1 ^ e�2)."(:�)": I j= :� i� I 6j= � i� VI 6j= e� i� VIj= :e�. Note that it is suÆ
ientto 
hoose one 
onstant 
� so that 
� 6= 
p for all p 2 �.Lemma 9 Let V be a variable mapping for e�. Additionally, Iv is a truthassignment for every p 2 � so that Iv(p) = true if V(Xp) = 
p andIv(p) = false if V(Xp) 6= 
p.Then Vj= e� i� Iv j= �Proof Similar to the proof of Lemma 8.Theorem 10 The satis�ability problem for the formulas e is NP-hard.Proof Let � be a propositional formula, e� as in Lemma 8 and Lemma 9.It is obvious that we 
an 
onvert � in linear time to e�. Then we show that� is satis�able i� e� is satis�able. ")": Let I j= � then VIj= e� by Lemma8. "(": Let Vj= e� then Iv j= � by Lemma 9.If for example, SAT instan
es would be in DNF, then it would be rathersimple to determine if a formula is satis�able or not. But the 
onversion toDNF itself would be very 
omplex. In fa
t, if we would give up the 
onversionto DNF we would shift the 
omplexity from spa
e to time, but would stayexponential in both 
ases. Note that the 
onversion to DNF applies to ea
hproper+ term separately whi
h seems pra
ti
al assuming that proper+ termsare very small 
ompared to the size of the entire knowledge base.Sin
e inequalities are seldom in general and not used in our implementationat all we think that it was the right 
hoi
e to use DNF sin
e it allows usthe very important feature to 
ompare equalities fast. But also note at thispoint that the use of no inequalities would also 
ause the satis�ability testto be rather simple.In this se
tion we showed that there are three types of equality terms onwhi
h unit propagation has di�erent e�e
ts. In parti
ular we 
ould show thatthe 
ombination of two inequalities 
auses a growth in the equality terms.Furthermore, we presented the equation 3.9 that des
ribed the 
oheren
ebetween the size of an equality term and the number of appli
ations of unitpropagation very 
learly. In fa
t, we 
ould show that the size of the resultingequality terms grows exponentially in its size with regard to the number ofunit propagation applied.



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION41Additionally, we dis
ussed the use of DNF sin
e it is the main fa
tor that
auses exponential growth in spa
e. Due to the fa
t that we 
an only shiftthis 
omplexity from spa
e to time, we think that the use of DNF is the right
hoi
e with regard to the requirements introdu
ed by X.Finally, this se
tion 
ontains one of the main reasons that 
auses inequal-ities to be ex
luded from the equality term in general.3.3 The Inter
hangeability in the order of thegeneration of Ground Terms and the ap-pli
ation of Unit PropagationIn this se
tion we show the inter
hangeability in the order of the generationof ground terms and the appli
ation of unit propagation.To introdu
e this topi
 we will �rst of all present an example to 
larify anessential di�eren
e between unit propagation applied in the propositional
ase and the �rst-order 
ase.3.3.1 Unit Propagation in the Propositional Case andthe First-Order CaseAs we showed in the last 
hapter the appli
ation of unit propagation is iden-ti
al in both 
ases when only the predi
ates are of 
on
ern, but there is a
ru
ial di�eren
e 
on
erning the result of a su

essful applied unit propaga-tion.To 
larify this we 
an 
hoose for instan
e the following set of literals:fl; (:l _m)gAfter applying unit propagation the set will 
ontain the two literals l andm only. This is due to the fa
t that we 
an delete the 
lause (:l _ m)after applying unit propagation sin
e this 
lause represents only one groundinstan
e. Consequently, the set is de
reased in its size.If we now turn to a knowledge base that 
ontains the following proper+terms, we will see that we are not allowed to delete any proper+ terms.((X 6= 
) � P (X) _Q(X))(X = a � :P (X))(X = b � :Q(x))Instead of generating all ground instan
es, we �rst apply unit propagationwhi
h has the following e�e
t on the example knowledge base:



42CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURE(X = a � Q(X))(X = a � :P (X))(X = b � :Q(x))And this result is a
hieved, be
ause unit propagation updates the equalityterm of the disjun
tive term with the equality term of the unit term and theoriginal disjun
tive term is deleted. In 
onsequen
e no further appli
ationsof unit propagation are possible.On the other hand we 
an apply unit propagation twi
e on the sameknowledge base if we �rst generate all possible ground instan
es. In this 
aseone term represents exa
tly one ground instan
e and not a set of groundinstan
es anymore. Note the similarity to the propositional 
ase whi
h wouldallow us to delete single literals and not to keep the original disjun
tive term.(P (a) _Q(a))(P (b) _Q(b))(P (d) _Q(d))...(:P (a))(:Q(b))In this set of ground instan
es we 
an apply unit propagation twi
e and gainthe following set of ground instan
es:(P (a) _Q(a))(P (b) _Q(b))(P (d) _Q(d))...(:P (a))(:Q(b))(P (b))(Q(a))Note the 
ru
ial di�eren
e. The literal P (b) is 
ontained in this last set,but not in the set that was generated when we �rst applied unit propaga-tion. Hen
e, if we delete proper+ terms after applying unit propagation thesuggested inter
hangeability does not hold.At the same time this depi
ts the essential di�eren
e between unit prop-agation applied in the propositional 
ase and the �rst-order 
ase. We are notallowed to delete any proper+ terms of the knowledge base ex
ept when theyare redundant1. Consequently, the set of terms will not de
rease as in the1Proper+ terms are 
alled redundant if they represent the identi
al set of groundinstan
es.



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION43propositional 
ase after applying unit propagation, but will in
rease.And this is a major di�eren
e to the propositional 
ase. This implies that aknowledge base grows in a di�erent way than examined before when we applyunit propagation. We will return to this topi
 in the subsequent 
hapter.Additionally, note that this is not 
aused by the use of inequalities. Thesame result is for example gained when we repla
e the �rst term of the orig-inal knowledge base by the term ((X = a _X = b) � P (X) _Q(X)).In this 
ase there would not be an in�nite number of possible ground in-stan
es, but exa
tly two. But again this set of ground instan
es would allowus to apply unit propagation twi
e and as before one additional literal wouldbe generated in 
omparison to the approa
h when applying unit propagation�rst.3.3.2 The Coheren
e between Unit Propagation andthe Generation of Ground TermsAs said before we want to show in this se
tion that the inter
hangeabilityin the order of the generation of ground terms and the appli
ation of unitpropagation holds.At this point we assume that every equality term in the given knowledgebase fully restri
ts a single variable to a single 
onstant and that the equalityterms are in DNF. This pro
eeding allows us to introdu
e the topi
 in asimpli�ed way.Sin
e all equality terms are in DNF we 
an split the equalities and 
an 
reatea proper+ term for ea
h of the equality terms.As an example we observe the following proper+ term:(X = a _X = b � P (X) _Q(X))We 
an rewrite this term due to the fa
t that equalities are in DNF by
reating two distin
t terms:(X = a � P (X) _Q(X))(X = b � P (X) _Q(X))If we rewrite every term in the entire knowledge base a single proper+ termrepresents exa
tly one ground instan
e and 
onsequently jgnd(KB)j = jKBj.And sin
e gnd(KB) = f
�j8(e � 
) 2 KB and � j= e�g and there exists onlyone possible substitution �, be
ause there is only one fully restri
ted equalityfor ea
h variable, the suggested inter
hangeability holds sin
e every proper+term represents exa
tly one ground term in gnd(KB).



44CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDURENow we assume that the variables 
an also be restri
ted in any possibleway and the equality terms are not ne
essarily in DNF. For instan
e, thisimplies that one proper+ term 
an represent as many ground instan
es asthere are 
onstants.To des
ribe what e�e
t unit propagation has when it is applied on this kindof proper+ terms, we �rst introdu
e the 
ondition that has to be ful�lledfrom the equality term to apply unit propagation su

essfully. Note thatalso the predi
ates must mat
h, but this property will not 
hange when wegenerate the ground terms �rst or afterwards.Sin
e we do not delete any proper+ terms after applying unit propagationwe 
an apply unit propagation on a disjun
tive term that 
ontains variablesthat are not restri
ted or semi restri
ted with regard to one predi
ate asoften as there are unit terms with a mat
hing equality term. The fa
t thatproper+ terms are not deleted ensures that all possible ground terms 
an be
reated later on.Note that only variables are of 
on
ern that belong to the predi
ate that isa�e
ted by the appli
ation of unit propagation.Hen
e, there will be as many new proper+ terms as there are mat
hing unitterms sin
e every applied unit propagation will 
ause the equality term ofthe resulting disjun
tive term to be adapted. Note that it is possible thatredundant terms are 
reated.Consequently, a single proper+ term will support as many su

essful appli-
ations of unit propagation as there are mat
hing unit terms with regard tothe 
orresponding predi
ate.The same number of appli
ations of unit propagation will be appliedwhen the ground terms are generated �rst, be
ause the generation of groundterms will not a�e
t the number of mat
hing equalities. This property alsoholds for the subsequent appli
ations of unit propagation whi
h are 
ausedby 
haining in reasoning.Note that when generating ground terms the variables in the proper+ termsare simply repla
ed by all appropriate substitutions.Before we show the inter
hangeability in the order of the generation of groundterms and the appli
ation of unit propagation we �rst of all de�ne unit prop-agation when it is applied to a proper+KB.De�nition Let KB be a proper+ knowledge base f8(e � 
)g while 
 = (l1 _l2 _ ::: _ ln). Then UP(KB) is the least set whi
h 
ontains KB and if 8(e1 �flg [ 
) 2 UP (KB) and 8(e2 � nlo) 2 UP (KB) with l� = l0� where � is an



3.3. THE INTERCHANGEABILITY IN THE ORDEROF THE GENERATION OF GROUNDTERMS AND THE APPLICATION OFUNIT PROPAGATION45most general uni�er (MGU) 2 and (e1^e2)� is satis�able3, then 8((e1^e2)� �
�) 2 UP (KB).Lemma 11 For every proper+ knowledge base f8(e � 
)g and 
lause 
 thefollowing holds: 
 2 UP (gnd(KB)) i� 
 2 gnd(UP (KB))Proof ")": Let 
 2 UP (gnd(KB)). We show this by indu
tion on thenumber n of applied unit propagations (UPs) used to generate 
. Supposen = 0. Then there exists 8(e � 
0) 2 KB and 
 2 gnd(8(e � 
0)). Then
 2 gnd(UP (KB)). Suppose, the Lemma holds for every 
lause 
 that isobtained by appli
ation of unit propagations so that the number of UPs is< n. Then there exits 
1 = fl1g [ 
 and 
2 = f:l1g. 
1 and 
2 are obtainedby using at most n� 1 UPs ea
h.Hen
e, by indu
tion, 
1 2 gnd(UP (KB)) and 
2 2 gnd(UP (KB)). Con-sequently, 8(e1 � 
01) and 8(e2 � 
02) are 
ontained in UP (KB)) and
1 2 gnd(8(e1 � 
1) and 8(e1 � 
01). Then there exists 
01 = fl01g [ 
0and 
2 = f:l001g.Thus there exists an MGU � so that l01� = l001� sin
e l1 is a ground instan
e of l01and l001 and (e1^e2)� is satis�able sin
e both e1 and e2 are satis�able for this in-stantiation, with 8(e1^e2)� � 
0� 2 UP (KB)) and 
 2 gnd(8(e1^e2)� � 
0�),i.e. 
 2 gnd(UP (KB))."(": Let 
 2 gnd(UP (KB)). We show this by indu
tion on the num-ber n of applied unit propagations (UPs) used to generate 
. Supposen = 0. Then there exists a 8(e � 
0) 2 KB so that 
 2 gnd(8(e � 
0)),i.e. 
 2 UP (gnd(KB)).Suppose, the Lemma holds for every 
lause 
 that is obtained by appli
ationof unit propagations so that the number of UPs is < n. Let 
 be a groundinstan
e of a 
lause in UP (KB) generated by n appli
ations of unit propa-gations. Then the two terms 
1 = 8(e1 � fl1g [ 
0) and 
2 = 8(e2 � f:l2g)are 
ontained in UP (KB), so that l1� = l2� for some MGU �, (e1 ^ e2)� aresatis�able and 
 2 gnd(8(e1 ^ e2)� � 
0�).Hen
e, there are 
01 2 gnd(
1) and 
02 2 gnd(
2), so that 
01 = fl01g [ 
 and
02 = f:l01g. By indu
tion, 
01 2 UP (gnd(KB)) and 
02 2 UP (gnd(KB)) and
onsequently 
 2 UP (gnd(KB)).2In this 
ontext a MGU 
orresponds to simply renaming of variables. For instan
e,assume the following two terms: 8X:Y:((X = a ^ Y = b) _ (X = a ^ Y = a) �P (X;Y )_Q(X;Y )) and 8Z:(:P (Z;Z)). Then fX=X; Y=X;Z=Xg is an MGU for P (X;Y )and :P (Z;Z). The resulting term is: 8X:((X = a^X = b)_(X = a^Y = a) � Q(X;X).3Two equality terms are satis�able if " j= 9�(e1 ^ e2).



46CHAPTER 3. EXPLORING PROPERTIES OF THE DECISION PROCEDUREThen the next theorem follows immediately from Lemma 11.Theorem 12 For every proper+ KB f8(e � 
)g the following equationholds: UP (gnd(KB)) = gnd(UP (KB)) (3.13)In 
onsequen
e, we proved the inter
hangeability in the order of the genera-tion of ground terms and the appli
ation of unit propagation.



Chapter 4Implementation
4.1 On implementing XIn this 
hapter we will present an implementation of the reasoning pro
edureX. Sin
e we are interested in an eÆ
ient approa
h, some features of X andthe underlying de�nitions had to be 
hanged.First of all we will restri
t the de�ned proper+ terms to 
ontain no in-equalities anymore. This pro
eeding is justi�ed by various reasons. Forexample, inequality 
auses a major drawba
k 
on
erning eÆ
ien
y as weproved in the last 
hapter. At least if the equality terms are represented inDNF.This has of 
ourse several 
onsequen
es 
on
erning our implementation, butfurther details are presented in the 
orresponding se
tions.At this point we present the foundation of our implementation - namelythe en
oding of proper + KBs. It is of great importan
e how the data isrepresented, be
ause we depend on a fast a

ess of the data.Be
ause we would like to handle more than 105 terms we suppose that the useof a standard database (MySQL [53℄) should in
rease both - manageabilityand eÆ
ien
y. Our view is supported by the fa
t that eÆ
ient list handlingis only eÆ
ient in most of the PROLOG-systems as long as a list 
ontainsnot more than 105 elements. For example ECLiPSe PROLOG 
an handlelists that 
ontain about 40; 000 elements quite well, but eÆ
ien
y de
reasesrapidly when there are more elements of 
on
ern [32℄.The proposed stru
ture is optimized to implement one of the key featuresintrodu
ed by X - Unit Propagation namely. We would like to use standarddatabase features for eÆ
ient handling of large data sets, but furthermorewe would like to use them to implement one part of the Unit Propagation-algorithm as well. For example we will determine a mat
hing unit 
lause by47



