
A Prolog Implementation of
IndiGolog for Real Robots

Sebastian Sardina
Cognitive Robotics Groups

Department of Computer Science
University of Toronto

Talk Overview: 3 parts

Briefly go over P-IndiGolog, a Prolog implementation
of the IndiGolog agent architecture

Introduce EVOLUTION ER1 robot and explain how it
can be controlled using P-IndiGolog

Explain how to implement the simulated Wumpus
World scenario using P-IndiGolog

Reactive Robotics Architecture

Reactive robots:

given what is currently sensed and (a small amount of
internal state), decide on commands to effectors

sense outlet power low recharge
sense trash pickup trash
otherwise) explore

priority

Headless!

robotic
perception

robotic
controller

sensors effectors

Motion planning

Obstacle avoidance

...

...

cf. [Brooks 86], ...

Cognitive Robotics Architecture

exogenous
events

primitive
actions

prereqs & effects of
primitive actions

description
of initial state

high-level
program

high-level
program

interpreter

NOTE

sensing
results

robotic
perception

robotic
controller

sensors effectors

Motion planning

Obstacle avoidance

...

...

P-IndiGolog Overview

 Cognitive Robotics agent architecture implementation
 Realization of IndiGolog (incremental Golog)
 Based on LeGolog (LEGO® Mindstorm™ with IndiGolog:

by Maurice Pagnucco & Hector Levesque)
 Completely implemented in Prolog (SWI/ECLIPSE)

 So far, it provides an interleaved framework of
 Execution
 Sensing
 Exogenous events
 Local planning

P-IndiGolog Design
 The user/programmer gets to choose:

 The agent programming language (e.g., ConGolog)
 Define trans/4 and final/2

 The action theory and temporal projector
 Define eval/3: eval(φ,H,B)

 The external devices/environments used
 E.g.: specific robot (ER1), simulator, Internet?

 Some other options
 E.g.: how to handle exogenous events: ignore/abort step?

P-IndiGolog Design (cont.)
 It is divided in three main modules:

 Device managers (rcx, er1, web, simulator, etc.)
 Understands each particular device or external environment

 Main module:
 Main cycle
 Environment manager
 Transition system + temporal projector

 Domain application
 Theory of action: states the dynamics of the world
 High-level program: dictates the agent behaviour
 Domain execution directives

The Main Cycle

Mandatory Rolling forward?

TERMINATE!

Collect and handle Exog. Events

COMP. NEXT STEP
trans

exog.
event!

Type of
step?

execute
action

wait for exog. event
optional rolling forward?

final
wait

test
sim. action

domain
action

Main Cycle: first phase indigo/2

indigo(E,H) :-

handle_rolling(H,H2), !,

handle_exog(H2,H3), !,

mayEvolve(E,H3,E2,H4,S), !, % Compute next step

(S=trans -> indigo2(H3,E2,H4) ; % Second part of cycle

 S=final -> report_message(program, 'Success') ;

 S=exog -> report_message(program, 'Restart'), indigo(E,H3) ;

 S=failed -> report_message(program, 'Program fails.')

).

mayEvolve/5: transition step...
% Vanilla Prolog (not aware of exog. events happening!)

mayEvolve(E1,H1,E2,H2,S) :- mayEvolve2(E1,H1,E2,H2,S).

mayEvolve2(E1,H1,E2,H2,final) :- final(E1,H1).

mayEvolve2(E1,H1,E2,H2,trans) :- trans(E1,H1,E2,H2).

mayEvolve2(E1,H1,E2,H2,failed).

% SWI/ECLIPSE/SICSTUS Prolog (require events)

mayEvolve(E1,H1,E2,H2,S) :-

catch(bodyCatch(E1,H1,E2,H2,S)), exogAction, (retractall(flag),S=exog)).

bodyCatch(E1,H1,E2,H2,S) :-

assert(flag), % Assert flag

mayEvolve2(E1,H1,E2,H2,S),

 retract(flag). % Retract flag

Main Cycle: second phase
indigo2(H,E,H) :- indigo(E,H). % The case of Trans for tests

indigo2(H,E,[sim(_)|H]) :- !, indigo(E,H). % Drop simulated actions

indigo2(H,_,[abort|H]) :- !, indigo(?(false),H).

indigo2(H,E,[wait|H]) :- !, pause_or_roll(H,H1), % Wait for events!

 doWaitForExog(H1,H2), indigo(E,H2).

indigo2(H,E,[stop_interrupts|H]) :- !, indigo(E,[stop_interrupts|H]).

indigo2(H,E,[A|H]) :- indixeq(A, H, H1), indigo(E, H1).

% Execute action Act at history H, with new history H2

indixeq(Act, H, H2) :-

type_action(Act, Type), !, % Type=sensing / nonsensing

 execute_action(Act, H, Type, S), !, % Environment manager!

handle_sensing(Act, [Act|H], S, H2),

 update_now(H2).

Environment Manager
Connects the main cycle with the external world:

 Communicates with every used device manager
 Uses TCP/IP sockets

 Instructs the execution of actions in devices
 User states how/where each HL-action is executed
 Sensing outcome is collected for each action

 Collects exogenous actions from devices
 Asyncrhonous
 Signal main cycle if neccessary!

Environment Manager (cont.)
How to implement the EM to run asynchronously?

