
Guiding Combinatorial Optimization with UCT

Ashish Sabharwal and Horst Samulowitz
IBM Watson Research Center, Yorktown Heights, NY 10598, USA

{ashish.sabharwal,samulowitz}@us.ibm.com

Abstract

We propose a new approach for search tree exploration in the
context of combinatorial optimization, specifically Mixed In-
teger Programming (MIP), that is based on UCT, an algorithm
for the multi-armed bandit problem designed for balancing
exploration and exploitation in an online fashion. UCT has
recently been highly successful in game tree search. We dis-
cuss the differences that arise when UCT is applied to search
trees as opposed to bandits or game trees, and provide initial
results demonstrating that the performance of even a highly
optimized state-of-the-art MIP solver such as CPLEX can
be boosted using UCT’s guidance on a range of problem in-
stances.

Introduction
The order in which a search tree is explored can have a
dramatic impact on the performance of a solver designed
to solve challenging combinatorial search and optimization
problems. Various strategies for search tree traversal have
been proposed and shown to exhibit different trade-offs.
For instance, extensions of depth-first traversal work best in
the context of propositional satisfiability (SAT), while best-
first, fastest descent, and various heuristic combinations of
the above work better in other contexts such as state space
search and mixed-integer programming or MIP optimiza-
tion (cf. Nemhauser and Wolsey, 1999; Wolsey, 1998). In
these efforts, the goal is to find a way to balance exploration
and exploitation in a manner that is most beneficial to the
solver under consideration.

Upper Confidence bounds for Trees (UCT) (Kocsis and
Szepesvári, 2006) is an exciting technique for balancing ex-
ploration and exploitation in search. It has received much at-
tention during the past few years due to its success in game
playing agents, especially for Go (Gelly and Silver, 2007,
2008) and Kriegspiel (Ciancarini and Favini, 2009), as well
as for general game playing (Finnsson and Björnsson, 2008).
UCT is based on the Upper Confidence Bounds (UCB1)
selection strategy introduced by Auer et al. (2002) for the
multi-armed bandit problem, which guarantees asymptoti-
cally optimal regret. In this work, we address the following
question: Can UCT inspired exploration-exploitation tech-
niques help boost the performance of state-of-the-art com-
binatorial search and optimization solvers?

Specifically, we consider optimization in the context of
MIP and explore the impact of UCT as a node-selection
heuristic for the CPLEX solver (IBM ILOG, 2010). We
emphasize that CPLEX is a highly optimized commercial
solver for MIP problems, obtaining a consistent improve-
ment upon which on a variety of instances through gen-
eral, domain-independent heuristic strategies is an extremely
challenging task. Nevertheless, we pursue this goal rather
than working with a limited set of problem domains or with,
e.g., a self-designed branch-and-bound solver.

This agenda raises several interesting challenges due to
the inherent differences between combinatorial optimization
and game tree search. For instance, while UCT was origi-
nally introduced for single-agent tree search, its success and
application has mainly been in the context of two-agent ad-
versarial search. Further, UCT’s “random playout” based
sampling technique for evaluating the utility of a given state
has been an appealing strategy in games such as Go where
known heuristic functions for state evaluation are still quite
weak. This is in stark contrast with tree search in the con-
text of MIP optimization, where not only does the linear
programming (LP) relaxation often serves as a very strong
heuristic, this heuristic value is in fact a guaranteed upper
or lower bound on the true objective value (depending on
whether we are working with a maximization or a mini-
mization problem, respectively). Finally, while the UCB1
strategy underlying UCT is designed to exploit (with some
balance) a good “branch” once it discovers one, in the con-
text of MIP search, one does not gain anything by revisiting
and repeatedly exploiting a “terminal state” even if it always
returns the optimal value. UCT must therefore be carefully
adapted when applied to our setting.