48 CHAPTER 4. IMPLEMENTATIONan easy SQL-statement.We a
t in this way, be
ause it is a 
ommon fa
t that databases in
ludefeatures that 
an handle large data sets eÆ
iently [23℄. One example is themethod of indexing whi
h allows us very fast sear
h.Sin
e X is mainly based on unit propagation we are depending on a veryeÆ
ient implementation. All the more we 
an make use of database features,the more the eÆ
ien
y of our implementation of X in
reases.We will not a
hieve to implement unit propagation as an SQL-Statementonly, but we will get 
lose to that goal. The things left are done by a fewPROLOG-lines.Then we will present how our implementation pro
esses a given query.This topi
 in
ludes how a query that 
ontains for example disjun
tions and
onjun
tions is de
omposed and evaluated. For ea
h of the di�erent operatorsof the logi
al language we will present a method to test if a query is knownto be true or is unknown.In the main the eÆ
ien
y depends on the implementation of unit propa-gation and reasoning by 
ases in respe
t to a large set of terms. Additionally,the implementation of the quanti�ers is of spe
ial importan
e sin
e quanti-�ers are already expensive in general.After we dis
ussed unit propagation and the evaluation of a query, wehave to deal with one more key feature of X - namely reasoning by 
ases(RbC).Reasoning by 
ases is more diÆ
ult to implement than unit propagation,be
ause it is as said in the Chapter 2 a mu
h more 
omplex method thatmakes use of unit propagation as a sub-pro
ess for example.We will present a 
riterion that is rather simple but 
an be eÆ
ientlyapplied. The 
riterion restri
ts the set of possible 
lauses that is going tobe used by reasoning by 
ases. Furthermore we again try to use as mu
hdatabase features as possible to implement it.When presenting the algorithm belonging to reasoning by 
ases this is in fa
tthe essen
e of the entire implementation, sin
e the se
ond main feature unitpropagation and the evaluation of a query are both involved. Consequentlyall important features are 
ontained in this algorithm.After we introdu
ed the two main features of X and how queries areevaluated, we will present what kind of prepro
essing takes pla
e before anyquery is pro
essed. Within the prepro
essing stage we are not bound toany time limits and that is why we 
an apply unit propagation to the entireknowledge base, for example.In 
onsequen
e queries that would require the method of unit propagationare answered instantly. Espe
ially queries that require simple appli
ations ofModus Ponens 
an be answered immediately.
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Figure 4.1: A brief overview on the way our implementation works likeBut we will also see that prepro
essing and the presented data stru
ture allowus to handle a large number of unit terms without any major drawba
ks
on
erning eÆ
ien
y.In the next se
tion we will present every feature of our implementationusing one detailed example that requires the evaluation of an existentialquanti�er, reasoning by 
ases twi
e and from there also unit propagation.This se
tion will additionally show the advantages of the earlier presenteddata-stru
ture.To give you a �rst impression of the implementation made we depi
t thegeneral s
heme in the �gure 4.1. Within the �gure you see that our approa
has two phases in general. First we en
ode proper+ terms and apply unitpropagation on the entire knowledge base in the prepro
essing phase.After this step our reasoning pro
edure is ready to answer queries. If thequery 
an be inferred by the knowledge base we answer the query dire
tly.If the test is unsu

essful we apply reasoning by 
ases if the user allows it.Otherwise the answer to the query is "unknown".As the �gure states the de�ned level of reasoning by 
ases (denoted with"RbC-Level") plays a major role sin
e the given level de
ides how oftenreasoning by 
ases is applied and the entire algorithm is repeated.As said when the de�nition of X was introdu
ed the stru
ture of the query
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ides if reasoning by 
ases is applied at all. In fa
t, X only supportsreasoning by 
ases when the query 
ontains a disjun
tion or an existentialquanti�er.However, in our approa
h we allow a user-de�ned level for reasoning by 
asesand so every reply to a query 
an use the feature of reasoning by 
ases if theuser allows it to. This way of allowing a user-de�ned level for reasoning by
ases 
orresponds to the modi�ed version of X [37℄.In the �gure the user-de�ned level of reasoning by 
ases 
orresponds to themaximally allowed level of reasoning by 
ases.4.2 The use of InequalityWhile proper+ terms allow inequalities as part of the equality term, we willnot allow inequalities in our implementation be
ause of the following rea-sons.Inequalities 
ause a major drawba
k in 
omplexity as we dis
ussed in thelast 
hapter. For example, if the Disjun
tive Normal Form (DNF) is usedto represent an equality term then the size of equality terms will grow ex-ponentially with regard to the number of unit propagations applied (
hapter3). Furthermore inequalities introdu
e a huge impa
t on ineÆ
ien
y whenapplying reasoning by 
ases. Remember how X implements reasoning by
ases. It adds every literal of one single ground instan
e one by one, appliesunit propagation and tests if for ea
h of the literals of the 
hosen term thequery is implied by the knowledge base.Suppose that you 
hoose a proper+ term like (X 6= a) � P (X) _ Q(X) forreasoning by 
ases. Sin
e we are only allowed to add one single ground in-stan
e (e.g. (X = b) � P (X)) this would imply that we 
an 
hoose from theentire set of 
onstants in the domain of dis
ourse ex
ept the 
onstant a.Now think of the following terms 
ontained in the knowledge base:(X 6= a � P (X) _Q(X))(X = a � :P (X) _Q(X))Additionally we have the query 9X:Q(X). If we 
hoose the �rst term forreasoning by 
ases we would have to add as many ground instan
es of thisterm as there are 
onstants in the domain of dis
ourse to prove that thequery does not hold.And sin
e we think of knowledge bases that 
onsist of more than 105 proper+terms the set of 
onstants is of a 
omparable size. Consequently this would
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ause at least the same number of operations to be exe
uted and thereforeit would require a large amount of time in total.This is of 
ourse a worst 
ase s
enario sin
e we assume that we have to gothrough all 
onstants, but there are other more 
ommon 
ases that also 
ausenotable ineÆ
ien
y. Think for example of the 
ase where you have only somepossible ground instan
es introdu
ed by inequality but more than one levelof reasoning by 
ases.For ea
h of the possible ground instan
es you now have to go through thelevels of reasoning by 
ases. Then the sear
h spa
e belonging to reasoningby 
ases is multiplied by the number of possibilities 
aused by the mentionedinequalities. Note that additional possibilities may also exist at ea
h level ofreasoning by 
ases.Comprising, all of the reasons mentioned above show that inequalities preventan eÆ
ient implementation in our approa
h. Note that there might existother approa
hes that 
an handle inequalities eÆ
iently.At this point we will also dis
uss the use of inequalities. Inequalitiesare mainly used to assign a possible in�nite set of 
onstants to a predi
ate.For example, (X 6= a) � P (X) depi
ts the fa
t that P (X) holds for every
onstant ex
ept a.We 
ould not suggest a pra
ti
al 
ase where the use of inequalities would be
ru
ial or not be repla
eable by another feature like a predi
ate for example.Think for example of the following proper+ term 
ontained in the knowledgebase: (X 6= John � isStudent(X))This term states that everybody ex
ept John is a student. In our point ofview su
h kind of statements are required very seldom and are of no use inthe 
ontext of the example.Consequently, the use of inequalities with regard to single individuals (
on-stants) is very seldom. Normally inequality is used with properties, but notwith individuals.In 
ontrast we support inequalities in the query sin
e the use of inequal-ities allows us to ask queries of the following kind:Query = (X 6= John ^ isStudent(X))The query asks, if there is another individual besides John that is a student.We think that this use of inequalities is very useful and would not be possiblewithout inequalities.Inequalities from a query are not dire
tly involved in the reasoning pro
ess



52 CHAPTER 4. IMPLEMENTATIONitself and are only used when testing if a predi
ate is 
ontained in the knowl-edge base or not. Therefore they 
an not 
ause any drawba
ks 
on
erningeÆ
ien
y.In 
onsequen
e, we 
onsider inequalities 
ontained in the knowledge baseto introdu
e a major drawba
k on eÆ
ien
y, are diÆ
ult to handle and sup-port no features that are essential in pra
ti
e. Hen
e, we do not supportinequalities in our implementation.4.3 En
oding proper+ terms4.3.1 How we en
ode proper+ termsIn order to meet the requirements mentioned above, we will �rst of all haveto �nd a way to lo
alize predi
ates and the 
orresponding equality-terms ina simple way. In parti
ular we would like to solve this task with as few SQL-Statements as possible.We will present an en
oding now that allows an eÆ
ient a

ess of all detailsof proper+ terms.Therefore we en
ode proper + KB-terms in a 
ompound of numbers (orletters) be
ause of two reasons mainly:1. equality-terms are en
oded in a way that allows simple 
omparing withother equality-terms2. by using the en
oding we have an easy and qui
k a

ess of the predi
ateswhere Unit Propagation 
an be applied onThis allows a fast appli
ation of unit propagation and more features arepresented when the en
oding is introdu
ed. Re
all that unit propagation
omprises two steps:1. mat
hing predi
ates2. mat
hing equality termsEssentially we 
reate two types of tables to represent proper+-terms, but itwill be four tables in total sin
e we need one type of tables multiple times.The �rst type is able to 
ontain disjun
tive terms as well as unit terms whilethe se
ond holds all equality terms of the proper+ terms in the knowledgebase.We will make use of one table that 
ontains only disjun
tive terms and two



4.3. ENCODING PROPER+ TERMS 531 2 3 4 5 6Term ID Predi
ate ID Variables A
t. RbC-Level Ori. RbC-Level NewTable 4.1: The de�ned 
olumns in the table "pTerm-pred" holding the predi
atesof a proper+ term1 2 3 4 5Term ID Equality Term ID Equality En
oding RbC-Level UpdatedTable 4.2: The de�ned 
olumns in the table "pTerm-equal" holding the equalityterms of a proper+ termthat will only hold unit terms - therefore we need four tables in total. Notethat there are only two types of tables in total.At this point it is only important to remember that there exist di�er-ent tables, but their fun
tion will be dis
ussed when the main features unitpropagation and reasoning by 
ases are introdu
ed. Espe
ially, the presenteddetailed examples will provide a deeper insight.The �rst type of table named "pTerm-pred" 
ontains six 
olumns (seetable 4.1):1. a term identi�er2. a predi
ate identi�er3. variable names4. a
tual Reasoning by Cases level5. origin Reasoning by Cases level6. a 
ag named "new"The term identi�er is a unique mapping to a single proper+-term; thepredi
ate identi�er does the same for predi
ates. We need the variable namesto extra
t the right equalities from the entire equality-term 
orrespondingto the a
tual term and to determine if two equalities are uni�able. Theremaining 
olumns will be used for Unit Propagation, Reasoning by Cases,or both.The se
ond type of table named "pTerm-equal" 
ontains �ve 
olumns(see table 4.2):



54 CHAPTER 4. IMPLEMENTATION1. a term identi�er2. an equality term identi�er3. the en
oded equality term4. the Reasoning by Cases-level5. a 
ag named "updated"The term identi�er establishes the 
onne
tion between the two types oftables. The equality term identi�er is needed to store disjun
tive equalityterms that 
orrespond to one proper+-term. Again the last two remainingattributes are used to apply unit propagation and reasoning by 
ases.The equality term is en
oded as des
ribed in the table. An en
oded equalityterm 
ontains four elements, namely the label of the variable, the positionof the variable in the argument array of the predi
ate, a sign with values 0and 1 to determine if the variable equals the following 
onstant or may haveany other value assigned ex
ept that 
onstant mentioned. Please note thatwe 
ould handle equality terms like (X = Y ^ Y 6= Z), but they are notsupported in our implementation.We handle variables that are not restri
ted in any way by assigning the 'don't
are' symbol '�' to the attributes sign and 
onstant. If a predi
ate has morethan one variable the equality en
oding of ea
h variable are 
ombined whileusing a delimiter.We need both the attribute variable names and the attribute variable posi-tion sin
e we use the �rst to extra
t the required equalities for a term fromthe en
oded equality term in the table "pTerm-equal" and the se
ond to 
om-pare equalities of the same variable position when applying unit propagationlater on. This is due to the fa
t that variable identi�ers might be di�erentalong various terms.Please note that we need to 
onvert equality terms of the proper+ knowledgebase into DNF. Only this 
onversion makes our representation of equalityterms possible and additionally allows us a very fast method to test if equal-ities are ful�lled.First of all when the equality terms are in DNF it is possible to split andstore them in di�erent entries in a table. This allows us to 
he
k equalitiesin a very simple way, sin
e we only have to test if all the equalities of a singleentry are ful�lled.If they would not be in DNF the test if a given assignment to a variable holdswould be rather diÆ
ult sin
e it 
ould be ne
essary to test various equalitiesand their possible 
ombinations inside the entire equality term.



4.3. ENCODING PROPER+ TERMS 55proper+-term Variable Name Variable Position Sign Constant(X = a) � P (X) X 1 1 a(X 6= 
) � P (X) X 1 0 
P (X) X 1 � �Table 4.3: How equality-terms are en
oded; e.g. the equality-term of (X = a) �P (X) will be en
oded as Xj1j1jaIn other words it would be ne
essary to apply some kind of satis�ability testthat is not needed when using DNF (see previous 
hapter).We need at least one additional di�erent kind of table that 
ontains themapping of predi
ates to numbers whereby predi
ates with a negative signare mapped to the negated number of the positive predi
ate. These are thenumbers that are used as the predi
ate identi�er in the table "pTerm-pred".If it is required we 
an make use of one more table that 
ontains a mappingfor 
onstants. It might be ne
essary to 
onvert 
onstants in some domain ofdis
ourse into a more 
ompa
t representation like a numeri
al identi�er.As mentioned before we use the table type "pTerm-pred" three times. In the�rst table we store proper terms that 
ontain multiple predi
ates, the se
ondand third table 
ontain proper terms having only one predi
ate (unit terms).We use the third table only when we reason by 
ases.As we will see later on, this fragmentation is very useful when we implementX sin
e it will allow us to redu
e the amount of data that has to be inspe
tedwhen reasoning by 
ases, for example.In our en
oding there exists exa
tly one entry for ea
h Unit Term with thesame predi
ate and sign. For example, the Unit Terms (X = a) � :P (X)and (X = b) ^ :P (X) will have one entry in the table "pTerm-predU". Thedi�erent equality terms are stored with the help of the equality identi�er inthe table "pTerm-equal".It follows that it is quite easy to identify if a Unit Term with a spe
i�
predi
ate is 
ontained in the knowledge base or not, be
ause we only have todetermine if there exists one entry for the predi
ate in the table.If we need to 
he
k the equalities of this predi
ate we 
an do so by readingall equalities from the table "pTerm-equal" with the a
tual term identi�er.Sin
e nearly every database allows the use of indi
es we 
reate an index onthe predi
ate identi�er whi
h results in a sear
h time that is logarithmi
 inthe size of the database [65℄. This is how we establish a qui
k a

ess ofpredi
ates.



56 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Predi
ate Identi�er Variable Names1 �1 X1 2 X; YTable 4.4: The en
oding of (X 6= a ^ Y = b) _ (X = d) � :P (X) _ Q(Y;X) inthe table "pTerm-pred"Term Identi�er Equality Identi�er Equality En
oding1 1 Xj1j0ja� Y j2j1jb1 2 Xj2j1jd� Y j1j � j�Table 4.5: The en
oding of (X 6= a ^ Y = b) _ (X = d) � :P (X) _ Q(Y;X) inthe table "pTerm-equal"4.3.2 An Example En
odingWhile we talked about properties of single parts in the en
oding so far, wewould like to present all parts of the en
oding in one example now. Tables4.4 and 4.5 show how the term(X 6= a ^ Y = b) _ (X = d) � :P (X) _Q(Y;X)is en
oded in the database table "pTerm-pred" and "pTerm-equal".In our example the predi
ate P is mapped to 1 and Q to 2. We ex
luded thevalues for the RbC-Level and other 
ags, be
ause they are not of 
on
ernhere and will be dis
ussed later on.All together we presented a quite simple en
oding of proper+-terms, thatallows us a fast 
omparison of equalities and a useful foundation to de
ide ifa predi
ate is in
luded in the knowledge base or not in a qui
k way.4.4 Unit Propagation4.4.1 ImplementationFor the given representation of proper+-terms, we will now present an al-gorithm for unit propagation. The algorithm tries to use as mu
h databasefeatures as possible given the 
urrent en
oding of proper+-terms.Here unit propagation 
an basi
ally be applied if we have a proper+-termwith more than one predi
ate (disjun
tive term) and a proper+-term withexa
tly one predi
ate (unit term) whi
h is the negated version of one of thepredi
ates of the disjun
tive term.



4.4. UNIT PROPAGATION 57At this point the reader must be aware of the 
ru
ial di�eren
e betweenan appli
ation of unit propagation in the propositional 
ase and the �rst-order 
ase.When unit propagation is su

essfully applied on a 
lause this original 
lauseis deleted in the propositional 
ase. But sin
e proper+ terms 
an representeven an in�nite number of ground instan
es, we are not allowed to delete thedisjun
tive term where unit propagation was applied to.Only when the proper+ term represents exa
tly one ground instan
e we areallowed to delete the disjun
tive term sin
e this 
ase is equal to the propo-sitional 
ase (e.g. (X = a � P (X) _ Q(X))). An example is given in thesubsequent 
hapter.As a 
onsequen
e, the number of proper+-terms in our knowledge base willin
rease in general instead of de
rease when we apply unit propagation. Onlyredundant terms and terms that represent exa
tly one ground instan
e 
anbe deleted. This fa
t has an obvious disadvantage sin
e it 
auses a growthof the original knowledge base (see previous 
hapter).And an in
reased number of disjun
tive terms will also in
rease the set ofdisjun
tive terms that will be of 
on
ern when reasoning by 
ases is applied.Consequently, more possibilities than introdu
ed by the original knowledgebase must be tested as we will see when we present the implementation ofreasoning by 
ases.In our presentation of unit propagation we will not always state expli
itlythat the disjun
tive terms remain in the knowledge base. But we have of
ourse to take 
are of this property when implementing unit propagation.Therefore we will �rst dis
uss how unit propagation is applied in general andthen we present how we handle the just mentioned topi
.In general a single su

essful appli
ation of unit propagation in our 
aseexists of three steps:1. Identify those pairs of proper+-terms where unit propagation 
an beapplied on2. Che
k the equalities of ea
h pair for 
ompatibility3. Adapt equalities in the disjun
tive proper+-termAs said in the last se
tion our en
oding of proper+-terms allows a fastexe
ution of the �rst step. To explain how we do this, we have to say whi
hdata is a
tually stored in the four tables used.The �rst table 
ontains disjun
tive proper+-term ("pTerm-pred") only, these
ond and third only store unit terms ("pTerm-predU1" and "pTerm-predU2") and "pTerm-equal" is the one and only table that holds the equal-ities.



