Golo{)

" A Prolog Implementation of |
IndiGolog for Real Robots

Sebastian Sardina
Cognitive Robotics Groups
Department of Computer Science
University of Toronto

Talk Overview: 3 parts

Briefly go over P-IndiGolog, a Prolog implementation
of the IndiGolog agent architecture

Introduce EVOLUTION ER1 robot and explain how it
can be controlled using P-IndiGolog

Explain how to implement the simulated Wumpus
World scenario using P-IndiGolog

Reactive Robotics Architecture

Headless!
Reactive robots:

given what is currently sensed and (a small amount of
internal state), decide on commands to effectors

(sense outlet A power low = recharge) ||
priority (sense trash = pickup trash) ||
((otherwise) = explore)

Motion planning

E rObOtI(_: ::|—|: robotic :| Obstacle avoidance
- perception controller ~_

1 }

sensors effectors cf. [Brooks 86], ..

Cognitive Robotics Architecture

description preregs & effects of high-level
of initial state primitive actions program
\ l NOTE
high-level exogenots
program l events
interpreter
sensing primitive
results actions

Motion planning

1. E rObOtIC.: :|—|: robotic :| — Obstacle avoidance
_— perception controller —

1 }

Sensors effectors

N

P-IndiGolog Overview Gole{)

S

Cognitive Robotics agent architecture implementation
= Realization of IndiGolog (incremental Golog)

= Based on LeGolog (LEGO® Mindstorm™ with IndiGolog:
by Maurice Pagnucco & Hector Levesque)

= Completely implemented in Prolog (SWI/ECLIPSE)
So far, it provides an interleaved framework of

= Execution

= Sensing

= Exogenous events

= | ocal planning

N

P-IndiGolog Design

The user/programmer gets to choose:

" The agent programming language (e.g., ConGolog)
* Define trans/4 and final/2

= The action theory and temporal projector
* Define eval/3: eval(¢,H,B)

® The external devices/environments used
* E.g.: specific robot (ER1), simulator, Internet?

= Some other options
* E.g.: how to handle exogenous events: ignore/abort step?

N

P-IndiGolog Design (cont.)

It is divided in three main modules:

= Device managers (rcx, erl, web, simulator, etc.)
* Understands each particular device or external environment

= Main module:
* Main cycle
* Environment manager
* Transition system + temporal projector

= Domain application
* Theory of action: states the dynamics of the world

* High-level program: dictates the agent behaviour
* Domain execution directives

Errrtontment for
the Internet and

O3
env_int.pl

Ersnrnoment for
sitnulating actions
and exog events

Errrotment for
FWIBR21

Fronrontment for
running the Lego
(event after)

env_rcx.pl

Envitontnent for
runting the FE.1

""""""""""""" 3: Becernve exogenmrs action

our types of messages:

1. Execute an action
2. Heceiwe sensing outcomme

abortatepd] transfd
EMNVIEONWENT WAMAGER o e:.s»::gfl WA CYCLE ﬁ:fa 1/
IWlanages all the envirorments IndiGolog main
and n:nﬂunu_nic;:;slsﬁmm the sanmies i execution cycle
e . £20ZT occurssl & ol pl {\
DONIATH
App-natng pl PROGRANS
Iain program atd

‘| Errwirorerents to load and
how to execute actions
main_ xxx.pl

Actions, effects,

ititial database, etc.

all necessary
procedures

4. Swstern messages

Transz/4 and
Finals2
nnplementation

transfinal pl
e

£iEAR

Y

Projector

Projects a formula
wit some history

eval tit.pl

ewval’s

The Main Cycle

\——q Mandatory Rolling forward? | -

i \ test
: Collect and handle Exog. Events sim. action
|

—\\\\\éownah1
Type of action eyecute

action

exog.

---+ COMP. NEXT STEP !

wait for exog. event
TERMINATE! optional rolling forward?

N

Main Cycle: first phase indigo/2

indigo(E,H) :-
handle_rolling(H,H2), !,
handle exog(H2,H3), !,

mayEvolve(E.H3.E2,H4.S), !, % Compute next step
(S=trans -> indigo2(H3,E2,H4) ; % Second part of cycle
S=final -> report_message(program, 'Success') ;

S=exog -> report_message(program, 'Restart’), indigo(E,H3) ;

S=failed -> report_message(program, 'Program fails.")

).

N

mayEvolve/5: transition step...

% Vanilla Prolog (not aware of exog. events happening!)
mayEvolve(E1,H1,E2,H2,S) :- mayEvolve2(E1,H1,E2,H2,S).

mayEvolve2(E1,H1,E2,H2 final) :- final(E1,H1).
mayEvolve2(E1,H1,E2,H2,trans) - trans(E1,H1,E2,H2).
mayEvolve2(E1,H1,E2,H2,failed).