We show that a UCT-inspired node selection strategy, ap-
propriately modified to take the above mentioned differences
into account, can have a positive impact even on sophisti-
cated MIP solvers such as CPLEX. For completeness, we
also consider other natural ways of guiding search near the
top of the search tree, namely, breadth-first, depth-first, and
best-first search (based on LP relaxation values). Given
the additional overhead of maintaining our own “shadow”
search tree for UCT computations, we find that the most
benefit is achieved when UCT is used to provide guidance
mostly near the top of the tree. We also find that the over-
head of “log” and “square root” computations in the UCB1

formula underlying UCT can be substantial, and that a sim-
pler ε-greedy version also introduced by Auer et al. (2002)
works just as well in this setting. One of our key modi-
fications to UCT is the use of a max-style update rule (the
“backup operator”) rather than the usual additive update rule
when a new node is added to the UCT tree. While previous
work in the context of game tree search has found max-style
update rules to be too brittle, max-style update has clear ben-
efits in our setting because the heuristic value used, namely
the LP relaxation objective value, is a guaranteed upper or
lower bound on the true value of the node.

UCT is generally thought of as being tied to stochastic
sampling of the space via random playouts. Nonetheless,
when a good heuristic function is available, it can in fact
work better for UCT. For example, Ramanujan et al. (2010)
demonstrated this in the game of Chess where, unlike Go,
very strong heuristic functions are available. More recently,
Ramanujan and Selman (2011) evaluated such trade-offs for
the game of Mancala. We observe the same trend when ap-
plying UCT to CPLEX.

MIP Search, Node Selection, and UCT
We begin with a brief discussion of the basic mechanisms
underlying search tree exploration by a MIP solver, specifi-
cally, CPLEX 12.2.0.0. The search starts with an empty root
node, marked as open. It proceeds in general by selecting an
open node N for expansion using a node selection heuristic
H. At this point, the solver tests the sub-problem associated
with N for being infeasible, being worse than current best
solution (the incumbent), or resulting in a new incumbent; it
processes these cases appropriately and marks N as closed.
If the test fails, assuming binary branching (e.g., bisection
domain splitting), node N is split into two open nodes Nleft
and Nright by branching on some variable x and restricting
its value to a subset of its domain, using a branching heuris-
tic; N is marked as closed and Nleft and Nright are marked as
open. The search now continues by selecting another open
node using H. While the solver usually maintains only the
list of open nodes, there is clearly an underlying search tree
T that is being explored, with all internal nodes and some
leaves marked as closed.

In this work, we explore the use of UCT operating on
the underlying search tree T as the node selection heuris-
tic H. There are several natural candidates for H besides
UCT, such as best-first, breadth-first, and depth-first selec-
tion. Best-first search would always greedily expand the
node with the highest “quality” value (e.g., objective value
of the LP relaxation) while breadth-first or depth-first would
always expand an open node at the shallowest or deepest
level, respectively. Combinations of these basic approaches,
such as best-first mixed with depth-first “diving”, often work
well for MIP. On its own, best-first guides the search towards
a solution and proof of optimality in the minimum possible
number of explored nodes, but its greedy nature often results
in a substantial overhead due to rapid context switches for
the solver. Breadth-first search, on the other hand, is purely
exploratory and ignores node quality information. Here we
consider UCT as a promising candidate for balancing such
exploration and exploitation.

At a high level, the UCT algorithm works as follows on
an underlying tree T (see Kocsis and Szepesvári (2006) for
details). It alternates between a node selection phase and a
tree update phase. Node selection phase: Traverse T from
the root to a leaf by following, at each node N, the child N′

whose UCT score is higher (breaking ties arbitrarily). The
UCT score of a node N with parent P is defined by the UCB1
formula: estimate(N)+ Γ ·

√
logvisits(P)/visits(N), where

Γ is a fixed constant balancing exploration and exploitation,
visits(N) indicates the number of times N has been visited
by UCT so far (similarly for visits(P)), and estimate(N) is
an estimate of the “quality” of N if N is currently a leaf
node of T and is otherwise the value resulting from previous
tree update phases. Tree update phase: Once node selection
reaches a leaf L of T , the estimate for L is computed and
propagated upwards in T towards the root so that each node
N now on the path from L to the root has a value that equals
the average value seen in the entire subtree rooted at N, and
visits is incremented by 1; this is known as the backup op-
erator for UCT. L is now further expanded by branching, if
possible.

