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Abstract. The ability to model search in a constraint solver can be an essential
asset for solving combinatorial problems. However, existing infrastructure for
defining search heuristics is often inadequate. Either modeling capabilities are
extremely limited or users are faced with a low-level programming language and
modeling search becomes unwieldy. As a result, major improvements in perfor-
mance may remain unexplored.
This paper introduces search combinators, a lightweight and solver-independent
method that bridges the gap between a conceptually simple search language (high-
level, functional and naturally compositional) and an efficient implementation
(low-level, imperative and highly non-modular). Search combinators allow one
to define application-tailored strategies from a small set of primitives, resulting
in a rich search language for the user and a low implementation cost for the de-
veloper of a constraint solver. The paper discusses two modular implementation
approaches and shows, by empirical evaluation, that search combinators can be
implemented without overhead compared to a native, direct implementation in a
constraint solver.

1 Introduction

Search heuristics often make all the difference between effectively solving a combina-
torial problem and utter failure. Heuristics enable a search algorithm to become efficient
for a variety of reasons, e.g., incorporation of domain knowledge, or randomization to
avoid heavy tailed runtimes. Hence, the ability to swiftly design search heuristics that
are tailored towards a problem domain is essential to performance improvement. This
paper introduces search combinators, an approach to modeling search that achieves ex-
actly this.

In CP, much attention has been devoted to facilitating the modeling of combinatorial
problems. A range of high-level modeling languages, such as Zinc [8], OPL [18] and
Comet [19], enable quick development and exploration of problem models. However,
we see very little support on the side of formulating accompanying search heuristics.
Either the design of search is restricted to a small set of predefined heuristics (e.g.,
MiniZinc [9]), or it is based on a low-level general-purpose programming language
(e.g., Comet [19]). The former is clearly too confining, while the latter leaves much
to be desired in terms of productivity, since implementing a search heuristic quickly
becomes a non-negligible effort. This also explains why the set of available heuristics is



typically small: it takes a lot of time for CP system developers to implement heuristics,
too – time they would much rather spend otherwise improving their system.

In this paper we show how to resolve this stand-off between solver developers and
users with respect to a high-level search language.

For the user, we provide a compositional approach for expressing complex search
heuristics based on an (extensible) set of primitive combinators. Even if the users
are only provided with a small set of combinators, they can already express a
vast range of combinations. Moreover, programming application-tailored search in
terms of combinators is vastly more productive than resorting to a low-level lan-
guage.

For the system developer, we show how to design and implement modular combina-
tors. Developers do not have to cater explicitly for all possible combinator com-
binations. Small implementation efforts result in providing the user with a lot of
expressive power. Moreover, the cost of adding one more combinator is small, yet
the return in terms of additional expressiveness can be quite large.

The tough technical challenge we face here does not lie in designing a high-level
syntax; several proposals have already been made (e.g., [12]). Our contribution is to
bridge the gap between a conceptually simple search language (high-level, functional
and naturally compositional) and an efficient implementation (typically low-level, im-
perative and highly non-modular). This is indeed where existing approaches fail; they
restrict the expressiveness of their search specification language to face up to imple-
mentation limitations, or they raise errors when the user strays out of the implemented
subset.

We overcome this challenge with a systematic approach that disentangles different
primitive concepts into separate modular mixin components, each of which corresponds
to a feature in the high-level search language. The great advantage of mixin compo-
nents to provide a semantics for our search language is its modular extensibility. We
can add new features to the language by adding more mixin components. The cost of
adding such a new component is small, because it does not require changes to the ex-
isting ones. Moreover, experimental evaluation bears out that this modular approach
has no significant overhead compared to the traditional monolithic approach. Finally,
our approach is solver-independent and therefore makes search combinators a potential
standard for designing search. For that purpose we have made our code available at
http://users.ugent.be/~tschrijv/SearchCombinators/.

2 High-Level Search Language

Before we tackle the modular implementation challenge in the next section, we first
present the syntax of our high-level search language and illustrate its expressive power.
In this paper we use a concrete syntax for this language, in the form of nested terms,
that is compatible with the annotation language of MiniZinc [9]. Other concrete syntax
forms are easily supported (e.g., we support C++ and Haskell).