58 CHAPTER 4. IMPLEMENTATIONIn other words the tables "pTerm-predU1" and "pTerm-predU2" will not
ontain multiple lines with the same term identi�er as "pTerm-pred" has tohave multiple lines with the same term identi�er.For the moment it is only ne
essary to know that we have one table for dis-jun
tive terms, one for unit terms and one for equalities. The table "pTerm-predU2" used for unit terms will be of 
on
ern when we introdu
e reasoningby 
ases in the next se
tion.We now identify the required pairs of terms by using the Join-Operatorof SQL and apply it to the table that 
ontains only disjun
tive term andthe table that holds only unit terms. Our join attribute is the predi
ateidenti�er and the join 
ondition is that the disjun
tive term must hold the
omplementary predi
ate of the unit term.For example if a disjun
tive term 
ontains the predi
ate P mapped to 1 thejoin 
ondition is satis�ed when a unit term holds the negated predi
ate :Pmapped to �1.It is 
ommonly known that a join operation is one of the most expensiveoperators in databases in general [23℄ sin
e it requires quadrati
 
omplexityin relation to the number of datasets in both tables.There exist di�erent types that redu
e 
omplexity like the use of bu
kethashing and the use of indi
es [65, 23℄. While our implementation is buildon MySQL we make use of the Index Join.At this point we will not delve into 
omplexity issues and will 
ontinue withthe introdu
tion of our approa
h. In the following 
hapter more details willbe dis
ussed.So far we determined the possible unit propagation pairs. For ea
h of thosepairs we �rst 
opy the a
tual disjun
tive term and set the 
orresponding"new" 
ag to the value 2. The value 2 indi
ates that this disjun
tive term isa newly generated one. Handling things this way is ne
essary to allow everypossible appli
ation of unit propagation.As said before one disjun
tive term may represent various ground instan
es.And if we would not 
opy the disjun
tive term and apply all 
hanges onthe 
opy the update of equalities might prevent further appli
ation of unitpropagation.Suppose the following set of terms:X = a _X = b � P (X) _Q(X)X = a � :P (X)X = b � Q(X)If we now would apply reasoning by 
ases 
opying the disjun
tive term before,we would gain the following set of terms:



4.4. UNIT PROPAGATION 59X = a � Q(X)X = a � :P (X)X = b � :Q(X)As you 
an see no further appli
ations of unit propagation are possible,be
ause of the updated equality term and the fa
t that no disjun
tiveterm is available anymore. Hen
e, we would not be able to gain the term(X = b � P (X)) although this would be required by a 
orre
t appli
ation ofunit propagation.We mark the 
opy of the disjun
tive term with a spe
i�
 value, be
ause thesenewly generated terms must be re
onsidered by all unit terms. Consider thefollowing example:X = a _X = b _X = 
 � P (X) _Q(X) _ R(X)X = a � :P (X)X = a _X = b � :Q(X)X = 
 � :R(X)This would generate the following new terms:X = a � Q(X) _R(X)X = a _X = b � P (X) _R(X)X = 
 � P (X) _Q(X)From this set for example the se
ond term must be re
onsidered by the origi-nal unit terms sin
e unit propagation 
an be applied again. In fa
t, the termX = b � R(X) results when using the original unit term X = a � :P (X)with the se
ond term of the above set.Note that a re
onsideration with all of the unit terms has not to take pla
ewith the already in
luded disjun
tive terms (new = 1), be
ause every possi-ble 
ombination has been already determined.Therefore, we will use the join operator with all unit terms and newly gener-ated disjun
tive terms and with all new unit terms and all disjun
tive terms.We 
an do so, be
ause we 
an identify the new unit terms as well as thenewly generated disjun
tive terms by using the 
ag "new".When we have 
opied the disjun
tive term we are ready to 
he
k if theequalities of the 
on
erned predi
ates are 
ompatible. Therefore we use thedata generated by the join of the two tables whereby we use the term identi�erof both terms of the pair to sele
t the 
orresponding equalities from the table"pTerm-equal".Two equality terms are 
ompatible if they are not mutually ex
lusive. Forexample, (X = a) and (X 6= b) are 
ompatible, but (X = a) and (X 6= a)are not (see also Chapter 3).



60 CHAPTER 4. IMPLEMENTATIONIn a few lines of Prolog 
ode we 
an 
he
k if the equalities mat
h. If they doso it might be ne
essary to adapt the equality term of the disjun
tive term.Consider again the example 
onsidered before: the updated equality term ofthe 
ombination of (X = a) and (X 6= b) will result in (X = a).Realize that inequalities add up in the updated equality term; e.g. X 6= aand X 6= b result in X 6= a ^ X 6= b. We already remark at this pointthat this is the reason for a major drawba
k 
on
erning 
omplexity. A 
loserexamination of equality terms and their intera
tion will be dis
ussed in thenext 
hapter. Note that an equality term of a unit term will never be 
hanged.When updating equalities we make use of the 
ag "updated" to take 
arethat we do not use any new generated equality term during one appli
ationof unit propagation. After a single and 
omplete appli
ation the value of the
ag is reset.If equalities mat
h we 
an apply the essen
e of unit propagation sin
e weare working on a 
opy and simply delete the line from the table with the
orresponding term- and predi
ate identi�er from "pTerm-pred". If only onepredi
ate remains, we 
opy the term to a table that 
ontains only unit terms.To summarize our implementation of unit propagation, we sket
h thealgorithm in the following lines:1. Determine all possible pairs where unit propagation 
ould be appliedwhile 
onsidering the following sets of terms:� All disjun
tive terms (new = 1) and all new unit terms (new = 1);then set the 
ag "new" to 0 at all unit terms� All new disjun
tive terms (new = 2) and all unit terms; then setthe 
ag "new" to 1 at all disjun
tive terms2. For ea
h pair do the following:� Copy the a
tual disjun
tive term and pro
eed on the 
opy only.Use the 
ag "new" to mark this 
opy as a newly generated dis-jun
tive term (new = 2); if the disjun
tive term already exists donothing.� Test if equalities of the unit- and disjun
tive term are 
ompatible� If so apply unit propagation and adapt equalities in the disjun
tiveterm and if there is only one predi
ate left in the disjun
tive termthan 
opy the term to the table "pTerm-predU" and delete theentry in "pTerm-pred"; else delete the 
opy of the disjun
tive termagain



4.4. UNIT PROPAGATION 613. Repeat the steps 1 and 2 until the set of possible unit propagation pairsis emptyNote that the meaning of the 
ag "new" is di�erent among disjun
tiveand unit terms. Unit terms 
an be new (1) and old (0). Disjun
tive termsare always new (1) when unit propagation is applied sin
e they always haveto be 
onsidered when we determine the set of possible unit propagationpairs. Additionally, we need the value 2 to indi
ate newly generated disjun
-tive terms in the last 
y
le of the algorithm. The value 0 is used when wereasoning by 
ases is applied later on.We do not have to 
he
k the validity of a pair, be
ause one single predi
atewill be 
ontained only on
e in the tables that 
ontain only unit terms. Hen
e,it is not possible that some earlier pair deletes the predi
ate in the same termthat is of 
on
ern in the a
tual pair.We use the 
ag "new" indire
t as termination 
riterion of our algorithm.In the beginning the 
ag is set to 1 and every unit term is thought of whendetermining possible unit propagation pairs. After we have applied prepro-
essing for example all unit terms will be marked as visited.After determining the �rst set of possible pairs all unit terms are 
onsideredto be visited and 
onsequently the 
ag is set to 0. We 
an a
t in this way,be
ause if a unit term is not to be 
onsidered a part of a possible unit propa-gation pair - in other words the 
omplement of the predi
ate is not 
ontainedin any disjun
tive term - it will be never a part of a possible unit propagationpair.So in the next turn those visited unit terms are not of 
on
ern anymore -at least when we 
onsider only the old disjun
tive terms in the knowledgebase. As des
ribed before the newly generated disjun
tive terms re
onsiderall available unit terms sin
e this is ne
essary. But the 
ag "new" of thesedisjun
tive terms is dire
tly set to "1" again, so that in the next turn theyonly are of 
on
ern in 
ombination with new generated unit terms.Please note that a newly generated unit term is only marked as new, whenit is not already in
luded in the knowledge base.The algorithm terminates when the set of pairs is empty. Sin
e the setdepends on the newly generated unit terms and disjun
tive terms it is obviousthat this algorithm will always terminate.While it is legal to mark the visited unit terms and not to 
onsider themanymore with the old disjun
tive terms, it is not 
orre
t to do the same fordisjun
tive terms. If a disjun
tive term is redu
ed to a unit term by applyingunit propagation all remaining disjun
tive terms must be re
onsidered todetermine the possible unit propagation pairs. Simply, be
ause of the fa
tthat the newly 
reated unit term was not of debate before and therefore 
an



62 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Predi
ate Identi�er Variable Names new1 1 X 11 2 X; Y 11 3 X; Y; Z 1Table 4.6: The en
oding of ((X 6= e) ^ (Y = a)) _ ((X = a) ^ (Y 6= e) ^ (Z =b)) � P (X) _Q(X;Y ) _R(X;Y;Z) in the table "pTerm-pred"
ause new pairs.Comprising the presented algorithm is used to implement one of the mainfeatures introdu
ed by X. As we said before we need an eÆ
ient implemen-tation of unit propagation to enable a eÆ
ient implementation of the entirereasoning pro
edure. For this reason the use of database features was essen-tial.4.4.2 ExampleTo give a more intuitive feel how our approa
h applies unit propagation, wegive a detailed example at this point. In this example we only like to showhow unit propagation is exe
uted in our implementation. Again you shouldbe aware of the 
ru
ial di�eren
e between unit propagation applied in thepropositional 
ase and the �rst-order 
ase.Additionally, note that we allow inequalities even if we assume that they arenot 
ontained in our knowledge base. Hen
e our presented method supportsinequalities as said before and is therefore fully 
ompatible with the originalreasoning pro
edure.Suppose the following proper+ terms are in our knowledge base:1. (X 6= e ^ Y = a) _(X = a ^ Y 6= e ^ Z = b) � P (X) _Q(X; Y ) _R(X; Y; Z)2. X = a � :P (X)3. :P (X)4. (X = a ^ Y = g) _ Y 6= 
 � :Q(X; Y )The tables 4.6 and 4.7 show the en
oding of the disjun
tive proper termand the unit terms while table 4.8 holds the 
orresponding equality terms.The predi
ates are mapped to numbers in their alphabeti
al order.When we now go through the algorithm step by step we �rst of all deter-mine all possible unit propagation pairs. Here a pair simply 
onsists of two



4.4. UNIT PROPAGATION 63Term Identi�er Predi
ate Identi�er Variable Names new2 �1 X 13 �2 X; Y 1Table 4.7: The en
oding of (X = a) � :P (X);:P (X)) and 8(((X = a) ^ (Y =g)) _ (Y 6= 
) � :Q(X;Y ) in the table "pTerm-predU1"Term Identi�er Equality Identi�er Equality En
oding1 1 Xj1j0je� Y j2j1ja� Zj3j � j�1 2 Xj1j1ja� Y j2j0je� Zj3j1jb2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0j
Table 4.8: The en
oding of all equality terms mentioned in the exampleterm identi�ers, in our implementation it 
ontains as mu
h data as possibleto redu
e a

ess to the database.As said before we join the two tables using the 
omplement of a predi
ate asjoin 
ondition. The result of this operation 
an be seen in table 4.9.Consequently we have the two pairs (1,2) and (1,3). First we 
opy thedisjun
tive term (term identi�er of 
opy: 4) and then we 
he
k the equalitiesof the pair (1,2).Sin
e both disjun
tive term and unit term have multiple disjun
tive equalityterms and all of them are 
ompatible, the number of equality terms in
reasesand rea
hes three in total. In fa
t there exist four terms, but two are identi
alto ea
h other.Equal terms are not stored in the knowledge base, be
ause every entry mustbe unique in regard to a term identi�er and a reasoning by 
ases level. Thisfeature is implemented by the table de�nition and MySQL.dt.Term ID dt.Predi
ate ID ut.Term ID ut.Predi
ate ID1 1 2 �11 2 3 �2Table 4.9: The join of the two tables "pTerm-pred" and "pTerm-predU1" fromthe example where "dt" indi
ates the table with disjun
tive as "ut" indi
ates thetable with unit terms



64 CHAPTER 4. IMPLEMENTATIONTerm Identi�er Predi
ate Identi�er Variable Names new1 1 X 11 2 X; Y 11 3 X; Y; Z 14 2 X; Y 14 3 X; Y; Z 15 1 X 15 3 X; Y; Z 1Table 4.10: After the �st appli
ation of unit propagation the line with the termidenti�er "4" and predi
ate identi�er "1" is deleted in the table "pTerm-pred"
The same is done for the other pair and after the �rst 
y
le in our algo-rithm the tables "pTerm-pred" and "pTerm-equal" look like depi
ted in thetables 4.10 and 4.11. The se
ond 
opy of the disjun
tive term has the termidenti�er 5.A

ording to the introdu
ed s
heme we again identify the possible pairsfor unit propagation. Sin
e there are no new 
reated unit terms from thelast 
y
le, but new disjun
tive terms we 
ombine them with all unit terms
ontained in the knowledge base.The resulting pairs are: (4,3) and (5,2). As des
ribed before, we again 
opythe disjun
tive term, 
he
k equalities and sin
e there are 
ompatible equalityterms, we 
an apply unit propagation su

essfully.And this time a new unit term is generated. In fa
t both pairs generate anew unit term, but they are identi
al to ea
h other, so that there is only onenew unit term and therefore only one additional term identi�er in the end.The result is shown in the table 4.12. This time we only show the entries of"pTerm-predU", whi
h also holds the just generated new unit term, sin
e thetable "pTerm-pred" holds no new disjun
tive terms. Additionally we depi
tthe equality terms of all unit terms in the table 4.13Note that in all entries of the table "pTerm-predU" the value of the 
ag"new" is set to 0 ex
ept of the just 
reated unit term.Now that we have �nished the se
ond 
y
le of our algorithm, the algorithmterminates although we generated a new unit term, be
ause there are nomore possible unit propagation pairs in the knowledge base left.



4.4. UNIT PROPAGATION 65Term Identi�er Equality Identi�er Equality En
oding1 1 Xj1j0je� Y j2j1ja� Zj3j � j�1 2 Xj1j1ja� Y j2j0je� Zj3j1jb2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0j
4 1 Xj1j0je� Y j2j1ja� Zj3j � j�4 2 Xj1j1ja� Y j2j0je� Zj3j1jb4 3 Xj1j1ja� Y j2j1ja� Zj3j � j�5 1 Xj1j0ja� Y j2j1jg � Zj3j1jb5 2 Xj1j0je� Y j2j1ja� Zj3j � j�5 3 Xj1j1ja� Y j2j0j
� Y j2j0je� Zj3j1jbTable 4.11: The en
oding of all equality terms mentioned in the example afterthe �rst appli
ation of unit propagationTerm Identi�er Predi
ate Identi�er Variable Names new2 �1 X 03 �2 X; Y 06 3 X; Y; Z 1Table 4.12: After the se
ond appli
ation the following unit terms are stored inthe table "pTerm-predU"Term Identi�er Equality Identi�er Equality En
oding2 1 Xj1j � j�2 2 Xj1j1ja3 1 Xj1j1ja� Y j2j1jg3 2 Xj1j � j � �Y j2j0j
6 1 Xj1j0je� Y j2j1ja� Zj3j � j�6 2 Xj1j1ja� Y j2j0je� Y j2j0j
� Zj3j1jb6 3 Xj1j1ja� Y j2j1ja� Zj3j � j�6 4 Xj1j1ja� Y j2j1jg � Zj3j1jbTable 4.13: The en
oding of all equality terms 
orresponding to the unit termsafter applying unit propagation twi
e



66 CHAPTER 4. IMPLEMENTATION4.5 Evaluation of the Query4.5.1 Introdu
tionIn the following se
tions we will des
ribe how disjun
tions, 
onjun
tions,quanti�ers and single predi
ates are evaluated in our implementation. Sin
ewe already dis
ussed one of the two main features of X we now fo
us on howqueries are de
omposed and evaluated. In fa
t, we will use the de
ompositionas introdu
ed in X in general.Think for example of the following query 9X:P (X). In X it is de�nedthat this query is answered by using the set of 
onstants H+k+1 and therebygenerating many ground instan
e of the query and test if this ground instan
eis in
luded in the knowledge base.When you re
all that we would like to deal with large knowledge bases that
ontain more than 105 terms whi
h implies round about the same number of
onstants it is quite obvious that substituting a variable with ea
h 
onstantof the set is not an eÆ
ient way to answer the query.Therefore we will present methods that are more eÆ
ient espe
ially forthe two quanti�ers. At this point we will make use of the fa
t that we donot support inequalities in our implemented reasoning pro
edure.Finally, we would like to mention that we did not invest in a user friendlyinput of the query. The input of a query is prede�ned by a given stru
ture andvery 
omplex queries are not supported yet although they 
ould be handledby the reasoning pro
edure itself.We a
ted in this way be
ause normally we only have very short queries andthe main fo
us of this work lies on the eÆ
ien
y and implementation of thereasoning pro
edure itselfWe already mentioned in the se
ond 
hapter that the re
ursive de�nitionof the reasoning pro
edures presented are not diÆ
ult to implement. Forexample, the de
omposition of 
omplex formulas is quite similar to languagepro
essing with grammar rules whi
h is a well known strength of PROLOG[9℄.From there those parts of the implementation - namely the skeleton of X -will not play any major role here. Of 
ourse we will des
ribe how we evaluatea query as said before, but we will not present solutions how very 
omplexqueries are de
omposed.4.5.2 Format of the QueryIn our implementation we assume �rst of all that the query Q is in DNF.We assume that every formula �i has the following form when ei denotes



4.5. EVALUATION OF THE QUERY 67equality terms and Pj a predi
ate or its 
omplement:�i = (e1 ^ ::: ^ ej ^ P1 ^ ::: ^ Pk)Then a query Q must have the following format:8X18X2 ...8Xn9Y19Y2 ... 9Ym (�1 _ ::: _ �n)The reason why we do not support queries like 9X:8Y: � is due to the im-plementation of the 8-quanti�er that we will dis
uss in a subsequent se
tion.To give you a more intuitive feel whi
h kind of queries the implementation
an answer we provide some example queries:� (X = a ^ P (X)) _ (X = b ^Q(X))� 9X:(X 6= a ^ P (X))� 9Y:((X = a ^ P (X; Y )) _ (X = 
 ^Q(X; Y )))� 8X:9Y:(P (X; Y ) ^Q(X; Y ))In general, we do not support queries like (e � P ). Only 8(e � P ) is handledin our implementation.We do not support the evaluation of equality terms only. For instan
e, we 
annot handle a query like 8(X 6= a). In addition, queries like 8(X = a ^X 6=a � P (X)) are not supported. This is due to the fa
t that equality termsare not evaluated in a distin
t way. We think that it would be no majorproblem to evaluate equality terms only, but mainly la
k of time 
aused thisrestri
tion.4.5.3 Quanti�er-free QueriesWe begin with the des
ription of the way how queries only 
ontaining a singlepredi
ate like (X = a ^ P (X)) is tested. By using the table that holds theen
oding of every predi
ate, we would sear
h the table that stores the unitterms for the 
orresponding en
oding. If it would 
ontain the en
oding, wewould determine the 
orresponding equality term and test if the equalitiesfrom the equality in
luded in the query and in the database mat
h. If itwould not 
ontain the en
oding we answer "unknown".The equality of proper+ terms (t1 = t2) does not play a major role in ourimplementation, but it would be possible to 
ompare the en
oding of proper+terms in a simple way.If the query 
onsists of a 
onjun
tion of predi
ates all of them must beknown to be true. Every single predi
ate is tested as des
ribed before. Note