% SWI/ECLIPSE/SICSTUS Prolog (require events)
mayEvolve(E1,H1,E2,H2,S) :-
catch(bodyCatch(E1,H1,E2,H2,S)), exogAction, (retractall(flag),S=ex0q)).

bodyCatch(E1,H1,E2,H2,S) :-
assert(flag), % Assert flag
mayEvolve2(E1,H1,E2,H2,S),
retract(flag). % Retract flag

N

Main Cycle: second phase

J

indigo2(H,E,H) .- indigo(E,H). % The case of Trans for tests
indigo2(H,E,[sim(_)[H]) :-!, indigo(E,H). % Drop simulated actions
indigo2(H, ,[abort|H]) .- 1, indigo(?(false),H).

indigo2(H,E,[wait|H]) .- 1, pause _or roll(H,H1), % Wait for events!

doWaitForExog(H1,H2), indigo(E,H2).
indigo2(H,E,[stop_interrupts|H]) :- !, indigo(E,[stop_interrupts|H]).
indigo2(H,E,[A|H]) .- indixeq(A, H, H1), indigo(E, H1).

% Execute action Act at history H, with new history H2

indixeq(Act, H, H2) :-
type action(Act, Type), !, % Type=sensing / nonsensing
execute action(Act, H, Type, S). !, % Environment manager!
handle_sensing(Act, [Act|H], S, H2),
update_now(H2).

N

Environment Manager

‘Connects the main cycle with the external world:

= Communicates with every used device manager
+ Uses TCP/IP sockets

= Instructs the execution of actions in devices
* User states how/where each HL-action is executed
* Sensing outcome is collected for each action

= Collects exogenous actions from devices
* Asyncrhonous
* Signal main cycle if neccessary!

Environment Manager (cont.)

“How to implement the EM to run asynchronously?

1.Multi-threads + Events
> 2 threads: main cycle + environment manager
> Reqguires multi-threading support (e.qg., SWI)

2.50ftware signals / interrupts
> Requires BSD, not too clean...

3.After-events
> An event is triggered regularly
> Requires event-after support (e.qg., ECLIPSE)

Two Case Examples...

v Controlling an agent in
the Wumpus World

v Controlling the EVOLUTION ER1 robot

x Wumpus W;orld a S B\

Evolution ER1 Robot Platform

'ﬁ # Promising as a research tool

= Tnexpensive ($1000 + Laptop)
= Easy to set up (USB)

= Fasy to upgrade, modular

= Sensors: camera, mic, IR

= Actuators: motors, speech, gripper
= Wireless connectivity

Two control software tools:
= RCC: simple, CAPI (Windows)
= ERSP: sophisticated (Linux)

P-IndiGolog on ER1

g
N
P-IndiGolog
Agent
Architecture
TCP/IP
sensing / events | Sockets | primitive actions
nove
event s RCC or ERSP move rotate
gri pper status low-level nmove towards
ir all p tal k
ir left/right/center F l send emai |
sense L gri pper
pOSIt1on sensors / : 'y effectors openiclose
etc... — etc...
events ,

E/

'@ Built-in obstacle and collision avoidance

RCC Screenshot

ER1 Robot Cantrol Center - [Untitled] Local Control | 9 ES

: iTiﬂ ﬁ. Eﬁ .;u Balsawior 1 i i J '1"
v | wes | o | s | s frermorg] |

then do all of these @ @

I Mowe | =
- Okt :ﬂd"l.-\.ﬂ | Cilsr e ——— "_

.:ql;;;-- Shop meal Color | % o St e

[Stop om Senaoe

a Sl File
— .llll'll.lf'll"] EEQ Ay
Iecopmized ¥ jects Plwase iu Sineik

Mo Clammers g’ one ol these occurs..,

FSIEM r e c—

Al

I'- sl Limbr e |

™ Mesaage [
= Receive

Lamera 2 (drmmald

[LETET

=7 Program

Lome, S E S H
| |

E. ﬁl:"l'!.lﬂ'ir Hims ifter 1

T Recod

" Take Phols I:".'-I'l-m\nkﬂi -I

I Wheeny Pl 19 I
I Then Eanail | i |

|)

IR Sensor

I CGaipper

Bewd o B i
« C v O @

=¥ | (A EAE 1058 30 535 wWamang no camerst lourd
) (B80T 1058 30 576 Em accessing robol hadwaie

Limppiy Emwgaiar fgmader Fulh = Tl

N

ERSP 3.0

Client Hardware & ng

The Evolution Robotics Software Platform 3.0 (ERSP™)
is @ comprehensive development platform with four
primary areas of functionality: vision, obstacle
avoidance, interaction, and architecture. ERSP
3.0 includes library APIs, developer tools, and
applications to aid you in the robot development
process and allow you to move to higher-level
programming quickly.

ERSP 3.0: Four Modules

#® ER Vision

= Object recognition, motion analysis, and colour
segmentation

ER Navigation: SLAM

= Mapping, localization, and path-planning, obstacle and
cliff detection and avoidance with webcams

ER Interaction

= Software for robot-human interaction (e.qg., person
detection and tracking, robot emotions)

ER Architecture
= Infrastructure for Rapid Robot Development & Control

LAM on ERSP 3.0

&= =+ Mavigation Tool

ERSP Navigation i) (et (gt

robotics.