The expression language comprises the typical arithmetic and comparison operators
and literals that require no further explanation. Notable though is the fact that it allows
references to the constraint variables and parameters of the underlying model.
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s ::= prune | if(c,s1,s2)
prunes the node while c holds perform s1, then perform s2

| base_search(. . .) | and([s1,s2, . . . ,sn])
label perform s1, on success s2 otherwise fail, . . .

| let(v,e,s) | or([s1,s2, . . . ,sn])
introduce new variable v with perform s1, on termination start s2, . . .
initial value e, then perform s | portfolio([s1,s2, . . . ,sn])

| assign(v,e) perform s1, if not exhaustive start s2, . . .
assign e to variable v and succeed | restart(c,s)

| post(c,s) restart s as long as c holds
post constraint c at every node during s

Fig. 1: Catalog of primitive search heuristics and combinators

2.1 Primitive Search Heuristics

The search language features a number of primitives, listed in the catalog of Fig. 1, in
terms of which more complex heuristics can be defined. We emphasize that this catalog
is open-ended; we will see that the language implementation explicitly supports adding
new primitives. Primitive search heuristics consist of basic heuristics and combinators.
The former define complete (albeit very basic) heuristics by themselves, while the latter
alter the behavior of one or more other heuristics.

Note that the queuing strategy (such as depth-first traversal) is orthogonal to the
search language and can be separately chosen. Obviously, this way we provide a much
more powerful and high-level search language.

Basic Heuristics. There are two basic heuristics:

– base_search(vars, var-select, value-select) specifies a systematic search over the
variables vars that applies var-select and value-select as variable- and value-se-
lection strategies respectively. We do not elaborate the different options; these have
been extensively studied in the literature. For example we make use of MiniZinc [9]
base searches.

– prune cuts the search tree below the current node, resulting in a non-exhaustive
search (explained below).

Note that base_search is a CP-specific primitive; other kinds of solvers provide their
own search primitives. The rest of the search language is essentially solver-independent.
While the solver provides few basic heuristics, the search language adds great expres-
sive power by allowing these to be combined in an infinite number of ways using com-
binators.

Combinators. The expressive power of the search language relies on combinators,
which combine search heuristics (which can be basic or themselved constructed using
combinators) into more complex heuristics. An example of a combinator from the litera-
ture is limited discrepancy search. Traditionally it is denoted lds and sits on top of a par-
ticular but unspecified basic search. We use the notation lds(s) to make the parametriza-
tion in an underlying search heuristic s explicit. Moreover, s refers to a search heuristic
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composed from all the combinators listed in Fig. 1. This can be a base_search label-
ing a set of variables (a basic combinator we provide), but also a much more complex
heuristic. Now that we have explained the parametrized notation, let us run down the
combinators in the catalog:

– let(v,e,s): introduces a new variable v with initial value e and visible in the search
s, then continues with s.

– assign(v,e): assigns the value e to variable v and succeeds. Technically, this is not
a combinator, but we list it here as it is used in combination with let.

– if(c,s1,s2) evaluates condition c at every node. If c holds, then it proceeds with s1.
Otherwise, s2 is used for the node and all its children.

– and([s1, . . . ,sn]): and-sequential composition runs s1. At every success leaf of s1, it
runs and([s2, . . . ,sn]).

– or([s1, . . . ,sn]): or-sequential composition runs s1. Upon fully exploring the tree of
s1, search is restarted with or([s2, . . . ,sn]) regardless of failure or success of s1.

– portfolio([s1, . . . ,sn]), in contrast, also runs s1 in full, but only if s1 was not exhaus-
tive, does it restart with portfolio([s2, . . . ,sn]) (see further details on the meaning of
exhaustiveness in the next paragraph).

– restart(c,s): repeatedly runs s in full. If s was not exhaustive, it is restarted, until
condition c no longer holds.

– post(c,s): provides access to the underlying constraint solver, posting a constraint
c at every node during s. If s is omitted, it posts the constraint and immediately
succeeds.

The attentive reader may have noticed that lds(s) is actually not listed among the
primitive combinators. Indeed, Sect. 2.2 shows next that it is a composition of primitive
combinators. Moreover, as we have already pointed out, the depth-first traversal that is
commonly associated with lds is entirely orthogonal to the search language.