68 CHAPTER 4. IMPLEMENTATIONthat X does not support reasoning by 
ases when the query only 
onsists of a
onjun
tion. Re
all, that in our implementation the appli
ation of reasoningby 
ases does not depend on the stru
ture of the query, but only on theuser-de�ned value. Hen
e, a query only 
onsisting of 
onjun
tions 
ould beanswered with the help of reasoning by 
ases.And sin
e the query is in DNF we simply have to test if one of the disjun
tionsis known to be true.A query 
an be of a 
omplex format and will then be de
omposed asde�ned in X. Suppose the following query:Query = ((X = a ^ Y = b ^ P (X) ^Q(Y ))) _ (X = a ^ R(X))This query would be de
omposed in the two parts ((X = a^Y = b^P (X)^Q(Y ))) and (X = a ^ R(X)) and ea
h of the parts would be tested by themethods presented before.Comprising, our implementation of quanti�er-free queries is nearly equalto the de�nitions presented within X.4.5.4 The ExistentialIntrodu
tionIn the pro
edure X the existential is implemented through the substitutionof domain 
onstants that are 
ontained in H+k .Re
all that the set H+k holds every 
onstant from the query, every 
on-stant 
ontained in the knowledge base and k additional 
onstants 
ontainednowhere else.In fa
t this implies that a query that 
ontains an existential is answered bysubstituting the 
orresponding variables by domain 
onstants and for ea
h
reated ground formula it is tested if it is 
ontained in the knowledge baseor not.It is obvious that this 
an not be done eÆ
iently sin
e we have a large numberof 
onstants when we assume knowledge bases with more than 105 proper+terms.There exist di�erent ideas to solve this problem. One idea would store all
onstants used among a single predi
ate and thereby de
rease the number ofpossible 
onstants in an essential way, be
ause it would be only ne
essary tosubstitute the variables with these 
onstants.This is due to the fa
t that a predi
ate 
an only be ful�lled by the 
onstantsthat are 
onne
ted to it. Suppose the following proper+ terms to be 
ontainedin the knowledge base:



4.5. EVALUATION OF THE QUERY 69X = a ^ Y = b � Q(X; Y )X = d ^ Y = f ^ Z = e � R(X; Y; Z)X = g � P (X)Now assume the query 9X:P (X). Then it would make no sense to substitutethe variable by all the 
onstants 
ontained in the knowledge base, be
auseonly the 
onstant g is 
onne
ted to the predi
ate P .Consequently, if you use the method of only using 
onstants that are 
on-ne
ted to one predi
ate you have de
reased the number of possible 
onstantsimmensely.This should provide a deeper insight in the problem des
ribed above. In ourexample there exist �ve 
onstants and thereby �ve ground instan
es thatwould serve as input for the reasoning pro
edure.This might 
ause reasoning by 
ases for ea
h of the ground instan
es, but atleast the appli
ation of the test if a ground instan
e is part of the knowledgebase although it is predetermined that none of them will su

eed. Note thatthe majority of 
onstants is useless for this task.And now assume that there are thousands of 
onstants 
ontained in theknowledge base. This is the reason why we had to de
rease the set of 
on-stants in a more restri
tive way than done in X to solve the existential.The approa
h that we use in our implementation to solve the existentialis even more e�e
tive than the �rst presented idea.If the query exists of only one predi
ate we simply 
he
k if the predi
ate fromthe query is in
luded in the knowledge base.If it is 
ontained in the knowledge base there must be a 
onstant that ful�llsthe query otherwise the existential fails. If the query 
onsists of 
onjun
tionsof predi
ates we 
he
k if the di�erent equalities for the same variable arenot mutually ex
lusive. If they are not mutually ex
lusive there exists asubstitution that satis�es the predi
ates.Further details 
on
erning this method and the 
orresponding assump-tions are presented in the following subse
tions.De
omposition of the QueryAdditionally to the assumptions about the query made in the last se
tion weassume at this point that the query 
ontains no other quanti�ers than theexistential.Taking those assumptions into a

ount the format of a general query 
on-taining an existential is given by:9X19X2 ... 9Xn �, � is in DNF
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e � is in DNF we 
an split it up into the 
onjun
tions �1 to �m.Therefore we 
an subdivide the query into the following distin
t queries [59℄:Query1 = 9X19X2 ... 9Xn �1Query2 = 9X19X2 ... 9Xn �2...Querym = 9X19X2 ... 9Xn �mWe use those parts of the original query to answer the entire query. So ifwe 
an show that a Queryi is known to be true the query 
an be answeredimmediately. If this 
an not be shown for any of the queries the answer tothe query is unknown. We 
an a
t in this way sin
e � is in DNF.Testing the QueryIn this se
tion we present the testing method that is used when the query
ontains an existential. This method will be used in the entire algorithm to
he
k if the knowledge base implies the given existential.The test we apply for ea
h of the mentioned queries is depi
ted in thefollowing tasks:1. Test if ea
h predi
ate of the 
onjun
tion is stored as unit term in thedatabase2. If so, read all of the 
orresponding equalities into the memory and testif the equalities with regard to the existential and the query itself arenot mutually ex
lusive.If they are mutually ex
lusive fail, else return true.The �rst task (1.) 
an be easily a

omplished by as many SQL-statementsas there are predi
ates in the query. The "SQL-Sele
t" will return a termidenti�er for ea
h of the predi
ates. If there exists no unit term for one ofthe predi
ates the query 
an not be known to be true.For the se
ond task (2.) we use the set of term identi�ers returned by the�rst task. We use them to read the 
orresponding equalities from the table"pTerm-equal". Now we have to examine the equality terms 
arefully. Firstof all we have to take 
are of the restri
tions introdu
ed by the existential.For example, if we have the following query:9X9Y:(P (X; Y ) ^Q(Y; a))In this example it is implied that the equalities of the variable Y must be
ompatible. Now suppose the following unit terms to be in the knowledgebase:



4.5. EVALUATION OF THE QUERY 71(X1 = a ^X2 6= b � P (X1; X2)(Y1 = 
 ^ Y2 = a � Q(Y1; Y2)Note that we allow inequalities in our example sin
e our testing method
on
erning the existential supports the use of them.To identify the 
orresponding equalities in ea
h unit term we use the variableposition in ea
h of the predi
ates that is o

upied by the variable that isbound to the existential. The variable position provides the identi�
ation ofthe mat
hing equality term within ea
h of the unit terms.Returning to the example we have to test ifX2 6= b and Y1 = 
 are 
ompatiblesin
e they are restri
ted by the variable Y within the existential. In thisexample they are not mutually ex
lusive and therefore 
ompatible.As said before two equality terms are 
ompatible if they are not mutuallyex
lusive. For example (X = a) and (X 6= b) are 
ompatible, but (X = a)and (X 6= a) are not as (X = a) and (X = b) are neither.In fa
t the test if the equalities of all the unit terms of 
on
ern are notmutually ex
lusive is a key feature here.Additionally, we have to test if the equality term of the unit term satis�es therestri
tions made by the 
onstants 
ontained in the query. In our examplethose are also satis�ed.If all tests su

eed the query is answered as known to be true. Otherwisethe test will fail and if there is no reasoning by 
ases allowed, the query willbe answered as unknown.While testing the equalities of a query it is important to be aware of thefa
t that it is not required to determine one spe
i�
 value for the variable sothat the 
urrent predi
ate holds. An existential only implies that there is asubstitution that makes the predi
ate true.Take a look at the following example where we apply reasoning by 
ases:KB = f(P (a) _Q(b)); (:P (a) _Q(a))gQuery = 9X:Q(X)In parti
ular that means that when we add P (a) to the KB it follows thatQ(a) is in the KB and hen
e the query holds for the �rst predi
ate.If we now add Q(b) - as it is required by reasoning by 
ases - again thequery is known to be true. So, when we apply reasoning by 
ases there is no
onne
tion between the equalities of the predi
ates that are used in reasoningby 
ases.As said when we presented the implementation of reasoning by 
ases thetest of a query is a subroutine in the entire algorithm.



72 CHAPTER 4. IMPLEMENTATION4.5.5 The 8-Quanti�erThe 8-quanti�er is handled within the reasoning pro
edure X in a similarway as the existential. But now every substitution of a variable by a 
onstantof the set H+k must ful�ll the 
orresponding predi
ate. Hen
e, it is ne
essaryto test every possible ground instan
e. It is obvious that this approa
h wouldinvolve a large set of ground instan
es to be tested.But sin
e we do not support inequalities it is not ne
essary to substituteevery possible 
onstant from the set H+k . Our implementation is based onthe following properties.Lemma 13 (Levesque, [38℄)Let � be a senten
e that 
ontains no equalities and � denotes a surje
tionfrom C to C. Then I j= �� i� I� j= �.Proof This was shown and dis
ussed in [38℄. In general, the proof is basedon the surje
tion � while every 
onstant that is 
ontained in KB or � ismapped bije
tively and the new 
onstant n� is mapped to a 
onstant 
i, sothat 
i 2 KB or 
i 2 �.To make use of this result in our 
ase the knowledge base nor the query may
ontain equality terms. Sin
e we do not support inequalities and equalityterms are in DNF we 
an generate a 
orresponding e-free knowledge basef8(
)g that is equivalent to the original knowledge base, but 
ontains noequalities at all (see Chapter 3).In the following we use the notation of the e-free KB f8(
)g. Re
all, that weuse KB j=� � as an abbreviation for " [KB j= � to indi
ate the use of thestandard model of equalities.Lemma 14 Let KB be an e-free KB f8(
)g and � a senten
e that 
ontainsno equalities. Then KB j=� �Xn� ) KB j=� �X
i , 
i 2 CProof Let I j=� KB. Then I j=� KB�. By Lemma 13 I� j=� KB holds.Provided that I� j=� �Xn� holds, also I j=� (�Xn�)� holds.Then I j=� �X
i , 
i 2 C.



4.5. EVALUATION OF THE QUERY 73Theorem 15 Let KB be an e-free knowledge base f8(
)g. � is a senten
ethat 
ontains no equality terms.Then KB j=� 8X:� i� KB j=� �Xn�, n� a new 
onstant.Proof ")": obvious. "(": By the assumption and Lemma 14 KB j=��X
i ; 
i 2 C and 
onsequently, KB j=� 8X:�.This result allows us to test if � is true for all possible values of the variableX by applying only one single substitution.Until now we assumed that � does not 
ontain any equality terms. First wewill add inequalities. For simpli
ity, we only examine the 
ase of a singleunary predi
ate and a single binary predi
ate, respe
tively. The general 
aseof a disjun
tion of predi
ates of any arity follows by a similar argument. Notethat inequalities are allowed in the query only.Lemma 16 Let KB be an e-free KB f8(
)g.Then KB j=� 8X:(X 6= a) � P (X) i� KB j=� 8X:P (X).Proof "(": obvious. ")": Let KB j=� 8(X 6= a) � P (X). Then KB j=�P (n�), when n� is a new 
onstant. By Lemma 15, KB j=� 8X:P (X) follows.This shows that it is possible to handle a semi-restri
ted variable 
ontainedin a predi
ate in the same way as a free variable.Now we allow besides inequalities also equalities and gain the following result.Lemma 17 Let KB be an e-free KB f8(
)g.Then KB j=� 8X:8Y:(X = a ^ Y 6= b) � P (X; Y ) i� KB j=� 8X:8Y:(X =a) � P (X; Y ).Proof "(": obvious. ")": Let KB j=� 8X:8Y:(X = a ^ Y 6= b) � �,then KB j=� 8Y:(y 6= b) � P (a; Y ). Then KB j=� P (a; n�), when n� isa new 
onstant. By Lemma 15, KB j=� 8X:8Y:P (a; Y ). Consequently,KB j=� 8X:8Y:(X = a) � P (X; Y ).This means that if a variable is bound to a 
onstant we test if the 
orre-sponding equality term in the knowledge base 
ontains a mat
hing equalityfor the variable. If an inequality is 
ontained in the equality term of thequery we bind the variable of 
on
ern to a new 
onstant and then test if the
orresponding equality mat
hes.Comprising, these observations allow us to implement the 8-quanti�er witha minimum of required substitutions.



74 CHAPTER 4. IMPLEMENTATION4.5.6 The Combination of Quanti�ersUntil now we only dis
ussed the two quanti�ers distin
t from ea
h other. Inthis se
tion we will investigate, if the presented implementations for ea
h ofthe quanti�ers 
an be 
ombined. Espe
ially, we explore whi
h 
onne
tionsthe quanti�ers introdu
e among the quanti�ed variables when we 
ombinethe two quanti�ers.In our implementation we only support queries that 
ontain both kind ofquanti�ers if they 
an be 
onverted into the following format:8X18X2 ...8Xn9Y19Y2 ... 9Ym �, � in DNFNote that this format of the query is ne
essary to allow an eÆ
ient handlingof the quanti�ers in our approa
h. Espe
ially the way we implemented the8-quanti�er does not allow a 
ombination of quanti�ers like 9X:8Y:P (X; Y ).If we now simply apply our methods as introdu
ed in the two se
tions before,we would test for every X1 to Xn that are 
ontained in ea
h of the disjun
tiveparts of � if they hold for every possible 
onstant. In the same way we wouldtest if the equality terms belonging to the variables Y1 to Ym within a singledisjun
tive part of the query would mat
h.For example, suppose we have the following knowledge base:KB = f(Y = a � P (X; Y )); (Y = b � Q(X; Y )))gThe query 8X9Y:(P (X; Y )_Q(X; Y )) would be answered by X as known tobe true. The same answer is gained when using our implementation, be
ausethe variableX has an empty equality term (Xj1j�j�) so that the new 
onstantmat
hes. Additionally, there exists an 
onstant that substitutes Y and ful�llsthe predi
ate.Note that when the two predi
ates in the query would be 
onne
ted by an
onjun
tion the query would be answered with "unknown" even while thetwo predi
ates from the knowledge base are single unit terms, be
ause thenthe existential would link the se
ond arguments of ea
h of the predi
ates withea
h other and would require them to be equal. The query 8X9Y:(P (X; Y )^Q(X; Y )) would be answered by X as unknown. The same answer is gainedwhen using our implementation, be
ause then the existential would link these
ond arguments of ea
h of the predi
ates with ea
h other and would requirethem to be equal.We implement the mentioned 
ombinations of quanti�ers while we make useof the results gained in the last se
tion 
on
erning the 8-quanti�er and weprovide that existential variables that are used in predi
ates 
onne
ted by
onjun
tions are not mutually ex
lusive.



4.6. REASONING BY CASES 754.6 Reasoning by Cases4.6.1 Introdu
tionSin
e we introdu
ed the idea of reasoning by 
ases in the se
ond 
hapteralready, we now des
ribe how we implemented reasoning by 
ases in ourapproa
h.As said in the se
ond 
hapter the main problem with reasoning by 
ases isto determine the next 
lause to 
hoose. There is no 
riterion that wouldallow us to make the "right" 
hoi
e dire
tly or at least it would be too time
onsuming to pre
ompute the most useful 
lause. The only thing we 
an dois to restri
t the sear
h spa
e slightly as des
ribed in the following se
tion.Re
all, that in our implementation reasoning by 
ases is restri
ted toa user-de�ned level and does not depend on the stru
ture of the query assuggested in X.We will �rst of all present the 
riterion that we use to restri
t the set ofpossible 
lauses that 
an be used at a spe
i�
 appli
ation of reasoning by
ases. At the same time we will see that there are various 
riterion that �lterout spe
i�
 possibilities, but 
an not be generally applied.Additionally, we will dis
uss the fa
t that it is not possible to prepro
ess theknowledge base to gain better results 
on
erning the set of possible 
lauseswhen more than one level of reasoning by 
ases is of 
on
ern. We will dis
ussthis topi
 also in the se
tion prepro
essing.Thereafter we present the algorithm that implements reasoning by 
asesin our approa
h.4.6.2 The Criterion of Reasoning by CasesIn our implementation reasoning by 
ases is applied while making use of thefollowing 
riterion.Before we present the 
riterion �rst note that 
lauses are 
onne
ted to ea
hother if they share the same predi
ate. We use the absolute value of a predi-
ate, hen
e the 
lauses (P (X)_Q(x)) and (:P (X)_Q(x)) are 
onne
ted byP and Q. Suppose the query would 
onsist of the predi
ate P only, then the
lause (:Q(X) _R(X) _ S(X)) would be indire
tly 
onne
ted to the query.The �rst two 
lauses are dire
tly 
onne
ted to the query.The 
riterion allows us to pre-
ompute a 
onservative estimate of the disjun
-tive terms that are 
onne
ted with ea
h other [42℄. This set is used whenreasoning by 
ases is applied.