Rabiot 195 Map ¢
Clear Data
Connect

W uitie

tau

SLAMDemo-Last > d="u evolution

"wslam-rejected-landmark”
"wslam-rejected-landmark”
"velam-saw-nothing”

"wslam-rejected-landmark”

SLAMDemo-Best e Explaration iz On

Goto
Debug Mag
Quit &pplet

-
—

Fieset

Running ER1 with IndiGolog

N

‘# Fluent “state”:

causes_val(moveFwd(_), state, moving, true).
causes_val(turnLeft, state, moving, true).
causes_val(turnRight, state, moving, true).
causes_val(arrive, state, stopped, true).
causes_val(getStuck, state, stopped, true).

causes_val(stop_abnormally, state, suspended, true).

Action Preconditions:

poss(moveFwd(_), neg(state=moving)).
poss(turnRight, neg(state=moving)).
poss(freeze, true).

poss(forgetObject(O), or(sawObject(O), objectLost(O))).
poss(say(_), and(neg(talking),neg(silent))).

N

An IndiGolog Controller for ER1

“proc(mainControl(3),
[talk('ER1 controller initiated successfully!),
setObjectConfidence(20), senseOn(objects), setPower(moving, 40),
prioritized_interrupts(
[interrupt(talking, wait),
interrupt(o, sawObject(o),
[talk(['Hey!, I have just seen ', 0]), forgetObject(o)]),
interrupt(o, objectLost(o),
[talk(['T have just lost the object ', 0]), forgetObject(o)]),
interrupt(state=moving, wait),
interrupt(true, [talk('Starting a new round'),
pi(n,[getNumber(10,30,n), setLinearVelocity(n)]),
rndet(goSquare(right, 200),
[turnRight, goSquare(left,200), turnLeft]),
talk('Another round finished')]),
1) % END OF INTERRUPTS]).

IndiGolog on ER1: A trace

execute_acti(;n(move(Z), h, ns, S)

Socket

H)
<

4 : Main cycle+
trans(p,h,p’,[move(2)|h]) Env. Man
indixeq(mO\;e(Z), h, H2) Socket|

e

ER1 device manager
env_erl.pl

send_commanEI_to_erl(move(Z), R)

CAPI

| move 200 cm ER1

R="OK" ‘

trans(p’,[move(2)|h],p”, [wait,move(2)|h])

l

doWaitForEvent([wait,move(2)|h], H3)

_H3 = [arrived,wait,move(2)|h]
v

indigo([wait,move(2)|h], [arrived,wait,move(2)|h])

v

send_command_to_erl(events, E)

E = “move donée”’

‘Why ER1 is useful for us?

It's simple to deal with (laptop + USB devices)

Low-level control is already done!
" Good interface for primitive actions
= Events management

Good communication via TCP/IP
= Not the case with Lego RCX!

Complex tasks are already implemented
= Object/colour recognition
= Obstacle avoidance via IR and camera
= Object/colour tracking (move towards)
= Sound/voice recognition and speech

Wumpus World in IndiGolog

A

@ Fluents: | ocA, dirA, locW isPit(L),
al i veW noGol d, 1 nDungeon,

Agent actions: noveFwd, turn, snell, exit,
pi ck&ol d, shoot, senseBreeze, sense&l d

Exog. actions: scr eam

proc mainControl
(d,l: locW=1[lAaliveW = true A
aligned(locA,dir, locW) — shoot(d))))
(isGold (locA) = true — pickGold))
(inDungeon = true —
{smell;senseBreeze;senseGold
{?(noGold = 0); explore} | {goto(g(1l,1));climb}})
endProc

The Wumpus World

-0 }(Wumpus World

Action history & Sensing resuty YYumpus World

006

turn -
rmowe il
rmowe -
turn

shootFwdd

turn
turn Gold
turn

e Pl

rmowe il
e P wdead
e Pt
TUrH

0w P
turn i
Turn
turn

e

Climika - o

Pit
Log

Pit

M essage: write(mowe Fuwid)
Message: write(climi)
Meszzage: end

Wumpus disconnected.

Gold

Feryer listening. .

Robot Pit Gold

1B

Conclusions

| #ER1is a promising tool for research: simple, cheap,
and powerful.

ERSP toolkit can provide an excellent starting point
for our Cognitive Robotics applications

IndiGolog can be already successfully used to control
ER1.

e welcome everybody interested in
working with ERl and IndiGolog |

-}

Interesting Problems with ER1

Discover ERSP (it's already installed and working!)
Take full advantage of SLAM and vision capabilities

Implement a real-world Wumpus World!
Find known signs/objects in a room, approach them,
and read them (e.g., numbers and directions)
= First look for object color (long range)
= Can use two behaviors in priorities
= If nothing can be found, move around the room