Exhaustiveness. When a search has fully explored the search (sub)tree, without pur-
posefully skipping parts using the prune primitive, it is said to be exhaustive. This in-
formation is used to decide whether or not to revisit the same search node, as it happens
in the portfolio and restart combinators. For instance, in case of lds(10,s), if the search
tree has been fully explored with discrepancy 5, there is no use in restarting with higher
discrepancy bounds.

The prune primitive is the only source of non-exhaustiveness. Combinators propa-
gate exhaustiveness in the obvious way. E.g., and([s1, . . . ,sn]) is exhaustive if all si are,
while portfolio([s1, . . . ,sn]) is exhaustive if one si is.

Statistics. Several combinators are centered around a conditional expression c. In ad-
dition to the conventional syntax, such a condition may refer to one or more statistics
variables. Such statistics are collected for the duration of a subsearch until the condi-
tion is met. For instance if(depth < 10,s1,s2) maintains the search depth statistic during
subsearch s1. At depth 10, the if combinator switches to subsearch s2.

We distinguish two forms of statistics: Local statistics such as depth and discrep-
ancies express properties of individual nodes. Global statistics such as nodes, time,
failures and solutions are computed for entire search trees.
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It is worthwhile to mention that developers (and advanced users) can also define
their own statistics, just like combinators, to complement any predefined ones. In fact,
in the implementation, statistics are a special form of combinators that can be queried
for the statistic’s value.

2.2 Composite Search Heuristics

Our search language draws its expressive power from the combination of primitive
heuristics using combinators. The user can create “new combinators” by effectively
defining macros in terms of existing combinators. The following examples show how
to construct complex search heuristics familiar from the literature.

Limit: The limiting combinator limit(c,s) performs s while c is satisfied. Then it fails:

limit(c,s)≡ if(c,s,prune)

We can limit search using any of the statistics defined previously, or indeed create and
modify a new let variable to define limits on search.

Once: The well-known once(s) combinator is a special case of the limiting combina-
tor where the number of solutions is not greater than one. This is simply achieved by
maintaining and accessing the solutions statistic:

once(s)≡ limit(solutions < 1,s)

In contrast to prune, post(false) represents an exhaustive search without solutions. This
is exploited in the exhaustive variant of once:

exh_once(s)≡ if(solutions < 1,s,post(false))

Branch-and-bound: A slightly more advanced example is the branch-and-bound opti-
mization strategy:

bab(obj,s)≡ let(best,∞, post(obj < best,and([s,assign(best,obj)])))

which introduces a variable best that initially takes value ∞ (for minimization). In every
node, it posts a constraint to bound the objective variable by best. Whenever a new
solution is found, the bound is updated accordingly.

Restarting branch-and-bound: This is a twist on regular branch-and-bound that restarts
whenever a solution is found.

restart_bab(obj,s)≡ let(best,∞, restart(true, and([post(obj < best),once(s),
assign(best,obj)])))

For: The for loop construct (v ∈ [l,u]) can be defined as:

for(v, l,u,s)≡ let(v, l, restart(v≤ u,
portfolio([s,and([assign(v,v+1),prune])])))

It simply runs the search s times, which of course is only sensible if s makes use of
side effects or the loop variable v. Note that assign succeeds, so we need to call prune
afterwards in order to propagate the non-exhaustiveness of s to the restart combinator.
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Limited discrepancy search [5] with an upper limit of l discrepancies for an underlying
search s.

lds(l,s)≡ for(n, 0, l, limit(discrepancies≤ n,s))

The for construct iterates the maximum number of discrepancies n from 0 to l, while
limit executes s as long as the number of discrepancies is smaller than n. The search
makes use of the discrepancies statistic that is maintained by the search infrastructure.
The original LDS visits the nodes in a specific order. The search described here visits
the same nodes in the same order of discrepancies, but possibly in a different individual
order – as this is determined by the global queuing strategy.