76 CHAPTER 4. IMPLEMENTATIONCriterion Reasoning by CasesThe set of 
lauses that will be used for reasoning by 
ases at any level will only
ontain the 
lauses that are 
onne
ted by predi
ates dire
tly or indire
tly tothe predi
ates of the query.Note that this 
riterion requires the knowledge base to be 
onsistent in the
ontext of the reasoning pro
edure of 
on
ern. Hen
e, our �rst step when ap-plying reasoning by 
ases is to determine all proper+ terms in the knowledgebase that 
ontain the predi
ate from the query. Se
ondly, we determine allof the disjun
tive terms that are 
onne
ted to the �rst set of proper+ termsby predi
ate. Note that this also in
ludes 
lauses that are not dire
tly re-lated to one of the disjun
tive terms of the �rst set. The following pro
edurerepresents the method how the possible set of 
lauses for reasoning by 
asesis determined.||||||||||||||||||||||||||||||Initialize:� Determine all predi
ates from the query and store them in the variablePredi
ateIDsnew� Predi
ateIDsused, Predi
ateIDstemp, and TermIDsRbC are emptyvariablesRepeat� Identify all disjun
tive terms that 
ontain a predi
ate that is inPredi
ateIDsnew or its 
omplementary predi
ate is 
ontained inPredi
ateIDsnew� Store the identi�ed terms in TermIDsRbC if they are not already 
on-tained� Set Predi
ateIDsused=Predi
ateIDsnew and delete all predi
ates fromPredi
ateIDsnew� Determine all predi
ates 
ontained in the newly identi�ed terms andstore them in Predi
ateIDstemp� Sele
t only newly determined predi
ates by 
omparing the predi
atesstored in Predi
ateIDstemp and Predi
ateIDsused and store them inPredi
ateIDsnewUntil Predi
ateIDsnew 
ontains no predi
ates||||||||||||||||||||||||||||||
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ation of this pro
edure the variable TermIDsRbC 
ontainsall disjun
tive terms that are of 
on
ern when reasoning by 
ases is applied.The pro
edure is initialized by storing the predi
ates 
ontained in thequery in Predi
ateIDsnew. The predi
ates from the query are used to deter-mine the dire
tly 
onne
ted disjun
tive terms. All further re
ursions of thepro
edure identify the indire
tly 
onne
ted disjun
tive terms.As the reader 
an observe we sear
h for a predi
ate and the 
omplement ofa predi
ate at the same time. This pro
eeding is motivated by the fa
t thatwe 
an a

omplish this task in one single SQL-Statement:SELECT * FROM pTerm-pred WHERE predi
ateId IN (Predi
ateIDsnew)The indire
t way would look for the a
tual predi
ates only and then look inthe following 
y
le only for the 
omplementary version of the predi
ate. Inthe end both approa
hes will return the same set of disjun
tive terms.We use the variable Predi
ateIDsused to keep tra
k of the predi
ates thathave been already used to determine disjun
tive terms. Then, it is possibleto sele
t only new predi
ates in the newly dis
overed disjun
tive terms. Atthe same time this will terminate the pro
edure after all disjun
tive termsfor reasoning by 
ases are determined.In Prolog this algorithm 
ould be implemented by the following snippetof 
ode:% Detemine the terms that will be used by reasoning by 
asesget_Clauses([℄,_,[℄).%% PIDList holds the predi
ate identifiers (initial: Query)get_Clauses(PIDList, PrevPIDList, [ReturnTIDs|ReturnTIDList℄) :-% 
reate the list of the 
omplementary predi
atesmaplist(times(-1),PIDList,InversePIDList),append(PIDList,InversePIDList,CompletePIDList),% get all 
orresponding disjun
tive termsgetall_Disjun
tiveTermIDs(CompletePIDList, ReturnTIDs),% get all predi
ates that are 
ontained in ReturnTermIDsgetall_Predi
ateIDs(ReturnTIDs, A
tualPIDList);% add to visited predi
ateIDsListappend(CompletePIDList,PrevPIDList, VisitedPIDList),% delete all previous used predi
ateIDs from the 
urrent PIDlistsubtra
t(A
tualPIDList, VisitedPIDList, NewPIDList),% start the next 
y
le with the new predi
atesget_Clauses(NewPIDList, VisitedPIDList, ReturnTIDList).



78 CHAPTER 4. IMPLEMENTATIONAs said earlier we have to determine the set of 
lauses that will be used byreasoning by 
ases online. Consequently, the algorithm must be fast. In fa
tthis is the reason why we 
an not take 
are of equalities for example. Itis obvious that the observation of equality terms would restri
t the set ofpossible 
lauses in a more e�e
tive way.But we only use a predi
ate and its 
omplement version to explore the 
on-ne
tions among di�erent 
lauses, be
ause the analysis of the equality termswould be too time 
onsuming.There exist also other methods to restri
t the set of 
lauses, but as far aswe know they 
an not be applied eÆ
iently. We will dis
uss some methodsbrie
y in a later se
tion. At this point we have 
hosen in favor of a large setof possible 
lauses and a fast method of determination.Note that when all the 
lauses in a knowledge base are 
onne
ted dire
tlyor indire
tly to a given query all 
lauses of the entire knowledge base must be
onsidered when reasoning by 
ases is applied. It is obvious that those kindof knowledge bases 
an not be handled eÆ
iently with our implementation.A better 
riterion would improve this, but we think that those kind of knowl-edge bases 
an not be handled eÆ
iently in general. Additionally, thoseknowledge bases do not belong to the �eld of appli
ation of 
on
ern.We 
an not prepro
ess the set of possible 
lauses sin
e we allow morethan one level of reasoning by 
ases. At the �rst level of reasoning by 
ases asingle predi
ate is added to the knowledge base and this might have essentiale�e
ts on it. And sin
e a subsequent level in reasoning by 
ases uses theknowledge base in the status the previous levels have 
hanged the originalknowledge base there is no way to prepro
ess the set of 
lauses. Although wewill purpose a method to prepro
ess the knowledge base in a later se
tion.But this method 
an only be used when exa
tly one level of reasoning by
ases is of 
on
ern.Finally, we presented a method in this se
tion to pre
ompute a 
onser-vative estimate of the set of 
lauses to be used by reasoning by 
ases inadvan
e.4.6.3 ImplementationIn this se
tion we present our implementation of reasoning by 
ases. Sin
eunit propagation is a part of reasoning by 
ases the algorithm in
ludes the twomain features introdu
ed by X. Therefore, the algorithm des
ribed here showshow we answer a query in general. The testing of a query is a

omplished asdes
ribed in an earlier se
tion. In the following algorithm we will make useof those variables:



4.6. REASONING BY CASES 79� RbCLevel: a
tual reasoning by 
ases level, the initial level is �1� MaxRbCLevel: maximum reasoning by 
ases level (user-de�ned)� RbCTermsi: Set that 
ontains the term identi�ers that are of 
on
ernat the reasoning by 
ases level i1. Test the query while using the a
tual knowledge base2. If the test did not su

eed for any of the queries apply reasoning by
ases:(a) In
rement the a
tual RbCLevel(b) If RbCLevel > MaxRbCLevel then fail(
) Determine the set of 
lauses that will be used for reasoning by
ases (as des
ribed in the se
tion before), delete already usedterms (marked) from the set and store it in RbCTermsRbCLevel(d) Until not every term in RbCTermsRbCLevel is visited or not return1 do the following:i. Add the a
tual predi
ate of the 
urrent term to the KB asunit term. If there is more than one equality term use oneequality term that was not used before. Note that only onesingle ground instan
e 
an be added at on
e. Mark the entireterm as used.ii. Apply Unit Propagationiii. Go to step 1. (test if query is implied by the KB and applyreasoning by 
ases again if ne
essary and possible)iv. If iii) su

eeds (returns 1) pro
eed to the next predi
ate inthe a
tual term and go to step a), else fail and if there areunused equality terms go to i) and else go to the next term inRbCTermsRbCLevel and undo all 
hanges (e.g. unmark usedterms, delete added unit terms and all 
hanges done in theknowledge base) 
aused by this RbCLevelv. If step iv) is su

essful for every predi
ate of one term, thenreturn 1(e) If step e) does not su

eed for any of the terms in RbCTermsithen return 03. If the test su

eeds for the query then return 1



80 CHAPTER 4. IMPLEMENTATIONNote that we will provide a detailed example in the following se
tion.Sin
e those steps sket
h the algorithm brie
y we go through it step by stepnow.In step 1.) we apply the test that we have introdu
ed in an earlier se
tion. It
he
ks if the given query is supported by the a
tual knowledge base or not.If the query is not known to be true we apply reasoning by 
ases. This
auses the in
rease of the a
tual RbC-Level whi
h is simply ne
essary to beable to limit reasoning by 
ases by the user-de�ned maximum (see 2.a) and2.b)). Note that we start with the initial RbC-Level �1.In the se
tion 2.
) we determine the set of 
lauses that will be of 
on
ernwhen we apply reasoning by 
ases. At this point we use the method presentedin the se
tion before. Every 
lause that is 
onne
ted dire
tly or indire
tly bypredi
ates to the predi
ates 
ontained in the query will be in
luded in theset RbCTermsRbCLevel.We prevent 
y
les in reasoning by 
ases simply by marking the term that hasbeen used for the a
tual appli
ation of reasoning by 
ases. As 
an be seen in2.d)iv) we unmark the term that was marked at the a
tual level again if wepro
eed to the next term.The entire se
tion 2.d) 
ontains the essen
e of reasoning by 
ases. Wetake the �rst term from the previous generated set of term identi�ers. Nowwe add the �rst predi
ate and the 
orresponding equality term in this 
hosenterm to the database. In fa
t this is of 
ourse a unit term (2.d)i)).At this point it is important to mention that we only add one single groundinstan
e to the knowledge base. For example, suppose the 
hosen term to bethe following one: (X = a) _ (X = b) � P (X) _Q(X)Then we add at �rst the unit term (X = a � P (X)). If reasoning by 
asesdoes not su

eed then, we do not pro
eed to the following term, but �rsttry the other equality X = b. In general, we �rst add every possible groundinstan
e of the a
tual term before pro
eeding to the next possible proper+term. We add a predi
ate that 
ontains unrestri
ted variables by using equal-ities that are used by other proper+ terms in the knowledge base and 
ontainthe identi
al predi
ate. If this does not su

eed we use a "don't 
are"-symbolto generate a ground instan
e and keep tra
k of an assignment to this vari-able so that the variable 
an have only one spe
i�
 value during the a
tualreasoning pro
ess. Note that the variable might be assigned to a 
onstant
ontained in the query, so that we take 
are of 
onstants that are not usedin the knowledge base but in the query only. This approa
h is similar tothe implementation of the 8-quanti�er. It prevents the substitution of every
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onstant in
luded in the entire knowledge base. If a proper+ 
on-tains no unrestri
ted variables at all, we simply add ea
h possible disjun
tiveequality term one by one if ne
essary.Sin
e we have a new unit term in our database we apply unit propagationagain as des
ribed in some earlier se
tion. This may 
ause that some otherunit terms are 
reated and our query 
ould now be known to be true. Thisis why we test the query again (see 2.e)iii.)).The return to step 1.) is in fa
t a re
ursion. If the test su

eeds we go to thenext predi
ate in the a
tual term. But if the test fails we apply reasoning by
ases again. But now not on the original database but on the database thatin
ludes the 
hanges from the previous reasoning by 
ases level. The depthof re
ursion is restri
ted by the maximum reasoning by 
ases level (2.b)).If it is not possible - even with the highest reasoning by 
ases level - then weleave the a
tual term, undo all 
hanges 
aused by the a
tual RbC-Level, goba
k one level and try all other possible terms at this level.This pro
eeding is repeated until we again rea
h level zero. Then we pro
eedto the next term in the set of 
lause at RbC-Level 0, restart the entire pro
essand pro
eed until there are no more possible terms at RbC-Level 0. In fa
tthis pro
eeding is 
ommonly known as ba
ktra
king.Note that every single di�erent term may additionally have several groundinstan
es due to multiple equalities what of 
ourse 
auses an additional 
om-plexity.At this point it should be obvious that the appli
ation of reasoning by 
asesis a 
omplex pro
ess sin
e there are not only possibilities in reasoning in-trodu
ed by the set of 
lauses ful�lling the 
riterion, but additionally bydi�erent equalities.Consequently, the reader should be aware of the fa
t that high levels ofreasoning by 
ases 
an not be applied eÆ
iently. And even small level ofreasoning by 
ases may 
ause long answering times sin
e the number of pos-sibilities depends also on the trait of the knowledge base.Think for example of a knowledge base where every 
lause is dire
tly or in-dire
tly 
onne
ted to a given query. Then all 
lauses 
ontained in the entireknowledge are of 
on
ern when reasoning by 
ases is applied. But this is atopi
 of the following 
hapter.Undoing all 
hanges for example in
ludes deleting added unit terms andunmark the term that was involved in this a
tual appli
ation of reasoning by
ases at the 
urrent level.Note that we only undo 
hanges applied by the a
tual level and not all
hanges. If we go ba
k from RbC-Level 1 to 0 the database is again in itsoriginal state.



82 CHAPTER 4. IMPLEMENTATIONBe aware of the fa
t that we have to 
onsider all possibilities at ea
h levelsin
e we will test all of the terms that are a
tual in the 
urrent level (weagain apply 2.d)). This in
ludes that we sometimes go just one level ba
kin reasoning by 
ases, go to the next term, test it and in
rement the levelagain.Note that when we return to step 1. in 2.d)iii) we support the strategyof "depth-�rst" when reasoning by 
ases. This means that we go to themaximum RbC-Level ea
h time when we add a new unit term (a singlepredi
ate) and the query is not tested su

essfully at any level before.If we rea
hed the maximum level and the query is not known to be truealthough we tried every possible term at ea
h level we pro
eed to the nextterm in the set RbCTerms0.We have 
hosen the strategy of "depth-�rst" be
ause of two main reasons:� If we would use "breadth-�rst" we would always have to re
reate thedata that was a
hieved in the reasoning by 
ases levels before� We assume only very small maximum RbC-Levels (normally 1 or 2)We think that an improvement 
on
erning the implementation of thispart of reasoning by 
ases would be to use the strategy of breadth-�rst anda data stru
ture that supports to keep data of di�erent terms and levels ofreasoning by 
ases distin
t.This approa
h would of 
ourse be more spa
e 
onsuming than our 
urrentimplementation, but sin
e the amount of generated 
lauses 
ould be handledby a database and this approa
h would be more e�e
tive and eÆ
ient, wethink that it would be at least useful when you would like to support highermaximum values for reasoning by 
ases than two or three.If all predi
ates of one term of the �rst identi�ed set turn out to supportthe query by applying reasoning by 
ases on
e or as often as required andallowed the query is known to be true.In 
ontrast, if we do not �nd any term that supports the query with all ofits predi
ates at any allowed level of reasoning by 
ases the query is unknown(2.f)).The step 3.) is used as dire
t return value when we do not need to applyreasoning by 
ases at all (step 1. su

eeds) or as return value in one of there
ursive 
alls.In general, "return 1" as �nal return value states known to be true as "return0" denotes unknown.The presented algorithm implements the main part of X sin
e it in
ludesthe two main features reasoning by 
ases and unit propagation. Every kindof query will be answered by this algorithm.
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ourse there are some features of X left, but this algorithm belongs tothe essential parts of the implementation.4.7 Prepro
essing of the Knowledge BaseWhile we already introdu
ed all main features of our implementation we nowpresent whi
h kind of prepro
essing takes pla
e before any query is answered.As mentioned before prepro
essing espe
ially regards to the en
oding of agiven proper+ knowledge base and the appli
ation of unit propagation.In the following we will dis
uss both topi
s and we will additionally brie
ydis
uss methods that 
ould be used to enable a fast pro
essing when we applyreasoning by 
ases.First of all we have to en
ode a given proper+ knowledge base. A
tuallythis is done as des
ribed in the 
orresponding se
tion. Note that this not onlyin
ludes the en
oding of ea
h term of a proper+ knowledge base, but also theen
oding of predi
ates and 
onstants. Sin
e this is done during prepro
essingwe are not tied to the bounds of eÆ
ien
y and therefore it is for example noproblem to 
onvert every equality term into DNF.However, at this point we would like to mention a fa
t that we will dis
ussalso in a later se
tion. At the moment there exist no proper+ knowledgebases at all. Hen
e, it 
ould be even possible that knowledge bases aredire
tly 
reated in a given format (like our suggested one), so that nearly noen
oding has to take pla
e.While this 
ould be an advantage 
aused by the fa
t that there exist noproper+ knowledge bases until now, the fa
t also 
auses a major problem:we do not have any opportunity to test our approa
h. But this topi
 will beof 
on
ern later on.The most important feature of our prepro
essing is the appli
ation ofunit propagation on the entire knowledge base. This is of su
h importan
e,be
ause it allows us to have a large number of unit terms in our knowledgebase.This is due to the fa
t that after we tested every unit term with every dis-jun
tive term during prepro
essing we will never again have to 
onsider theseunit terms when we apply unit propagation later on.If a unit term does not su

eed on a disjun
tive term it will not su

eedat any later test. If a unit term 
an be applied the resulting disjun
tive orunit term is stored in the knowledge base and there is no need to redo thisappli
ation.Of 
ourse we will need to a