Guiding MIP Optimization with UCT
In order to perform UCT-based node selection within
CPLEX, additional infrastructure must be put in place. We
maintain a “shadow” search tree T ′ whose open leaves co-
incide with the open nodes list maintained internally by
CPLEX.1 Each node maintains a counter for the number of
UCT visits to it so far, and a measure of quality — which
for a newly created node is taken to be its LP objective value
normalized by the root LP value.2

Assume for simplicity that we have a maximization prob-
lem. In contrast to the common averaging backup operator
used in UCT, we propagate the maximum of the current esti-
mates of the two children when updating the UCT tree. This
is motivated by the fact that we do not perform sampling
to obtain a node quality estimate, but can instead rely on
a guaranteed bound. Hence, averaging would simply blur
the knowledge that one has at a given (internal or leaf) node
in T ′. Further, for computational efficiency, we replace the
UCB1 selection criteria with the following simpler ε-greedy
version (Auer et al., 2002) for a node N with parent P:

score(N) = estimate(N)+Γ · ε ×visits(P)
visits(N)

(1)

As mentioned above, estimate(N) is the normalized LP ob-
jective value when N is a leaf node. Based on a small manual
search, the value 0.7 for Γ worked well in our setting . We
use a fixed value 0.01 for ε (which would normally slowly
decrease over time in order to obtain theoretical guarantees

1Maintaining a search tree that properly mimics CPLEX’s open
nodes is somewhat more complex than one might expect because
of issues related to capturing every event that may cause CPLEX
to close nodes in-between node- and branch-callbacks.

2We also experimented with more refined measures combining
the LP objective value with the number of integer infeasibilities as
a “confidence” guide or with pseudo-costs, but did not observe a
clear improvement in performance.

2

Table 1: Summary of results: Comparison of various node selection strategies in terms the number of unsolved instances within 600 seconds,
the number of instances where they had the best runtime, and their average runtime, across a set of 170 benchmarks.

default UCT best- breadth- depth-
CPLEX first first first

time outs 10 8 16 17 14
instances fastest on 31 39 27 29 41

average runtime (sec) 158.1 155.7 167.6 177.1 177.7

Table 2: Direct comparison of node selection strategies. Shown are the number of instances on which the row approach outperforms the
column approach in terms of runtime by at least 10%.

default UCT best- breadth- depth-
CPLEX first first first

default CPLEX – 52 44 61 51
UCT 64 – 62 62 63

best-first 47 49 – 55 52
breadth-first 57 49 50 – 56

depth-first 55 60 52 57 –

of UCT converging to the true optimal value (Auer et al.,
2002)). Equation (1) aims at balancing exploration and ex-
ploitation. While nodes with very promising objective val-
ues are pursued because of the high “estimate” term in the
expression, sub-optimal nodes begin to get priority if they
have been visited roughly only an ε fraction of the time their
sibling has been visited.

Nodes that fail or are pruned by CPLEX are removed from
T ′ (without any objective estimate “penalty” propagated up-
wards) and never visited again by UCT. For nodes that do
yield a feasible solution, we do not treat their resulting ob-
jective value in any special fashion when back propagating
and we remove them from further consideration in T ′ be-
cause, unlike the usual multi-armed bandit setting of UCT,
the optimization process doesn’t have any incentive to re-
visit this node ever again.