The following is a combination of branch-and-bound and limited discrepancy search
for solving job shop scheduling problems, as described in [5]. The heuristic searches
the Boolean variables prec, which determine the order of all pairs of tasks on the same
machine. As the order completely determines the schedule, we then fix the start times
using exh_once.

bab(makespan, lds(∞,and([base_search(prec, . . .),
exh_once(base_search(start, . . .))])))

Fully expanded, this heuristic consists of 17 combinators and is 11 combinators deep.

Iterative deepening [6] for an underlying search s is a particular instance of the more
general pattern of restarting with an updated bound.

id(s)≡ ir(depth,0,+,1,∞,s)
ir(p, l,⊕, i,u,s)≡ let(n, l, restart(n≤ u,and([assign(n,n⊕ i),

limit(p≤ n,s)])))

With let, bound n is initialized to l. Search s is pruned when statistic p exceeds n,
but iteratively restarted by restart with n updated to n⊕ i. The repetition stops when n
exceeds u or when s has been fully explored. The bound increases geometrically, if we
supply ∗ for ⊕, as in the restart_flip heuristic:

restart_flip(p, l, i,u,s1,s2)≡let(flip,1, ir(p, l,∗, i,u,and([assign(flip,1−flip),
if(flip = 1,s1,s2)])))

This alternates between two search heuristics s1 and s2. Using this as its default strategy
in the “free search” category, the lazy clause generation solver Chuffed scored most
points in the 2010 MiniZinc Challenge.5

Hot start: First perform search heuristic s1 while condition c holds to initialize global
parameters for a second search s2. This heuristic is for example used for initialization
of the widely applied Impact heuristic [11]. Note that we assume here that the values
to be initialized are maintained by the underlying solver and that we omit an explicit
reference to it.

hotstart(c,s1,s2)≡ portfolio([limit(c,s1),s2])

5 http://www.g12.csse.unimelb.edu.au/minizinc/challenge2010/
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Radiotherapy treatment planning: The following search heuristic can be used to solve
radiotherapy treatment planning problems [1]. The heuristic minimizes a variable k
using branch-and-bound (bab), first searching the variables N, and then verifying the
solution by partitioning the problem along the rowi variables for each row i one at a time
(expressed as a MiniZinc array comprehension). Failure on one row must be caused by
the search on the variables in N, and consequently search never backtracks into other
rows.

bab(k, and([base_search(N, . . .)]++
[exh_once(base_search(rowi, . . .)) | i in 1..n]))

Dichotomic Search [15] solves an optimization problem by repeatedly partitioning the
interval in which the possible optimal solution can lie. It can be implemented by restart-
ing as long the lower bound has not met the upper bound (line 2), computing the middle
(line 3), and then using an or combinator to try the lower half (line 5). If it succeeds,
obj−1 is the new upper bound, otherwise, the lower bound is increased (line 6).

dicho(s,obj, lb,ub)≡let(l, lb, let(u,ub, let(h,0,
restart(l < u,

let(h, l + d(u− l)/2e,
once(or([

and([post(l ≤ obj≤ h),s,assign(u,obj−1)]),
and([assign(l,h+1),prune])]))

)))))

3 Modular Combinator Design

The previous section caters for the user’s needs, presenting the high-level syntax of our
combinator-based search language. To cater for the CP system developer’s needs, this
section provides an effective design to actually implement the language.

Modularity is the one property that makes our design practical. By modularity of design
we mean that each combinator corresponds to a separate module that gives the combi-
nator a meaning independent of the other combinators. It is a much stronger property
than modularity of syntax. The latter allows us to conceive of a wide range of search
specifications, while the former actually enables us to realize them.

This modularity of design makes it easy to grow a system from a small set of com-
binators (e.g., those listed in Fig. 1) and gradually add more as the need arises. In
addition, the advanced user may want to complement the system’s generic combinators
with a few application-specific ones.