ess the entire set of unit terms, but we do nothave to 
onsider all of the possible unit terms when we apply reasoning by
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ases. Then we only have to take 
are of the new generated terms in the
urrent reasoning pro
ess.In fa
t, this is the reason why we have 
hosen three distin
t tables that holddisjun
tive terms, "old" unit terms and new unit terms. Prepro
essing allowsus to have a large number of unit terms in our original knowledge base sin
eit does a�e
t our reasoning pro
edure only slightly as we show in the next
hapter.As said before we need to sear
h the table of unit terms during every reason-ing pro
ess, but sin
e we restri
t ourself to have maximally 106 unit termsthis 
an be handled eÆ
iently by the MySQL-database (see next 
hapter).And sin
e unit propagation is applied during prepro
essing there existqueries that 
an be dire
tly answered. Espe
ially queries that would requiresimple appli
ations of Modus Ponens 
an be answered immediately.Suppose the following proper+ terms 
ontained in the original knowledgebase: P (X), :S(X), :P (X) _Q(X), :Q(X) _R(X) _ S(X)After en
oding these terms and prepro
essing the knowledge base the follow-ing result are a
hieved:P (X), :S(X); :P (X) _Q(X), :Q(X) _ R(X) _ S(X), Q(X), R(X)Hen
e, if we now ask 9X:R(X) we 
an dire
tly answer that the query isknown to be true, sin
e the predi
ate is 
ontained in the prepro
essed knowl-edge base as unit term.Consequently, queries that require the appli
ation of Modus Ponens 
an beanswered instantly and therefore 
an be answered very eÆ
iently (see next
hapter).Note that the appli
ation of unit propagation will 
ause the original knowl-edge base to grow. We will dis
uss this topi
 in the subsequent 
hapter.Another kind of prepro
essing 
ould allow us to apply reasoning by 
aseseÆ
iently at least if we restri
t the level of reasoning by 
ases to be maximally1.For example, if you determine the 
lauses that are dire
tly or indire
tly linkedto the query and this set does not 
ontain any 
lause that has exa
tly twopredi
ates there must be a 
lause that holds exa
tly the 
omplement of thepredi
ates 
ontained in the query.This is due to the fa
t, that further 
haining in reasoning 
aused by unitpropagation 
an only o

ur, when there exist 
lauses that 
ontain exa
tlytwo predi
ates. Hen
e, if they do not exist and we allow only one level ofreasoning by 
ases there must exist a 
lause that holds the inverted predi
atesof the query. Otherwise it is not possible that reasoning by 
ases su

eeds.
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e this is a rather simple 
riterion you might wonder why we did notin
lude it in our approa
h. The reason why we did not in
lude this 
riterionamong other possible 
riterion is that we support more than one level ofreasoning by 
ases in general.And then the 
onne
tions between the 
lauses and the possibilities in 
hainingin
reases in a way that they 
an not be handled as eÆ
ient as with the
riterion that we used. As said before we de
ided in favor of a 
riterion that
an be applied eÆ
iently.All in all prepro
essing in our implementation 
reates the foundation ofour approa
h by en
oding a given proper+ knowledge base and allows us toanswer queries that would only require the appli
ation of unit propagationinstantly. In fa
t, one main method of reasoning introdu
ed by X is appliedafter we prepro
essed the given knowledge base. Furthermore prepro
essingand the 
hosen data stru
ture enable us to handle round about 106 unit termswithout any major drawba
ks 
on
erning eÆ
ien
y.Additionally, we think that during prepro
essing other tasks like a prepara-tion for a later use of reasoning by 
ases 
ould be applied to in
rease eÆ
ien
yfor spe
ial kind of queries.4.8 Worst-Case ComplexityIn this se
tion we dis
uss the worst-
ase 
omplexity of the presented imple-mentation in terms of the number of applied unit propagations. In the fol-lowing we assume that a single appli
ation of unit propagation requires lineartime 
omplexity in the number of proper+ terms in total. This assumptionis for instan
e based on the fa
t that we 
an assign a maximal length to asingle proper+ term and this length is very small 
ompared to the size of theentire knowledge base. Additionally, in the propositional 
ase [73℄ presentsan algorithm with linear time 
omplexity. In addition, we assume that ev-ery term is of 
on
ern when reasoning by 
ases is applied. Furthermore, weuse an e-free KB f8(
)g (see Chapter 3) during our observations. Re
all,that this representation is equivalent to proper+ knowledge bases f8(e � 
)gwhen e in DNF and e 
ontains no inequalities.We will use the following parameters:n = jKBj =jCKBjl = Maximal number of predi
ates 
ontained in a disjun
tive termk = Maximal number of variables in a termRbCLevel = Maximally allowed level of reasoning by 
ases



86 CHAPTER 4. IMPLEMENTATIONNow we determine the number of applied unit propagations to approximatethe worst-
ase 
omplexity. Thereby, we make use of Theorem 6 from Chapter3. As it was shown in Chapter 3 an e-free knowledge base with n termsresults under the 
losure of unit propagation in a knowledge base whose sizeis maximally nk+1 while k denotes the maximal number of variables in ea
hof the terms.Therefore, we 
an assume that every single added unit term during reasoningby 
ases at the �rst level 
an only 
ause less than nk+1 appli
ations of unitpropagation. Note that this requires besides other properties that every termis dire
tly or indire
tly 
onne
ted to every other term in the knowledge base.Sin
e there are n terms and every term has maximally l predi
ates and weapproximate the number of argument values of a single predi
ate by themaximal number of variables 
ontained in a term (k) we 
an not add morethan about n �nk unit terms while we negle
t l sin
e l << n. Mainly, this isdue to the fa
t that every variable 
an be substituted by n 
onstants sin
ejCj= n. Re
all, that we 
an only add one single ground instan
e during anappli
ation of reasoning by 
ases.In total, we apply unit propagation n2k+2-times at the �rst level of reasoningby 
ases.Note that we negle
t the time that is used to 
hoose a term, to add anappropriate ground instan
e and to undo all 
hanges when going ba
k onelevel of reasoning by 
ases.If we set RbCLevel = 2 we try for every added unit term at the �rst levelof reasoning by 
ases to su

eed while adding one other possible unit termwhi
h may 
ause again about nk+1 appli
ations of unit propagation for ea
hadded term. Note that we 
an again add about nk+1 unit terms.In general, the worst-
ase 
omplexity is:O((n2k+2)RbCLevel)Note that the worst-
ase 
omplexity is exponential in the number of theapplied level of reasoning by 
ases, but not in the size of the knowledge base.Additionally, note that k is a very small 
onstant 
ompared to n.Sin
e we only dis
ussed the worst-
ase 
omplexity until now, please notethat the number of possible substitutions is mu
h smaller and 
haining inreasoning takes pla
e only two or three times in the pra
ti
al 
ase. As men-tioned before, we assumed in the dis
ussion of the worst-
ase s
enario thatevery term is 
onne
ted to every other term like it is 
ommon in a SAT in-stan
e. But this is not the �eld of appli
ation of this reasoning pro
edureused here.



4.9. A DETAILED EXAMPLE 87Example Knowledge Base(X = a) � Q(X) _ P (X; Y )(Y = d) � R(X) _ P (X; Y )(X = a ^ Y = d) � S(X) _ P (X; Y )(X = a) � :Q(X) _ :R(X) _ :S(X)Table 4.14: An example knowledge base where all of the features of the introdu
edapproa
h will be applied onHowever, the 
omplexity of the algorithm will be exponential in the user-de�ned level of reasoning by 
ases even with the just made assumption forthe pra
ti
al 
ase. This is a 
onsequen
e of the fa
t that high levels of reason-ing by 
ases 
ause reasoning to get 
lose to 
lassi
al logi
al entailment whi
his intra
table in general. Therefore we suggest small levels of reasoning by
ases. As we will see in the following Chapter, the answering time of thealgorithm also depends on the number of terms that are of 
on
ern duringan appli
ation of reasoning by 
ases whi
h 
orresponds to the observationsmade in the worst-
ase s
enario.4.9 A detailed ExampleSin
e we des
ribed separately how proper+ terms are en
oded, unit propaga-tion and reasoning by 
ases are applied, and how queries are evaluated in ourimplementation, we now turn to a detailed example to 
larify how di�erentpie
es of the introdu
ed approa
h �t together.Note that when we apply unit propagation we will not denote every 
reateddisjun
tive term to enable a better readability.Suppose the example knowledge base as depi
ted in table 4.14.Of 
ourse we �rst of all have to en
ode the knowledge base into thedata stru
ture on whi
h our algorithm works on. The en
oding requires twotables in essen
e as said before. Table 4.15 and 4.16 hold the 
orrespondingen
oding while the en
oding of the single predi
ates is not shown; they aresimply mapped to the numbers 1 to 4 a

ording to their alphabeti
al order.Prepro
essing of the knowledge base will leave the KB una�e
ted sin
ethere are no unit terms in the KB at all. Therefore, the table "pTerm-predU1" will 
ontain no entries. Re
all that prepro
essing only applies tounit propagation.Now we would like to answer the following query while we allow two stepsof reasoning by 
ases
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termId predi
ateId variables rb
Level oldrb
Level new1 2 X 0 0 11 1 X; Y 0 0 12 3 X 0 0 12 1 X; Y 0 0 13 4 X 0 0 13 1 X; Y 0 0 14 �2 X 0 0 14 �3 X 0 0 14 �4 X 0 0 1Table 4.15: The table 'pTerm-pred' holding one part of the example knowledgebase
termId equalityId equalities updated rb
Level1 1 Xj1j1ja� Y j2j � j� 0 02 1 Xj1j � j � �Y j2j1jd 0 03 1 Xj1j1ja� Y j2j1jd 0 04 1 Xj1j1ja 0 04 2 Xj1j1jb 0 0Table 4.16: The table 'pTerm-equal' depi
ts the equalities of the example knowl-edge base



4.9. A DETAILED EXAMPLE 899X; Y:P (X; Y )At this point we would like to mention again that X in its standardde�nition does not support reasoning by 
ases at any higher level than one.The extension implemented here is founded on [37℄ as said before.First the algorithm sear
hes the table 'pTerm-predU1' if there is an unitterm with the 'predi
ateId=1'. While this is not su

essful sin
e the table isempty, the algorithm makes use of reasoning by 
ases, be
ause it is allowedto by the user.At this point we use the method to determine the possible set of disjun
-tive terms that 
an be used by reasoning by 
ases while we use the presented
riterion. In our 
ase this are the terms with the identi�ers 1; 2; 3 and 4,sin
e all 
lauses are dire
tly or indire
tly 
onne
ted to the query whi
h only
ontains the predi
ate P . In our example the fourth disjun
tive term is in-dire
tly linked to the query while all other terms are dire
tly linked.The algorithm always 
hooses the 
lause with the smallest term identi�er('termID') and so (X = a) � Q(X) is added at �rst to the knowledge base,namely to the table "pTerm-predU2" (see table 4.17).Note again that we do not support inequalities at this point. Supposethat the a
tual equality from the example would be not (X = a) but (X 6= a).Then the set of possible ground instan
es would be immense and it is nottrivial to de
ide whi
h of them to 
hoose. Hen
e, there would exist too manypossibilities of ground instan
es that 
ould be added to the knowledge baseand therefore this 
ould not be implemented eÆ
iently.Please note that we add this 
lause to the table "pTerm-predU2". Only unitterms 
ontained in the table "pTerm-predU2" are 
onsidered when unit prop-agation is applied within reasoning by 
ases. In addition the table 'pTerm-equal' is a�e
ted of 
ourse, but we will not show the 
hanges made in thattable here.Now the algorithm applies unit propagation again what obviously a�e
ts(X = a _X = b) � :Q(X) _ :R(X) _ :S(X). Consequently, the resultingterm (X = a) � :R(X) _ :S(X) is added to the table that 
ontains thedisjun
tive terms only (table 4.18).At this point the algorithm will 
he
k again if there exists a unit term withthe "predi
ateId=1" in the knowledge base. Again, this is not su

essful andsin
e the algorithm is allowed to in
rease the level of reasoning by 
ases on
eagain, it will add R(X) as unit term next and apply unit propagation.At this stage the appli
ation of unit propagation results in a new disjun
-tive term and a new unit term, namely:X = a � :Q(X) _ :S(X)X = a � :S(X)
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ateId variables rb
Level oldrb
Level new5 2 X 1 1 1Table 4.17: The table 'pTerm-predU2' after adding the �rst predi
ate Q(X) ofthe 
hosen 
lause in the beginning of reasoning by 
asesConsequently, the exe
ution of unit propagation pro
eeds sin
e this unitterm 
an be used to a�e
t the term (X = a ^ Y = d) � S(X) _ P (X; Y ) forexample and results again in a new unit term, namely (X = a ^ Y = d) �P (X; Y ). Note that also other disjun
tive terms are e�e
ted.And now the algorithm will 
he
k again if there exists a unit term withthe 'predi
ateId=1' in the table "pTerm-predU2" (see table 4.19).This time this will su

eed and sin
e we do not need to 
he
k equalities whilewe only sear
h for the existen
e of P (X; Y ), we pro
eed to the next and lastpredi
ate in the a
tual 
lause.Hen
e, (X = a ^ Y = d) � P (X; Y )) is added to the KB and this of 
ourseimplies that 9X; Y:P (X; Y ) holds, sin
e we only want to determine if P existswith any arbitrary assignment of the variables X and Y .At this point we showed that P (X; Y ) holds when adding the �rst pred-i
ate of the �rst 
hosen 
lause. Furthermore, we have to 
he
k the se
ondpredi
ate of the 
lause, namely (X = a) � P (X; Y ); it is obvious that theaddition of a 
orresponding ground instan
e will satisfy the query.A

ordingly, the algorithm answers that 9X; Y:P (X; Y ) is known to be true.Note that the use of our depth-�rst strategy and the allowan
e of twolevels of reasoning by 
ases prevented the use of the fourth term. If we wouldrestri
t reasoning by 
ases to only one level the algorithm would still answerknown to be true.This is due to the fa
t that after trying every other 
lause without su

essthe last 
lause supports the query by one single appli
ation of reasoning by
ases.4.10 SummaryIn this 
hapter we presented an implementation of all main features intro-du
ed by X. We started the dis
ussion of our implementation by restri
tingproper+ terms to 
ontain no inequalities for several reasons.This restri
tion has major e�e
ts on the evaluation of a query and the ap-pli
ation of reasoning by 
ases. For example quanti�ers 
ould be solved veryeÆ
iently and within reasoning by 
ases we 
an easily add single ground in-
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termId predi
ateId variables rb
Level oldrb
Level new1 2 X 0 0 01 1 X; Y 0 0 02 3 X 0 0 02 1 X; Y 0 0 03 4 X 0 0 03 1 X; Y 0 0 04 �2 X 0 0 04 �3 X 0 0 04 �4 X 0 0 06 �3 X 1 1 16 �4 X 1 1 1Table 4.18: The table 'pTerm-pred' after adding the unit term (X = a) � Q(X)to the table 'pTerm-predU2' and applying unit propagation at the �rst level ofreasoning by 
ases. Note the new disjun
tive term.
termId predi
ateId variables rb
Level oldrb
Level new5 2 X 1 1 07 3 X 2 2 18 �4 X 2 2 19 1 X; Y 2 2 1Table 4.19: The table 'pTerm-predU2' after adding the unit term R(X) andapplying unit propagation at the se
ond level of reasoning by 
ases
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es. Both aspe
ts would not be possible with inequalities in
luded.Additionally, we 
ould not think of any pra
ti
al use of inequalities with re-gard to single domain 
onstants, ex
ept of the use in a query. And sin
e weallow inequalities to be 
ontained in a query there are no pra
ti
al restri
tions
aused.While we presented the algorithms 
orresponding to unit propagation andreasoning by 
ases the usefulness of our en
oding was 
lari�ed. Apart fromthe way we en
ode proper+ terms the use of database features was essential,e.g.: fast sear
h in large datasets and index join.The appli
ation of reasoning by 
ases is as mentioned a 
omplex pro
ess.We 
hose for a 
riterion that 
an be applied very fast. Hen
e, it is possibleto eÆ
iently determine the set of 
lauses that is of 
on
ern when reasoningby 
ases is applied.The number of possible 
ombinations of 
lauses 
aused by higher levels ofreasoning by 
ases and di�erent equality terms 
orresponding to one sin-gle proper+ term is immense and therefore hard to implement eÆ
iently.Therefore we suggested very small levels of reasoning by 
ases (� 2) and ad-ditionally proper+ terms should not 
ontain many disjun
tive equality terms.This topi
 will be of 
on
ern in the next 
hapter.Furthermore we showed the features that prepro
essing introdu
es andwhi
h impli
ations prepro
essing has on the reasoning pro
edure itself. Forinstan
e, it allows to instantly answer queries that require simple appli
ationsof Modus Ponens.Even more important for the 
ase of reasoning by 
ases is the fa
t thatprepro
essing allows us to restri
t the set of possible unit propagation pairsin a 
ru
ial way. This is due to the fa
t that all original unit terms have been
onsidered already after prepro
essing is applied.The main 
ontribution of our work is that all main features of X 
an behandled by our implementation while allowing large datasets. We addition-ally support an eÆ
ient answering of queries based on the following features:unit propagation by employing database features, the eÆ
ient handling ofquanti�ers, and prepro
essing of the knowledge base.