1.Multi-threads + Events
➢ 2 threads: main cycle + environment manager
➢ Requires multi-threading support (e.g., SWI)

2.Software signals / interrupts
➢ Requires BSD, not too clean...

3.After-events
➢ An event is triggered regularly
➢ Requires event-after support (e.g., ECLIPSE)

Two Case Examples...
✔ Controlling the EVOLUTION ER1 robot

✔ Controlling an agent in
the Wumpus World

Evolution ER1 Robot Platform
Promising as a research tool
 Inexpensive ($1000 + Laptop)
 Easy to set up (USB)
 Easy to upgrade, modular
 Sensors: camera, mic, IR
 Actuators: motors, speech, gripper
 Wireless connectivity

Two control software tools:
 RCC: simple, CAPI (Windows)
 ERSP: sophisticated (Linux)

P-IndiGolog on ER1

P-IndiGolog
Agent

Architecture

RCC or ERSP
low-level

sensors /
events

effectors

move
move rotate
move towards
talk
send email
gripper
open/close
etc…

Built-in obstacle and collision avoidance

events
gripper status
ir all
ir left/right/center
sense
position
etc…

TCP/IP
Socketssensing / events primitive actions

RCC Screenshot

ERSP 3.0

The Evolution Robotics Software Platform 3.0 (ERSP™)
is a comprehensive development platform with four
primary areas of functionality: vision, obstacle
avoidance, interaction, and architecture. ERSP
3.0 includes library APIs, developer tools, and
applications to aid you in the robot development
process and allow you to move to higher-level
programming quickly.

ERSP 3.0: Four Modules

ER Vision
 Object recognition, motion analysis, and colour

segmentation

ER Navigation: SLAM
 Mapping, localization, and path-planning, obstacle and

cliff detection and avoidance with webcams

ER Interaction
 Software for robot-human interaction (e.g., person

detection and tracking, robot emotions)

ER Architecture
 Infrastructure for Rapid Robot Development & Control

SLAM on ERSP 3.0

Running ER1 with IndiGolog
Fluent “state”:

causes_val(moveFwd(_), state, moving, true).
causes_val(turnLeft, state, moving, true).
causes_val(turnRight, state, moving, true).
causes_val(arrive, state, stopped, true).
causes_val(getStuck, state, stopped, true).
causes_val(stop_abnormally, state, suspended, true).

Action Preconditions:
poss(moveFwd(_), neg(state=moving)).
poss(turnRight, neg(state=moving)).
poss(freeze, true).
poss(forgetObject(O), or(sawObject(O), objectLost(O))).
poss(say(_), and(neg(talking),neg(silent))).

An IndiGolog Controller for ER1
proc(mainControl(3),
 [talk('ER1 controller initiated successfully!'),
 setObjectConfidence(20), senseOn(objects), setPower(moving, 40),

prioritized_interrupts(
 [interrupt(talking, wait),
 interrupt(o, sawObject(o),

[talk(['Hey!, I have just seen ', o]), forgetObject(o)]),
 interrupt(o, objectLost(o),
 [talk(['I have just lost the object ', o]), forgetObject(o)]),
 interrupt(state=moving, wait),
 interrupt(true, [talk('Starting a new round'),
 pi(n,[getNumber(10,30,n), setLinearVelocity(n)]),

 rndet(goSquare(right, 200),
 [turnRight, goSquare(left,200), turnLeft]),
 talk('Another round finished')]),
]) % END OF INTERRUPTS]).

IndiGolog on ER1: A trace
trans(p,h,p’,[move(2)|h])

indixeq(move(2), h, H2)

execute_action(move(2), h, ns, S)

send_command_to_er1(move(2), R)

send_command_to_er1(events, E)

E = “move done”

trans(p’,[move(2)|h],p’’,[wait,move(2)|h])

doWaitForEvent([wait,move(2)|h], H3)

indigo([wait,move(2)|h], [arrived,wait,move(2)|h])

ER1 device manager
env_er1.pl

Socket

ER1move 200 cm

R= “OK”Socket

CAPI

H3 = [arrived,wait,move(2)|h]

Main cycle+
Env. Man.

Why ER1 is useful for us?

It’s simple to deal with (laptop + USB devices)
Low-level control is already done!
 Good interface for primitive actions
 Events management

Good communication via TCP/IP
 Not the case with Lego RCX!

Complex tasks are already implemented
 Object/colour recognition
 Obstacle avoidance via IR and camera
 Object/colour tracking (move towards ….)
 Sound/voice recognition and speech

Wumpus World in IndiGolog
Fluents: locA, dirA, locW, isPit(L),
aliveW, noGold, inDungeon, ...

Agent actions: moveFwd, turn, smell, exit,
pickGold, shoot,senseBreeze, senseGold

Exog. actions: scream

The Wumpus World

Conclusions
ER1 is a promising tool for research: simple, cheap,
and powerful.
ERSP toolkit can provide an excellent starting point
for our Cognitive Robotics applications
IndiGolog can be already successfully used to control
ER1.

We welcome everybody interested in
working with ER1 and IndiGolog !

:-)

Interesting Problems with ER1
Discover ERSP (it's already installed and working!)
Take full advantage of SLAM and vision capabilities

Implement a real-world Wumpus World!
Find known signs/objects in a room, approach them,
and read them (e.g., numbers and directions)
 First look for object color (long range)
 Can use two behaviors in priorities
 If nothing can be found, move around the room