Solver Independence is another notable property of our approach. A few combinators
do indeed access solver-specific functionality (e.g., base_search and post), and thus
require solver awareness. However, the approach as such and most combinators listed
in Fig. 1 are in fact generic (solver- and even CP-independent); their design and imple-
mentation is reusable.
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combinator 
1

combinator
2

combinator 
n-1

combinator
n

successfailure

enter(n)

more

for every child c

push(c)

next(n',n)

Fig. 2: The modular message protocol

The solver-independence of our approach is reflected in the minimal interface that
solvers must implement. This interface consists of an abstract type State which repre-
sents a state of the solver (e.g., the variable domains and accumulated constraint prop-
agators) which supports copying. Truly no more is needed for the approach or all of
the primitive combinators in Fig. 1, except for base_search and post which require
CP-aware operations for querying variable domains, the solver status and posting con-
straints. Note that there need not be a 1-to-1 correspondence between an implementation
of the abstract State type and the solver’s actual state representation; e.g., for solvers
based on trailing, techniques such as [10] can be used. We have implementations of the
interface based on both copying and trailing.

In the following we explain how modularity of design is obtained. We show how
to isolate the behavior (Sect. 3.1) and state (Sect. 3.2) of each combinator in a separate
module, and how to compose these modules to obtain the combined effect.

3.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that the
behavior of a search combinator, like the and combinator, forms an indivisible whole;
this leaves no room for interaction. The key insight here is that we must identify finer-
grained steps, defining how different combinators interact at each node in the search
tree. Interleaving these finer-grained steps of different combinators in an appropriate
manner yields the composite behavior of the overall search heuristic.

Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-trivial.
It requires studying the intended behavior and interaction of combinators to isolate the
fine-grained units of behavior and the manner of interaction. The contribution of this
section is an elegant and conceptually uniform design that is powerful enough to express
all the combinators presented in this paper.
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We present this design in the form of a message protocol. The protocol specifies a set
of messages (i.e., an interface with one procedure for each fine-grained step) that have
to be implemented by all combinators. It further stipulates in what order the messages
are sent among the combinators.

General Setup. Our approach represents a node in the search tree by the corresponding
solver State as well as the state information for the combinators. In particular, the
search starts from the root node, which consists of a given initial solver State and state
that is recursively initialized by the combinators that make up the search specification.
Typically not all combinators are initialized from the start, e.g., and([s1,s2]) initializes
s1 from the start, but s2 only when a leaf of s1 is reached.

From the root node, child nodes are derived and pushed onto an empty worklist.
Then in the main loop, a node is popped from the worklist and processed, which may
involve pushing new nodes on the worklist. Note that most systems will actually use a
stack (implementing depth first search) for the worklist, but the protocol is orthogonal
to the particular queuing strategy used.

Node Processing. Fig. 2 outlines the core combinator protocol. The diagram captures
the order and direction of protocol messages between combinators for processing a
single node of the search tree.

While in general a combinator composition is tree-shaped, the processing of any
single search tree node n only involves a stack of combinators. For example, given
or([and([s1,s2]),and([s3,s4])]), either s1,s2 or s3,s4 are active for n. The picture shows
this stack of active combinators on the left. Every combinator in the stack has both a
super-combinator above and a sub-combinator below, except for the top and the bottom
combinators. The bottom is always a basic heuristic, typically a base_search.

The protocol is initiated by sending the enter(n) message (third column) to the
top combinator, with the currently explored node n as an argument. The protocol ends
whenever the combinator that last received a message decides not to pass the message
on (depicted by an arrow to a small black rectangle; explained below).

The enter(n) message notifies all combinators of the new node n to be processed.
Combinators may update their state, e.g., the node counter may increment its value. If
the bottom is a base_search combinator, it checks the status of the node. If it has failed,
the processing finishes. Otherwise, the base_search combinator checks whether there
are children to be spawned from the current node (e.g., because some variables have not
been instantiated yet). If there are none, the success message is sent. Otherwise, the
children are created and one push(c) message is sent for each child c.

The success message is passed on bottom-up. Any combinator in between may
decide to divert or drop the message. The former happens in the case of a sequential
conjunction combinator and([s1,s2]): if s1 has reached a successful leaf node in its
search tree, a new search tree is spawned for s2 rooted at the leaf of s1.

The push(c) message proceeds top-down through each combinator. For instance,
the number of discrepancies associated with a branch can be recorded. In the case of a
base_search combinator, it records the constraint associated to the branch. Finally, the
branch’s node is pushed onto the search queue.
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After processing of the current node n has finished, the search engine retrieves a
new node n′ from the search queue and initiates the protocol again, this time using the
next(n,n′) message. This message enables the combinators to determine whether n
and n′ are handled by exactly the same stack of combinators. That way, timing com-
binators can record time per subtree instead of per node, which leads to more accurate
time measurements as timer resolution is usually too coarse to capture the processing
of single nodes.