Chapter 5EÆ
ien
y
5.1 Introdu
tionWe begin this 
hapter by introdu
ing a major problem 
on
erning the gen-eration of a test knowledge base.The problem is that there do not exist any proper+ knowledge bases at all.And as said before we think that there is a use for large �rst-order knowledgebases in the �eld of arti�
ial intelligen
e, but until now they are not existent[36℄.Consequently, we had no opportunity to take a given knowledge base and testour approa
h or to 
ompare our results with other approa
hes. In 
ontrast tothe worldwide SAT 
ompetition [57℄ that involves thousands of 
ompetitorsand test instan
es, large �rst-order knowledge base as suggested here are notof su
h 
on
ern.Therefore, we 
annot present as signi�
ant and pre
ise test results asthey are 
ommon in the 
ontext of the propositional 
ase. We will dis
ussfor example the relations between the size of the knowledge and the answeringtime, and answering times that are 
aused by queries that do not make useof reasoning by 
ases.Additionally, we will see that the answering time depends immensely on the
hara
teristi
s of the proper+ terms 
ontained in the knowledge base whenreasoning by 
ases is applied.A simple example of this fa
t is a large set of terms that is dire
tly orindire
tly 
onne
ted to a predi
ate from the query. Then the set of 
lausesthat will be used when reasoning by 
ases is applied is also large and 
onse-quently there exists a high number of possibilities for our implementation ofreasoning by 
ases (see Chapter 4). Hen
e, the answering time will in
reasein a non-reasonable way. 93
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Figure 5.1: A brief overview on the 
ow of data when a query is send fromECLiPSe PROLOG to the database and the answer to the query is send ba
k.Comprising, we will dis
uss how we generated a test knowledge base andwhi
h fa
tors in
rease the answering time of the presented implementationand whi
h 
ir
umstan
es support an eÆ
ient evaluation of the query.
5.2 EnvironmentWe use a 1; 7 GHz dual pro
essor system (512 MB RAM) as database server.The 
lient (1; 7 GHz, 128 MB RAM) is 
onne
ted to the server by a 100MBit/s lo
al area network (LAN).Furthermore, we use the MySQL version 4:01 [53℄ and the version 5:5of ECLiPSe PROLOG [21℄. The used version of MySQL is publi
 domainand 
an be downloaded freely at the given web address in the bibliography[53℄. ECLiPSe PROLOG is not publi
 domain, but is available for free touniversities and non-pro�t resear
h institutions.Additionally, we use a MySQL-interfa
e to handle the database queries,whi
h is available at [21℄ and was 
reated by [32℄. In fa
t the MySQL-interfa
e 
onsists of a C-interfa
e to MySQL whi
h is integrated in ECLiPSePROLOG.The 
ow of data between ECLiPSe PROLOG and the database is de-pi
ted in Figure 5.1. As 
an be seen in this �gure a single query originatingin PROLOG is �rst send to the MySQL-Interfa
e, se
ond to the LAN and �-nally to the MySQL-Database. The answer to the query has to take the sameway ba
k. Note that these 
osts introdu
ed by the PROLOG/C-Interfa
e,the MySQL-Interfa
e and the 
lient/server 
on�guration are in
luded in theanswering times presented later on.



5.3. THE TEST KNOWLEDGE BASE 955.3 The Test Knowledge BaseAs said before there do not exist any �rst-order knowledge bases that are ofthe size and type as suggested in our work [36℄.Therefore we have to generate a test knowledge base on our own. Aswe know from the introdu
tion it is even very hard to generate appropriatepropositional instan
es. For example, instan
es 
reated by random 
an besolved very eÆ
iently with high probability. Consequently, these instan
es
an not be used to test an approa
h in an appropriate way.In the �rst-order 
ase we dis
uss here, we have the additional problem thatwe need large datasets (> 105) to test our implementation. Note that theproblem size in the propositional 
ase 
onsists of 1000 
lauses maximally atmost of the time [57℄.Now suppose that you have to generate about 105 proper+ terms thatare 
onsistent and 
ontain disjun
tive terms that support queries like9Y:(P (a; Y ) ^ Q(X; Y )). Note that this also in
ludes large set of 
onstantsand predi
ates.It is of 
ourse possible to generate this set of terms by random, but thefollowing two topi
s introdu
e major problems that have to be solved then:1. Consisten
y of the entire knowledge base2. Coheren
es in a set of termsRe
all, that we require 
onsisten
y for our 
riterion of reasoning by 
ases.After adding one new term the 
onsisten
y of the whole knowledge basemust be tested. Sin
e we have more than 105 terms the needed 
onsisten
ytest would be very 
omplex and time 
onsuming. For example, think of thefollowing terms in the knowledge base:(P (X))(:P (b) _ :Q(a)Now suppose the next term to add would be the unit term Q(a). Then we�rst had to apply unit propagation before we 
ould determine that this termwould 
ause the knowledge base to be in
onsistent.After generating this set of terms we still have to solve the se
ond problem.Sin
e the knowledge base is generated randomly we are not aware of the
onne
tions between the 
lauses. Consequently, it is hard to de
ide whi
hquery to ask.The generation of an appropriate test knowledge base is not trivial andis not entirely solved in the propositional 
ase. Espe
ially, if a 
onsistentknowledge base is generated su

essfully there is no information about the



96 CHAPTER 5. EFFICIENCYhardness of this instan
e (see Introdu
tion). Hen
e, it is not possible todetermine how well an implementation works in general.As shown in the �rst 
hapter many resear
hers are working on the sat-is�ability problem and therefore there exist well known test instan
es andresults that 
an be used to test the eÆ
ien
y of a new algorithm.Sin
e large �rst-order knowledge bases as we suggest them are very seldomin AI [36℄ we 
an not take advantage of any knowledge bases 
reated before.Our test knowledge base 
onsists of terms generated in the following twoways:� Unit terms are generated by random� Disjun
tive terms are 
lauses of SAT instan
es (from [57℄)Sin
e every unit term in our database holds a single predi
ate that is not
ontained anywhere else in this table we simply use the a
tual unique termidenti�er with some o�set as predi
ate identi�er. We 
hoose a single equalityterm by random by using a single 
onstant from a set of 
onstants. Re
allthat predi
ates and 
onstants are mapped to numbers.We use 
lauses that 
ontain three literals ea
h from SAT instan
es togenerate disjun
tive terms. Hen
e, every 
reated disjun
tive term 
onsists ofthree predi
ates and a equality term generated by random.But none of these terms will be of 
on
ern dire
tly when a query is an-swered, be
ause we add in
omplete information about individuals, rules andfa
ts manually for every query we want to ask. In fa
t, we s
atter the spe-
i�
 problem instan
es over the entire dataset and then ask the 
orrespondingquery.In other words, we take a small set of proper+ terms that have spe
i�
and known internal 
onne
tions and add those terms to the entire knowledgebase.Comprising, we 
an not present a test knowledge base that 
an be usedin its entire size. We simply generate a test knowledge base that 
onsists of alarge number of proper+ terms, but only a small set will be of 
on
ern whenanswering a spe
i�
 query.Nevertheless, the entire set of terms must be 
onsidered to determine the
orresponding terms of the a
tual problem instan
e.5.4 Test ResultsIn this se
tion we present the results of our approa
h applied on test knowl-edge bases of the type that was dis
ussed in the previous se
tion.



5.4. TEST RESULTS 975.4.1 Prepro
essingSin
e prepro
essing itself is done o�ine and is therefore not of 
on
ern whendetermining the eÆ
ien
y of our approa
h we have no 
orresponding testresults.This is also due to the fa
t that the type of the generated knowledge basehas nearly no 
onne
tion between disjun
tive terms and unit terms. Hen
e,the appli
ation of unit propagation would be without an e�e
t at most ofthe time. Consequently, test results would not be representative. Note thatthe result of prepro
essing will be of 
on
ern in the next se
tion.Furthermore, the en
oding of proper+ term is not applied sin
e we gen-erate terms in the suggested format dire
tly.At this point we only would like to dis
uss the following disadvantage
aused by prepro
essing. The growth of the knowledge base when unit prop-agation is applied (see Chapter 3) has a great impa
t during prepro
essingsin
e every disjun
tive term and unit term is of 
on
ern when unit propa-gation is applied. While we dis
ussed the theoreti
al 
ase in Chapter 3 wenow turn to the pra
ti
al 
ase and make several assumptions 
on
erning the
hara
teristi
s of the knowledge base.Suppose that we have 10.000 disjun
tive terms and 100.000 unit terms.Every disjun
tive term 
ontains two predi
ates. Then the growth of theknowledge base would be of minor 
on
ern, be
ause every su

essfully appliedunit propagation would generate a new unit term only. Consequently, onlythe number of unit terms would in
rease. This has no drawba
k to eÆ
ien
yas we will see later on.But if the disjun
tive terms 
ontain more than two predi
ates the numberof disjun
tive terms will in
rease in addition. For example, 
onsider thefollowing set of terms: (P (X) _Q(X) _R(X)):P (a), :Q(a)After the appli
ation of unit propagation the set 
ontains the following termssin
e we are not allowed to delete any disjun
tive terms if they are not re-dundant (Chapter 3): (P (X) _Q(X) _R(X))(Q(a) _R(a))(P (a) _ R(a)):P (a), :Q(a), R(a)Note the growth in the number of disjun
tive terms. When a disjun
tiveterm 
ontains more than two predi
ates than the number of disjun
tive term
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ates 3 Predi
ates more than 3Number of Disjun
tive Terms 80% 15% 5%Table 5.1: The number of disjun
tive terms in the knowledge base with regardto the number of predi
ates 
ontainedin
reases by the number of unit propagations su

essfully applied.Additionally note that the number of unit propagations 
an be bigger thanthe number of predi
ates in
luded in a term. For instan
e, the reader 
anobserve this if we add the unit terms :P (b) and :Q(b) to the set of termsfrom above.We assume that disjun
tive terms that 
ontain only two predi
ates aremainly used in the knowledge bases that are of 
on
ern here. Nevertheless,there remains a 
onsiderable growth of disjun
tive terms.Assume the per
entages depi
ted in the Table 5.1 
onsidering the numberof predi
ates 
ontained in the disjun
tive terms in a knowledge base. If weadditionally assume that on every disjun
tive term that 
ontains more thantwo predi
ates, unit propagation 
an be applied twi
e the number of termswill be multiplied by a fa
tor about 3.For example, if we have 10:000 disjun
tive terms in total, then there are 2:000terms that 
ontain more than two predi
ates with regard to the assumptionmade. In the following we also assume that there are only three predi
atesin these disjun
tive terms.If we now apply unit propagation on
e on ea
h of these terms the numberof disjun
tive terms doubles sin
e the original disjun
tive term remains andthe new disjun
tive term is added. Hen
e, we have now 12:000 disjun
tiveterms in total. When we apply unit propagation again the number of originalterms is doubled again and 4:000 new unit term are generated in addition.The generation of unit terms is due to the fa
t that the 2:000 disjun
tiveterms that were 
reated by the �rst appli
ation of unit propagation 
ontainonly two predi
ates (see last example). And sin
e we assume that we 
anapply unit propagation twi
e on ea
h original disjun
tive term there mustbe a predi
ate 
ontained in the new generated disjun
tive term where unitpropagation 
an be applied on su

essfully.Hen
e, a unit term is 
reated sin
e the new generated disjun
tive term 
on-tains only two predi
ates. The same holds for the other generated disjun
tiveterms and 
onsequently another 2:000 unit terms are generated.In total we have 14:000 disjun
tive terms after we have applied prepro-
essing. We will see in the next se
tion that this kind of growth will notintrodu
e any major drawba
ks 
on
erning eÆ
ien
y even if the number of



5.4. TEST RESULTS 99Query 100.000 unit terms 1.000.000 unit terms(X = a ^ R(X)) 9mse
 10mse
(X 6= a ^ R(X)) 10mse
 10mse
9X:R(X) 9mse
 10mse
Table 5.2: The answering times of the queries while using 100.000 unit terms inthe �rst 
ase and 1.000.000 in the se
onddisjun
tive terms would double or triple.Note that this dis
ussion here is mainly based on assumptions and empiri
alresults. Additionally, note that when we will refer to a number of terms tobe 
ontained in the knowledge base we always refer to the number of termsafter prepro

esing.Additionally, we will dis
uss the positive results that are gained by prepro-
essing in the next se
tion.5.4.2 Answering Queries without Reasoning by CasesWe begin this se
tion by dis
ussing results that are a
hieved when no rea-soning by 
ases is used. In the last 
hapter we mentioned that queries thatrequire no reasoning by 
ases at all 
an be answered instantly due to pre-pro
essing. These queries in
lude 
ases that require simple appli
ations ofModus Ponens (see previous 
hapter).For instan
e, suppose the following set of terms to be 
ontained in the knowl-edge base before prepro
essing:(X = a _X = b � :P (X) _Q(X))(X = a _X = b � :Q(X) _R(X) _ S(X))P (X);:S(X)After prepro
essing the database holds the unit term (X = a _ X = b �R(X)) among others.The Table 5.2 holds sample queries and the 
orresponding answering times.The �rst test knowledge base 
ontains 100.000 unit terms and the se
ond1.000.000 unit terms. Note that the number of disjun
tive terms plays norole in this 
ontext.Note the small di�eren
es between the answering times 
on
erning thedi�erent queries and the di�erent sizes of the knowledge base. All statedqueries will be answered with known to be true. Most notably these results
on�rm that the handling of the existential quanti�er is a

omplished veryeÆ
iently by our implementation.



100 CHAPTER 5. EFFICIENCYQuery 10.000/100.000 100.000/1.000.000P (a; Y ) 56mse
 61mse
8X:9Y:P (X; Y ) 56mse
 61mse
(P (X; Y ) ^Q(X; Y )) 67mse
 74mse
8X:9Y:(P (X; Y ) ^Q(X; Y )) 68mse
 76mse
Table 5.3: The answering times of the queries while using 10.000 disjun
tive termsin the �rst 
ase and 100.000 in the se
ond.The very small di�eren
e 
aused by the di�erent number of unit terms inthe knowledge base is due to the fa
t that databases 
an handle millions ofdatasets very eÆ
iently [23℄. Note that no reasoning at all takes pla
e ex
eptthe evaluation of the query.In 
onsequen
e these results 
on�rm that queries that require simple ap-pli
ations of Modus Ponens or unit terms only 
an be answered eÆ
iently.This is mainly due to the en
oding s
heme of proper+ terms and prepro
ess-ing.5.4.3 Answering Queries while using Reasoning byCasesSuppose the following two terms to be 
ontained in the knowledge base:P (X; a) _ P (X; b)(Y = a _ Y = b � Q(X; Y ))Now we ask the queries as stated in Table 5.3. Note that we now have 10.000disjun
tive terms in the �rst 
ase and 100.000 disjun
tive terms in the se
ond.Re
all that it was assumed in [40℄ that the number of disjun
tive terms is 10%of the entire number of terms in the knowledge base. Additionally note thatthe predi
ates P and Q are 
ontained nowhere else in the entire knowledgebase ex
ept in the terms stated above.All queries require reasoning by 
ases, but no unit propagation is applied.Note again the eÆ
ient handling of the quanti�ers. In this s
enario it is veryimportant to note that there exists only one 
lause that 
an be used whenreasoning by 
ases is applied. This implies that it is not ne
essary to 
hoosefrom a set of 
lauses when reasoning by 
ases is applied.In the next s
enario we will show that the number of 
lauses that are usedwhen reasoning by 
ases is applied 
auses a major drawba
k to eÆ
ien
y.First of all we present the terms that are of 
on
ern in this test 
ase:



5.4. TEST RESULTS 101(X = a ^ Y = a � Q(X) _ P (X; Y ))(Y = a � R(X) _ P (X; Y ))(Y = b � S(X) _ P (X; Y ))(X = a � :Q(X) _ :R(X) _ :S(X))Additionally, we have the query 9Y:P (a; Y ). Re
all, that this query 
an beanswered 
orre
tly already when allowing only one level of reasoning by 
ases(see previous 
hapter).Note that every appli
ation of reasoning by 
ases in
ludes several appli-
ations of unit propagation depending on the allowed level. Furthermore thetest of the query is applied multiple times (refer to the example in the last
hapter).This query is answered in 280mse
 when allowing one level of reasoningby 
ases, and 
onsidering 10.000 disjun
tive terms and 100.000 unit termsare 
ontained in the knowledge base. If we allow two levels of reasoning by
ases then the answering time is 210mse
.The reason why the answering time of the query that allows two levels ofreasoning by 
ases is faster than the one that supports only one level is dueto the fa
t that we use a depth-�rst strategy in our approa
h when applyingreasoning by 
ases. If we use the �rst 
lause and two levels of reasoning by
ases are allowed, the query is known to be true and no further reasoninghas to be a

omplished.But if we only allow one level of reasoning by 
ases we have to go through the�rst three 
lauses in the set and then su

eed when using the last 
lause withreasoning by 
ases. This 
auses the di�eren
es in the answer times here.Note that the 
lauses that are determined for the use with reasoning by
ases are sorted by there term identi�er and so it is possible to �x the orderof 
lauses to be used (see 
hapter 4).The answering time of 210mse
, when two levels of reasoning by 
ases aresupported, shows that unit propagation is implemented eÆ
iently sin
e theevaluation of the query requires the testing of the query 5 times (� 10mse
ea
h) and unit propagation itself is applied 4 times (see also Chapter 4).Note that 5 tests of the query require about 50mse
 sin
e testing a queryonly involves unit terms (refer to the results from the last se
tion). Hen
e,one appli
ation of unit propagation requires less than 40mse
 sin
e unitpropagation is only a subpro
ess when reasoning by 
ases is applied. As wewill see later on the time used for unit propagation will only in
rease in areasonable way when 100.000 disjun
tive terms are of 
on
ern.To show that the number of disjun
tive terms that are of 
on
ern whenreasoning by 
ases is applied 
ause a major drawba
k 
on
erning eÆ
ien
ywe will add disjun
tive terms that are indire
tly 
onne
ted to the query.