Experimental Evaluation
We compare the performance of our UCT based node se-
lection strategy with CPLEX’s default heuristic as well as
alternative approaches. The experiments were conducted on
Intel Xeon CPU E5410 machines, 2.33GHz with 8 cores and
32GB of memory, running Ubuntu. In our evaluation we al-
ways executed only one run per machine to prevent inter-
ference between runs. This is critical when experimenting
with CPLEX as its runtime is known to vary by as much as
30-40% when multiple runs are performed on a single ma-
chine, even when using different CPUs. We use CPLEX
12.2.0.0 (IBM ILOG, 2010) with node and branch “call-
backs” turned on (using empty callbacks) as our baseline
CPLEX solver (“default CPLEX”).3 Starting with a wide se-
lection of publicly available benchmarks comprising 1,024

3Note that this causes some features of CPLEX to be turned off
(e.g., dynamic search) but is the only way to enhance CPLEX with
a custom node selection strategy without access to the internals of
CPLEX.

instances, we kept the 170 instances (see Appendix) that re-
quired between 10 and 900 seconds to be solved by default
CPLEX. These instances represent a challenging benchmark
spanning a variety of problem domains.

It turns out that UCT-inspired node selection often does
not pay off if applied throughout the search, for various rea-
sons. Maintaining the infrastructure for UCT in addition to
CPLEX’s computations at each node is simply too expen-
sive. In addition, UCT’s guidance deep down in the tree
appears not to be particularly accurate, which we tried to al-
leviate by searching for better nodes from a local neighbor-
hood, based on CPLEX’s node ranking, after reaching a cer-
tain depth threshold. While this improved our strategy sig-
nificantly, it still did not outperform default CPLEX (mainly
in terms of runtime). Since we believe that the largest impact
lies in the choice of the nodes close to the top of the search
tree, in the experiments considered here, we only apply our
strategy at the very beginning of search. In fact, we turn off
custom node selection after 31 nodes (equivalent to the first
5 levels of a complete binary tree), and then apply CPLEX’s
default node selection heuristic.

The results, with a 600 second timeout, are summarized in
Tables 1 and 2. We compare default CPLEX with our UCT
based node selection strategy, and with best-first, breadth-
first, and depth-first strategies. In all settings we revert
back to CPLEX’s default node selection after processing 31
nodes.

Table 1 reports, for each of the node selection strategies,
the number of instances that could not be solved in 600 sec-
onds, the number of instances a given strategy was the fastest
on, and the average runtime across all 170 instances. Al-
though the runtimes were often comparable, our approach
was the fastest on 39 instances and had the fewest time-
outs (8) with the lowest average runtime (155.7 sec). To
our surprise, depth-first selection with a 31 node cutoff was
the fastest on a couple of more instances than even UCT.
However, it did not excel in other metrics.

3

Table 2 shows a direct, pair-wise comparison of all ap-
proaches. We say that an approach outperforms another ap-
proach on an instance if there is a difference of runtimes of
at least 10%. According to this measure, our approach again
appears to be the best with 62 to 64 pair-wise wins (notice
that UCT’s row is the only one in which all numbers are in
bold), albeit by not a very high margin.

UCT guides the search in a manner that appears to be
complementary to CPLEX’s default node selection heuris-
tic, as evidenced by the fact that when taken together, the
best of the two for each instance was able to solve all but 3
out of the 170 instances within the time limit, in an average
of only 130 seconds.

In conclusion, these results suggest that the UCT method
for balancing exploration and exploitation, used typically in
adversarial game trees and stochastic settings, holds promise
also as a node selection strategy in the context of MIP
solvers.

References
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analy-

sis of the multiarmed bandit problem. Machine Learning,
47(2-3):235–256, 2002.

P. Ciancarini and G. P. Favini. Monte Carlo tree search tech-
niques in the game of Kriegspiel. In 21st IJCAI, pp. 474–
479, Pasadena, CA, July 2009.

H. Finnsson and Y. Björnsson. Simulation-based approach
to general game playing. In 23rd AAAI, pp. 259–264,
Chicago, IL, July 2008.