End of Processing. The black boxes in the figure indicate points where a combinator
may decide to end processing the current node. These messages are propagated upwards
from the originating combinator up to the root. One of the ancestor nodes may wish to
react to such a message, in particular based on the following information.

Subsearch Termination and Exhaustiveness. A particular search combinator s is ac-
tivated in a search tree node, then spreads to the children of that node and their descen-
dants. When the last descendant node has been processed, s reverts back to the inactive
status. This transition is important for several (mostly disjunctive) combinators. For
instance, the portfolio([s1,s2, . . .]) combinator activates si+1 when si terminates. When-
ever a combinator finishes processing a node (through success, failure or after spawning
children) it communicates to its parent whether it is now terminated as a parameter of
the message. In case of termination, it also communicates its exhaustiveness.

3.2 State Management
Most combinators are stateful in one way or another. For instance, the combinator
if(nodes < 1000,s1,s2) maintains a node count,while and([s1, . . . ,sn]) maintains which
of the sub-searches si is currently active.

We have found it useful to partition the state of search combinators in two classes,
global and local state, which are implemented differently:

Global state is shared among all nodes of an active combinator s. An update of the
global state at one node is visible at all other nodes. The node count is an example of
global state.

Local state is private to a single node of an active combinator s. An update to the
local state at one node is not visible at another node. Local state is usually immutable
and changes only through inheritance: child nodes derive their copy of local state from
their parent’s copy in a possibly modified form.

For instance, node depth is a form of local state, where child nodes inherit the in-
cremented depth of their parent. In and-sequential search, the index i of the currently
active subsearch si is part of the local state.

Of course a combinator may combine both global and local state. Moreover, we
have actually implemented global state as a heap-allocated value pointed to from the
local state. This pointer is inherited unmodified.

4 Modular Combinator Implementation

The message-based combinator approach lends itself well to different implementation
strategies. In the following we briefly discuss two diametrically opposed approaches we
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have explored: dynamic composition (interpretation) and static composition (compila-
tion). Using these different approaches, combinators can be adapted to the implemen-
tation choices of existing solvers. Sect. 5 shows that both implementation approaches
have competitive performance.

4.1 Dynamic Composition

To support dynamic composition, we have implemented our combinators as C++ classes
whose objects can be assembled into a search specification at runtime. The protocol
events correspond to object methods. For the delegation mechanism from one object
to another, we explicitly encode a form of dynamic inheritance called open recursion
or mixin inheritance [2]. In contrast to the OOP inheritance built into C++ and Java,
this mixin inheritance provides two essential abilities: 1) to compose combinators dy-
namically and 2) to compose the same combinators in different ways. In contrast, C++’s
built-in static inheritance provides neither.

The C++ library currently builds on top of the Gecode constraint solver.6 However,
the solver is accessed through a layer of abstraction that is easily adapted to other solvers
(e.g., we have a prototype interface to the Gurobi MIP solver). The complete library
weighs in at around 2500 lines of code, which is even less than Gecode’s native search
and branching components.

4.2 Static Composition

In a second approach we statically compile a search specification to a tight C++ loop.
Again, every combinator is implemented as a separate module that is independent of
other combinators and their implementation. Unlike the dynamic approach, a combi-
nator module now does not directly implement the combinator’s behavior. Instead it
implements a code generator (in Haskell), which in turn produces the C++ code with the
expected behavior.

Hence, our search language compiler parses a search specification, and composes
(again in mixin-style) the corresponding code generators. Then it runs the composite
code generator according to the message protocol. The code generators produce appro-
priate C++ code fragments for the different messages, which are combined according to
the protocol into the monolithic C++ loop. This C++ code is further post-processed by the
C++ compiler to yield a highly optimized executable.

Again, the mixin approach plays a crucial role, allowing us to easily add more com-
binators without touching the existing ones. At the same time we obtain with the press
of a button several 1000 lines of custom low-level code for the composition of just a few
combinators. In contrast, the development cost of hand crafted custom code is clearly
prohibitive.