102 CHAPTER 5. EFFICIENCYFor example, we add the disjun
tive term (R(X)_T (X)) while the predi-
ate T is nowhere else 
ontained in the knowledge base. And sin
e we add thedisjun
tive term while using a smaller term identi�er than the other terms of
on
ern have, this disjun
tive term will be used in an appli
ation of reasoningby 
ases at �rst.Additionally, unit propagation 
an be applied su

essfully when addingthe �rst predi
ate of the 
lause. When a ground instan
e of R(X) is addedas unit term then this has an e�e
t on the disjun
tive term (X = a �:Q(X) _ :R(X) _ :S(X)). Then the query is tested again, but withoutsu

ess.Consequently, the algorithm will pro
eed to the next 
lause in the set ifthere is no further level of reasoning by 
ases allowed. If a further level ofreasoning by 
ases is allowed then the query is known to be true with regardto the �rst predi
ate used in the 
urrent 
lause. This is due to the fa
t thatat the next level of reasoning by 
ases again every 
lause may be 
hosen fromthe determined set ex
ept the a
tual one.For example, the term (X = a^Y = a � Q(X)_P (X; Y )) is 
hosen next forreasoning by 
ases at the se
ond level. Sin
e (X = a � :Q(X) _ :S(X)) isnow 
ontained in the knowledge base and adding a ground instan
e of Q(X)as unit term will 
reate the new unit term :S(X) the query is supported.The same holds of 
ourse for the se
ond predi
ate P of the 
urrent term.But sin
e the predi
ate T will not support the query at any level ofreasoning by 
ases the disjun
tive term (R(X) _ T (X)) will never supportthe query. As we 
ould see, 
lauses of this kind 
ause several appli
ations ofunit propagation and the test of a query is applied multiple times.So, we guarantee that all features of reasoning are a

omplished for everysingle added disjun
tive term. At the same time we prevent that those kindof 
lauses 
an support the query by using an unique predi
ate (T ).In this test we will not only add one term of this kind, but up to sixtyterms. Every single newly added term will be 
onsidered before the term isrea
hed that supports the query.The result 
an be seen in Figure 5.2. While we have 4 terms in the originalset, we �rst add 4, then 12, 28, and �nally 60 terms. Note that none of theterms will support the query at any level of reasoning by 
ases, but they areall 
onsidered before the original set of terms is of 
on
ern. In the knowledgebase there are 10.000 disjun
tive terms and 100.000 unit terms 
ontained.As we 
an see in the �gure the answering times in
reases with the numberof terms that are 
onsidered when reasoning by 
ases is applied. The e�e
t isampli�ed by the number of levels of reasoning by 
ases that are allowed. Thisis explainable by the fa
t that ea
h level of reasoning by 
ases re
onsiders allpossible terms again ex
ept the a
tual used ones (see 
hapter 4).
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Figure 5.2: The in
uen
e of the number of 
lauses 
onsidered when reason-ing by 
ases is applied on the answering time to a query. (10.000 Disjun
tiveTerms/100.000 Unit Terms)If reasoning by 
ases fails for the a
tual term it goes to the next levelof reasoning by 
ases if it is allowed to and otherwise it will try all otherpossible terms at this level to support the query before it returns to theprevious level again. In fa
t this 
orresponds to the ba
ktra
king propertythat was explained in the last 
hapter.Note that the answering time when we use reasoning by 
ases with amaximal level of two is only faster than the answering time when allowingonly one level if the number of terms is only four.The problem is the 
riteria used when reasoning by 
ases is applied. Sin
eit is only tested if a predi
ate is dire
tly or indire
tly 
onne
ted to the predi-
ate in the query the set of terms that is of 
on
ern grows very fast. The sizeof growth depends on the stru
ture or 
hara
teristi
 of the knowledge base.Think for example of SAT instan
es where every literal is dire
tly or indi-re
tly 
onne
ted to every other literal in the instan
e. Consequently, if theinstan
e would hold 1000 
lauses every single 
lause would be 
onsideredduring one appli
ation of reasoning by 
ases.Note that our approa
h is not able to solve su
h kind of instan
es, be-
ause of the high number of 
lauses that have to be 
onsidered at ea
h levelof reasoning by 
ases and espe
ially the fa
t that su
h kind of instan
es re-quire very high levels of reasoning by 
ases. Re
all, that the solution of the
ombinatorial puzzle introdu
ed in Chapter 2 requires 8 levels of reasoning



104 CHAPTER 5. EFFICIENCYNr. of RbC-Terms RbC-Level 1 RbC-Level 2 RbC-Level 34 0; 28 0; 21 0; 218 0; 44 0; 85 1; 5716 0; 85 1; 59 2; 9432 2; 01 3; 84 7; 4564 5; 67 11; 11 21; 40Table 5.4: The answering times in se
onds to the query 9Y:P (a; Y ) depending onthe number of terms that are 
onsidered when reasoning by 
ases is applied andthe allowed level of reasoning by 
ases.(10.000 Disjun
tive Terms / 100.000 UnitTerms)by 
ases.Consequently, our approa
h is not able to answer queries eÆ
iently ifthe predi
ates of the query are 
onne
ted dire
tly or indire
tly to a set that
ontains more than 16 to 32 disjun
tive terms. As 
an be seen in the Figure5.2 and the 
orresponding Table 5.4 the query is answered in 0; 85se
 whenonly allowing one level of reasoning by 
ases and 1; 59se
 when two levelsare allowed and if there are 16 terms of 
on
ern when reasoning by 
ases isapplied.We think that answering times at about 1 se
ond 
an be 
alled eÆ
ientin our 
ase. As 
an be seen from the �gure the answering time to a queryin
reases dramati
ally with the number of terms that are of 
on
ern withreasoning by 
ases. Espe
ially, the ampli�ed answering times when allowinga maximal reasoning by 
ases level of three suggest an exponential growth ofanswering times with regard to the user-de�ned level of reasoning by 
asesand the number of disjun
tive terms that are used when reasoning by 
asesis applied. This result 
orresponds to the dis
ussed worst-
ase 
omplexity inChapter 4.Comprising, these results show that reasoning by 
ases with a maximal levelof 2 
auses a major drawba
k when the 
hara
teristi
 of the knowledge base
ontains sets of terms that 
ontain more than 32 
onne
ted disjun
tive terms.5.4.4 The Size of the Knowledge BaseSin
e we already gave some test results 
on
erning the size of the knowledgebase we now present further results in detail.As we said in the previous 
hapter the 
hosen data stru
ture supports alarge set of unit terms (more than 1:000:000) in the original knowledge base



5.5. SUMMARY 105Nr. of RbC-Terms 10.000/100.000 10.000/1.000.000 100.000/1.000.0004 100% (0; 28s) +11% (0; 31s) +27% (0; 36s)8 100% (0; 44s) +9% (0; 48s) +20% (0; 53s)16 100% (0; 85s) +4% (0; 88s) +15% (0; 98s)32 100% (2; 01s) +6% (2; 14s) +19% (2; 38s)64 100% (5; 67s) +4% (5; 88s) +23% (6; 99s)Table 5.5: Comparison of the answering times 
orresponding to the number ofterms (disjun
tive terms / unit terms) 
ontained in the knowledge base whileallowing only one level of reasoning by 
asessin
e those terms are not of 
on
ern when reasoning by 
ases is applied.At this point we present the 
orresponding results. In Figure 5.3 the testfrom the last se
tion is repeated in a knowledge base that 
ontains 10.000disjun
tive terms and 1.000.000 unit terms. As you 
an observe the di�eren
eto the 
ase where only 100.000 unit terms where of 
on
ern is negligible.Hen
e, the reasoning pro
edure is nearly independent of the number of unitterms.We also said in the se
tion "Prepro
essing" in this 
hapter that the growthof disjun
tive terms 
aused by the appli
ation of unit propagation duringprepro
essing does not 
ause any major drawba
ks.Figure 5.4 supports this statement. Now the knowledge base 
ontains 100.000disjun
tive terms and 1.000.000 unit terms. As you 
an observe the largenumber of disjun
tive term has only a slight impa
t on the answering times.This is again mainly due to the fa
t that databases 
an handle datasets of thissize very eÆ
iently [23℄. Note, that this also implies that the implementationof unit propagation works eÆ
iently even when 100.000 disjun
tive termsmust be 
onsidered.In the Table 5.5 we summarize the results 
on
erning the topi
 of thisse
tion by 
omparing the answering times presented here with the times fromthe last se
tion. We 
ompare all answering times measured at the reasoningby 
ases level 1.5.5 SummaryIn this 
hapter we presented a method for generating test instan
es and de-s
ribed the diÆ
ulties that arise when generating a test knowledge base. Unitterms are generated by random and we use SAT instan
es to generate dis-jun
tive terms. Small number of proper+ terms are added to the knowledge
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Figure 5.3: The in
uen
e of the number of 
lauses 
onsidered when reason-ing by 
ases is applied on the answering time to a query. (10.000 Disjun
tiveTerms/1.000.000 Unit Terms)

Figure 5.4: The in
uen
e of the number of 
lauses 
onsidered when reason-ing by 
ases is applied on the answering time to a query. (100.000 Disjun
tiveTerms/1.000.000 Unit Terms)
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h 
ontain spe
i�
 rules or in
omplete knowledge. This enabled usto ask the 
orresponding queries.We dis
ussed the disadvantage 
aused by prepro
essing, namely thegrowth of the number of disjun
tive terms 
aused by the appli
ation of unitpropagation. For the pra
ti
al 
ase we 
ould show under several assumptionsthat the number of disjun
tive terms that hold more than two predi
ates
ause the size of the knowledge base to double or triple. But additionallywe presented results that 
on�rmed that this kind of growth has no majordrawba
k 
on
erning eÆ
ien
y.As said in the last 
hapter we 
on�rmed in this 
hapter that querieswhi
h require no reasoning by 
ases 
an be answered very eÆ
iently. Thesame holds for queries that make use of reasoning by 
ases when the numberof disjun
tive terms that are of 
on
ern is relatively small (< 30).At the same time we 
ould show empiri
ally that the implementation of unitpropagation works eÆ
iently. Even if 100.000 disjun
tive terms are 
ontainedthe implementation introdu
es no major drawba
k.In 
ontrast, we 
ould show that the number of disjun
tive terms that isof 
on
ern when reasoning by 
ases is applied has an major in
uen
e on theanswering time to a query. In fa
t, if the set of disjun
tive terms 
ontainsmore than about 30 terms, the evaluation of a query is not eÆ
ient anymore.In 
onsequen
e, the implementation of reasoning by 
ases must be improved.Espe
ially, the 
riterion that determines the set of disjun
tive terms that isof 
on
ern when reasoning by 
ases is applied must be improved to redu
ethe size of the set.Furthermore, we showed that the size of the knowledge base has only aslight impa
t on the performan
e of our approa
h. Espe
ially, the number ofunit terms in
reases the answering times to a query in a negligible way only.
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Chapter 6Summary and Dis
ussionIn this 
hapter we are going to provide a summary and a 
riti
al assessmentof the work that was done during this thesis. Furthermore, we will dis
ussdire
tions for future resear
h.6.1 SummaryIn this thesis, we investigated and implemented a dedu
tive and logi
al soundreasoning pro
edure that is able to handle in
omplete �rst-order knowledgebases that 
ontain disjun
tive information.First, we introdu
ed the dedu
tive reasoning pro
edure that is of 
on
ernin this work and then we examined the properties of the reasoning pro
edureitself. We 
ould show that one of the main features, namely unit propaga-tion, introdu
ed by the reasoning pro
edure 
auses an exponential growthof the equality terms if equalities are represented in DNF. In addition, we
ould show that during an appli
ation of unit propagation only redundantterms 
an be deleted. Hen
e, the appli
ation of unit propagation is not asunproblemati
 as in the propositional 
ase. In addition, we observed thatthe use of inequality 
auses the major drawba
k 
on
erning 
omplexity inour implementation; therefore inequalities were no longer supported.The fa
t that we did not support inequalities had a major impa
t on theimplementation. Espe
ially, the handling of the 8-quanti�er was simpli�edin a 
ru
ial way sin
e we 
ould show that we do not have to substitute everypossible 
onstant to determine if the 8-quanti�er holds.Furthermore, we implemented all main features of the reasoning pro-
edure while using an en
oding s
heme for proper+ terms and employingdatabase features to enable an eÆ
ient handling of huge datasets. After-wards we dis
ussed the eÆ
ien
y of our implementation and showed that we109
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hieved eÆ
ient implementations 
on
erning the evaluation of queries (e.g.,quanti�ers) and the appli
ation of unit propagation even if about 106 termsare 
ontained in the knowledge base.In 
ontrast, we 
ould show that the appli
ation of reasoning by 
ases
an 
ause the answering times to a query to in
rease dramati
ally. Besidethe user-de�ned reasoning by 
ases level the answering times depend on the
hara
teristi
 of the knowledge base. Namely, the number of disjun
tiveterms that are 
onne
ted to ea
h other by predi
ates plays a major role inthis 
ontext.6.2 Criti
al AssessmentAs said before it was possible to determine that the growth of equality termswas 
aused by the use of inequality when we use DNF to represent equalities.This was one of the main reasons to ex
lude inequalities from the entirereasoning pro
edure. As a downside, if we want to in
lude inequalities lateron, perhaps in a limited form, this would require substantial revision of theimplementation.While the implementation of the reasoning pro
edure 
on
erning the rep-resentation of proper+ terms and unit propagation 
aused only minor prob-lems, the implementation of reasoning by 
ases was very 
omplex and, ulti-mately, 
ould not be a

omplished in a satisfying way. The reason for thisdiÆ
ulty is originated in the theoreti
al de�nition of reasoning by 
ases givenin the reasoning pro
edure. The 
hoi
e of the 
lause that is used for reasoningby 
ases is non-deterministi
 in the de�nition. The 
riterion we used simplydetermined whi
h disjun
tive terms 
ontained in the entire knowledge baseare dire
tly or indire
tly 
onne
ted to the query. Depending on the 
har-a
teristi
 of the knowledge base the number of terms 
an be too large forour approa
h to stay eÆ
ient. Already small numbers (about 30) 
ause theanswering time to a query to in
rease dramati
ally.In addition, we did not dis
uss the soundness and 
ompleteness of ourimplementation with regard to the original reasoning pro
edure in every 
ase.For instan
e, the format of the query is restri
ted so that we do not supportqueries su
h as 8((X = a ^X 6= a) � P (X)).The implementation does also not support every feature of equality terms.Espe
ially, we 
an not handle equality terms of the following type: (X =Y ^ Y 6= Z).Furthermore, the ar
hite
ture of the implementation 
an be improvedsin
e there exist several interfa
es su
h as the Prolog-C and the C-MySQLinterfa
e that 
onne
t our program to the database. For instan
e, it would be
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rease the number of interfa
es and therefore in
rease eÆ
ien
y.Although we tried to establish an appropriate test environment to deter-mine the eÆ
ien
y of our implementation it remains to be seen if the resultswould be similar under real-world 
onditions. Re
all, that there was no ap-propriate test knowledge base available. As in the propositional 
ase the
hara
teristi
 of the test instan
e as a major in
uen
e on the test results.Additionally, the presented implementation is a prototype that is onlysuitable to examine the feasibility of the dedu
tive reasoning pro
edure andto analyse its eÆ
ien
y in general. In parti
ular, the user interfa
e needs tobe improved for the use by others.6.3 Future WorkIn this se
tion we provide a brief outlook on future resear
h. We begin thisoutlook by presenting some proposals to improve the introdu
ed implemen-tation. Additionally, we will propose an improvement of the given reasoningpro
edure.There exist many essential improvements that 
an be made 
on
erningthe implementation sin
e it was the �rst attempt at all to implement thegiven reasoning pro
edure. For instan
e, the 
riterion used when applyingreasoning by 
ases. An enhan
ed 
riterion 
ould de
rease the answering timeto queries in an essential way, sin
e the answering time in
reases with thenumber of disjun
tive terms used when reasoning by 
ases is applied. Wethink, that this improvement would require an updated data stru
ture or agraph that holds the ne
essary information to determine the 
lauses whi
hare used with reasoning by 
ases.Besides improving the approa
h by advan
ed algorithms there also exist sev-eral possibilities to in
rease the performan
e by using the given infrastru
turein a more e�e
tive way. For example, the use of database features 
an beenlarged and re
ti�ed (e.g., the use of nested SQL-queries).Furthermore, a dis
ussion 
on
erning soundness and 
ompleteness of everypart of our implementation is ne
essary. Also the set of possible queries mustbe extended.Additionally, there is a lot of resear
h ne
essary to enable an a

urate andappropriate test environment to verify the performan
e of a given approa
h.While the resear
h a
tivities in the propositional 
ase are very intensive theresear
h a
tivities that deal with huge in
omplete �rst-order knowledge basesthat 
ontain disjun
tive information are very seldom. Consequently, it isvery hard to determine the eÆ
ien
y of an implementation. Re
all, thatthis problem is not yet entirely solved in the propositional 
ase. We ap-
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ase 
omplexity by determining the maximal numberof applied unit propagations whi
h resulted in a worst-
ase 
omplexity ofO((n2k+2)RbC�Level) when jKBj = jCKBj = n, RbC�Level is the user-de�nedreasoning by 
ases level and k denotes the maximal number of free variables
ontained in one single term. In the pra
ti
al 
ase the exponent RbC�Levelremains, but the base n2k+2 is de
reased in an essential way. For instan
e,the fa
ts that knowledge bases in our �eld of appli
ation 
onsist of no termsthat are 
onne
ted by a predi
ate to every other possible term 
ontained inthe knowledge base and it is not ne
essary to substitute every variable byevery possible 
onstant de
rease the polynomial.While there exist several possibilities to advan
e the presented implemen-tation, we also think that the given dedu
tive reasoning pro
edure 
an beextended. One possible extension would for instan
e a�e
t the return value"unknown" of the reasoning pro
edure. The information 
ontent of this re-turn value is small, although an immense number of reasoning operations areexe
uted most of the time when a query is answered. Therefore, we suggest areturn value like "unknown, but ..." to take advantage of the reasoning thatwas applied and the 
orresponding results.For example, suppose the following terms to be 
ontained in the knowledgebase: P (X) _ :Q(X) _R(X) _ T (X)Q(X) _ :R(X):Q(X) _ :T (X)R(X) _ :T (X)Then it would be possible to answer the query 9X:P (X) with"unknown, but P (X) _ :Q(X) and P (X) _ R(X) are implied by the KB".Note, that we do not use the expression "known to be true", be
ause onlysingle literals are known to be true.This approa
h would in
rease the information 
ontent of the negative re-sponse to a query in an essential way. The suggested extension has its originin a brief dis
ussion with Craig Boutilier [8℄.
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