S. Gelly and D. Silver. Combining online and offline knowl-
edge in UCT. In 24th ICML, pp. 273–280, Corvallis, OR,
June 2007.

S. Gelly and D. Silver. Achieving master level play in 9×9
computer Go. In 23rd AAAI, pp. 1537–1540, Chicago, IL,
July 2008.

IBM ILOG. IBM CPLEX Optimization Studio 12.2.0.0,
2010.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo
planning. In 17th ECML, vol. 4212 of LNCS, pp. 282–
293, Berlin, Germany, Sept. 2006.

G. L. Nemhauser and L. A. Wolsey. Integer and Combina-
torial Optimization. Wiley-Interscience, 1999.

R. Ramanujan, A. Sabharwal, and B. Selman. Understand-
ing sampling style adversarial search methods. In 26th
UAI, Catalina Island, CA, July 2010.

R. Ramanujan and B. Selman. Trade-offs in sampling-based
adversarial planning. In 21st ICAPS, Freiburg, Germany,
June 2011.

L. A. Wolsey. Integer Programming. Wiley-Interscience,
1998.

Appendix: Benchmark Set Used in
Experiments

10teams ab51.40.100 ab71.20.100 acc-tight3 acc-tight4 acc-
tight5 acc-tight6 air04 air05 aligninq arki001 atlanta-UUM

bc1 berlin bienst1 binkar10 1 bley xl1 bley xs2 brasil dano3 3
dano3 4 dano3 5 dfn-gwin-DBE dfn-gwin-DBM dfn-gwin-UUE
di-yuan-DBE eil33.2 eilB101 exp.1.1000.20.2 exp.1.500.20.1
exp.1.500.20.5 exp.1.500.50.2 exp.1.500.50.4 exp.1.500.50.5
exp.1.5000.5.2 exp.1.5000.5.3 fc.60.20.2 fc.60.20.6 france-DBM
france-UUM g200x740 g200x740b g55x188 harp2 ic97 tension
k20x380 l451x885b markshare 4 0 mas76 mik.250-20-75.1
mik.250-20-75.2 mik.250-20-75.3 mik.250-20-75.4 mik.250-
20-75.5 misc07 mkc1 mod011 mzzv11 mzzv42z n12-3 n5-3
n7-3 neos-1109824 neos-1112782 neos-1112787 neos-1171737
neos-1200887 neos-1211578 neos-1215259 neos-1228986
neos-1337489 neos-1440225 neos-1440447 neos-1445738
neos-1445743 neos-1445755 neos-1445765 neos-1480121
neos-1582420 neos-1597104 neos-1620807 neos-430149 neos-
476283 neos-480878 neos-503737 neos-504674 neos-504815
neos-512201 neos-522351 neos-530627 neos-538867 neos-
547911 neos-555424 neos-570431 neos-584851 neos-585192
neos-593853 neos-595925 neos-686190 neos-785899 neos-
801834 neos-803219 neos-803220 neos-806323 neos-807639
neos-807705 neos-808072 neos-810326 neos-820879 neos-
825075 neos-827015 neos-829552 neos-839859 neos-860300
neos-862348 neos-906865 neos-912023 neos-916173 neos-
935627 neos-935769 neos-936660 neos-937446 neos-937511
neos-941313 neos-941698 neos-960392 neos1 neos11 neos12
neos14 neos17 neos18 neos20 neos21 neos22 neos23 neos6 neos7
nexp.50.20.4.1 nexp.50.20.4.3 nexp.50.20.8.2 nexp.50.20.8.3
ns4-pr4 ns60-pr9 nu25-pr4 nu60-pr4 p50x288b p80x400 pdh-DBE
pdh-DBM pdh-UUE pdh-UUM pk1 prod1 r20x200 r50x360
ran10x26 ran12x21 ran13x13 ran16x16 rout seymour1 sp98ir
stein45 swath1 swath2 ta1-DBE ta1-DBM ta2-UUE ta2-UUM

4