A compromise between the above two approaches, itself static, is to employ the
built-in mixin mechanism (also called traits) available in object-oriented languages such
as Scala [3] to compose combinators. A dynamic alternative is to generate the combi-
nator implementations using dynamic compilation techniques, for instance using the
LLVM (Low Level Virtual Machine) framework. These options remain to be explored.

6 http://www.gecode.org/
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5 Experiments

This section evaluates the performance of our two implementations. It establishes that
a search heuristic specified using combinators is competitive with a custom implemen-
tation of the same heuristic, exploring exactly the same tree.

Sect. 3.1 introduced a message protocol that defines the communication between the
different combinators for one node of the search tree. Any overhead of a combinator-
based implementation must therefore come from the processing of each node using
this protocol. All combinators discussed earlier process each message of the protocol
in constant time (except for the base_search combinators, of course). We therefore
expect at most a constant overhead of the combinator approach compared to a native
implementation of the same heuristic.

In the following, two sets of experiments confirm this expectation. The first set
consists of artificial benchmarks designed to expose the overhead per node. The second
set consists of realistic combinatorial problems with complex search strategies.

The experiments were run on a 2.26 GHz Intel Core 2 Duo running Mac OS X. The
results are the averages of 10 runs, with a coefficient of deviation less than 1.5%.

Stress Test. The first set of experiments measures the overhead of calling a single
combinator during search. We ran a complete search of a tree generated by 7 variables
with domain {0, . . . ,6} and no constraints (1 647 085 nodes). To measure the overhead,
we constructed a basic search heuristic s and a stack of n combinators:

portfolio([portfolio([. . .portfolio([s,prune]) . . . ,prune]),prune]),

where n ranges from 0 to 20 (note that realistic stacks of combinators, such as those
from the examples in this paper, are usually not deeper than 10). The numbers in the
following table report the runtime with respect to using the plain heuristic s, for both
the static and the dynamic approach:

n 1 2 5 10 20
static % 106.6 107.7 112.0 148.3 157.5
dynamic % 107.3 117.6 145.2 192.6 260.9

A single combinator generates an overhead of around 7%, and 10 combinators add 50%
for the static and 90% for the dynamic approach. In absolute runtime, however, this
translates to an overhead of around 17 ms (70 ms) per million nodes and combinator
for the static (dynamic) approach. Note that this is a worst-case experiment, since there
is no constraint propagation and almost all the time is spent in the combinators.

Benchmarks. The second set of experiments shows that in practice, this overhead is
dwarfed by the cost of constraint propagation and backtracking. Note that the experi-
ments are not supposed to demonstrate the best possible search heuristics for the given
problems, but that a search heuristic implemented using combinators is just as efficient
as a native implementation.

Fig. 3 compares Gecode’s optimization search engines with branch-and-bound im-
plemented using combinators. On the well-known Golomb Rulers problem, both dy-
namic combinators and native Gecode are slightly slower than static combinators.
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Compiled Interpreted Gecode
Golomb 10 0.61 s 101.8% 102.5%
Golomb 11 12.72 s 102.9% 101.8%
Golomb 12 125.40 s 100.6% 101.9%
Radiotherapy 1 71.13 s 105.9% 107.3%
Radiotherapy 2 11.78 s 108.3% 108.1%
Radiotherapy 3 16.44 s 107.5% 106.9%
Radiotherapy 4 69.89 s 108.1% 98.7%
Radiotherapy 5 106.04 s 109.2% 99.1%
Job-Shop G2 7.25 s 146.3% 101,16%
Job-Shop H5 20.88 s 153.2% 107.01%
Job-Shop H3 52.02 s 162.5% 102.81%
Job-Shop ABZ1-5 2319 s 103.65% 100,13%
Job-Shop mt10 2181 s 104.49% 99,93%

Fig. 3: Experimental results

On the radiotherapy problem (see Sect. 2.2), the dynamic combinators show an
overhead of 6–11%. The native Gecode implementation, which in this case is quite
complex, as exh_once is not available in Gecode and must be implemented as a nested
search, performs similarly to the dynamic combinators. However, in instances 4 and 5,
the compiled combinators lose their advantage over native Gecode. This is due to the
processing of exh_once: As soon as it is finished, the combinator approach processes
all nodes of the exh_once tree that are still in the search worklist, which are now failed
and therefore removed. The native Gecode implementation simply discards the tree. We
will investigate how to incorporate this optimization into the combinator approach.

The job-shop scheduling examples, using the combination of branch-and-bound and
discrepancy limit discussed in Sect. 2.2, show similar behavior. In the two longer run-
ning instances, the interpreted combinators show much less overhead than in the short-
running instances. This is due to a significantly lower number of nodes explored per
second (due to more expensive propagation and backtracking), and consequently a re-
duced overhead of executing the combinators.

In summary, the experiments show that the expressivity and flexibility of a rich
combinator-based search language can be achieved without any runtime overhead.

6 Related Work

This work directly extends our earlier work on Monadic Constraint Programming
(MCP) [13]. MCP introduces stackable search transformers, which are a simple form
of search combinators, but only provide a much more limited and low level form of
search control. In trying to overcome its limitations we arrived at search combinators.

Constraint logic programming languages such as ECLiPSe [4] and SICStus Pro-
log [16] provide programmable search via the built-in search of the paradigm. User
programmable labeling as well as different strategies such as depth bounded, node
bounded and limited discrepancy search are available in ECLiPSe. Heuristics cannot
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be combined arbitrarily, but one can change the strategy, e.g., when the depth bound
finishes. Users cannot define their own heuristics or combinators in the library, though
they could be programmed from scratch.

The Salsa [7] language is an imperative domain-specific language for implementing
search algorithms on top of constraint solvers. Its center of focus is a node in the search
process. Programmers can write custom “Choice” strategies for generating next nodes
from the current one; Salsa provides a regular-expression-like language for combining
these Choices into more complex ones. In addition, Salsa allows custom procedures to
be run at the exits of each node, i.e., right after visiting it. We believe that Salsa’s Choice
construct is orthogonal to our approach, and could be easily incorporated. The custom
exit procedures show similarity to our combinator protocol, but no support is provided
for arbitrary composition.

Oz [17] was the first language to truly separate the definition of the constraint model
from the exploration strategy [14]. Computation spaces capture the solver state and the
possible choices. Strategies such as DFS, BFS, LDS, Branch and Bound and Best First
Search are implemented by a combination of copying and recomputation of computa-
tion spaces. The strategies are monolithic, there is no notion of search combinators.

The original versions of the constraint modeling language OPL [18,21] provided
programmable search using a try construct that creates the search tree. The tree could
then be explored with a programmed strategy, or a built-in strategy such as DFS, LDS,
BFS or BeFs. Exploration strategies could be modified by limit strategies, which were
effectively combinators.

Comet [19] features fully programmable search [20], with a clean separation be-
tween the specification of the search tree and the exploration strategy. Search trees are
specified using the non-deterministic primitives try and tryall, corresponding to our
base_search heuristics. Exploration is delegated to a search controller, which, similar
to our search combinators, defines what to do when starting or ending a search, failing,
or adding a new choice. Choices are represented as continuations rather than the more
explicit tree nodes we use. Complex hybrid search heuristics can be constructed as cus-
tom search controllers. The main difference to our approach is that search controllers
are not composable, but have to be implemented by inheritance (where possible) or
from scratch.

7 Conclusion

We have shown how our combinator approach provides a powerful high-level language
for modeling complex search heuristics. Its modular implementation relieves system
developers from a high implementation cost and yet imposes no runtime penalty.

For future work, the next step for us will be a full integration into MiniZinc. Fur-
thermore, parallel search on multi-core hardware fits perfectly in our combinator frame-
work. We have already performed a number of preliminary experiments and will further
explore the benefits of search combinators in a parallel setting. We will also explore
potential optimizations (such as the short-circuit of exh_once from Sect. 5) and dif-
ferent compilation strategies (e.g., combining the static and dynamic approaches from
Sect. 4). Finally, combinators need not necessarily be heuristics that control the search.
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They may also serve to monitor search, e.g., by gathering statistics or visualizing the
search tree.
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