
Dynamically Partitioning for Solving QBF

Horst Samulowitz and Fahiem Bacchus
Department of Computer Science, University of Toronto, Canada.

[horst| fbacchus]@cs.toronto.edu

Abstract. In this paper we present a new technique to solve Quantified Boolean
Formulas (QBF). Our technique applies the idea of dynamic partitioning to QBF
solvers. Dynamic partitioning has previously been utilized in #SAT solvers that
count the number of models of a propositional formula. One of the main dif-
ferences with the #SAT case comes from the solution learning techniques em-
ployed in search based QBF solvers. Extending solution learning to a partitioning
solver involves some considerable complexities which we show how to resolve.
We have implemented our ideas in a new QBF solver, and demonstrate that dy-
namic partitioning is able to increase the performance of search based solvers,
sometimes significantly. Empirically our new solver offers performance that is
superior to other search based solvers and in many cases superior to non-search
based solvers.

1 Introduction
The variables of a SAT problem are implicitly existentially quantified: SAT asks the
question “does there exist a setting of these variables that satisfies the formula?” QBF
is a generalization of SAT in which the variables are allowed to be universally as well
as existential quantified: QBF asks the question “is the formula true for all settings
of the universal variables.” The ability to nest universal and existential quantification
in arbitrary ways makes QBF considerable more expressive than SAT. While any NP
problem can be encoded in SAT, QBF allows us to encode any PSPACE problem: QBF
is PSPACE-complete.

This expressiveness opens a much wider range of potential application areas for a
QBF solver, including areas like automated planning, non-monotonic reasoning, elec-
tronic design automation, scheduling, and model checking and verification, e.g., [1–3].
The difficulty, however, is that QBF is in practice a much harder problem to solve than
SAT. (It is also much harder theoretically assuming that PSPACE �= NP). One indica-
tion of this practical difficulty is the fact that current QBF solvers are typically limited
to problems that are about 1-2 orders of magnitude smaller than the instances solvable
by current SAT solvers (1000’s of variables rather than 100,000’s).

Nevertheless, this limitation in the size of the instances solvable by current QBF
solvers is somewhat misleading. In particular, many problems have a much more com-
pact encoding in QBF than in SAT. For example, in [4] the authors give an innovative
application of QBF to hardware debugging, showing that the QBF encoding of the prob-
lem is many times smaller than an equivalent SAT encoding. Results like this demon-
strate the potential of QBF and the importance of further improving QBF solvers.

In this paper we present a new technique for improving QBF solvers. Our technique
extends the idea of dynamic partitioning, prominently utilized in #SAT solvers, to make

2 Horst Samulowitz and Fahiem Bacchus

it useful in a QBF solver. #SAT is the problem of counting the number of models of a
CNF formula, and the idea of dynamic partitioning for solving #SAT was first utilized
in [5]. That work presented a DPLL based algorithm for #SAT which examined the
remaining CNF theory at each node of the search tree. The algorithm tried to partition
the remaining theory into disjoint components that shared no variables. The disjoint
components could then be solved independently of each other, resulting in a significant
improvement in run time. In particular, since the run time is worst case exponential
in the number of variables, partitioning can move us from O(2 n) to kO(2n/k) if the
problem can be broken into k equally sized partitions. Applying this recursively can
potentially yield an exponential speed up. See [6, 7] for more detailed theoretical results
characterizing the speedups that can be achieved from partitioning.

Here we apply dynamic partitioning to QBF. We first make the observation that a
QBF theory can be partitioned into independent components as long as these compo-
nents share no existential variables. That is, QBF components do not have to be com-
pletely disjoint as is the case with #SAT, just so long as they are existentially disjoint.
We then show how clause learning in search based QBF solvers can be quite easily
extended to deal with partitioning. Extending cube (solution) learning to deal with par-
titioning is considerable more complex, and is perhaps the key innovation of our work.
We have implemented our ideas in a new QBF solver 2clsP. 2clsP is built on top of
the 2clsQ [8] solver, which with the addition of some preprocessing techniques was
the top scoring solver in the 2006 QBF competition. We show empirically that these
new ideas yield a significant improvement in 2clsQ’s performance. We also demon-
strate that 2clsP offers performance that is superior to other search based solvers and
in many cases superior to non-search based solvers like Quantor [9] and Skizzo [10].
These results underscore the potential that partitioning, when properly augmented with
clause and cube learning, has for helping us improve current QBF solvers.

In the sequel we first present some necessary background, setting the context for our
methods. We then present the details of how clause and particularly cube learning can
be extended to partitioning. Then we provide empirical evidence of the effectiveness of
our approach, and close with a discussion of future work and some conclusions.

2 Background
A quantified boolean formula has the form Q.F , where F is a propositional formula
expressed in CNF and Q is a sequence of quantified variables (∀x or ∃x). We require
that no variable appear twice in Q and that all variables in F appear in Q (i.e., F con-
tains no free variables). Q may have extra variables not mentioned in F . Such variables
can be removed or retained—they do not affect the truth of the QBF.

QBF solvers are interested in answering the question of whether or not Q.F ex-
presses a true or false assertion, i.e., whether or not Q.F is true or false. The reduction
of a CNF formula F by a literal � is the new CNF F |� which is F with all clauses con-
taining � removed and ¬�, the negation of �, removed from all remaining clauses. The
reduction of F by a set of literals L is defined to be the sequential reduction of F by
each literal in L. It can easily be observed that the final reduced CNF is independent of
the order these reductions are performed.
1. If F is the empty set of clauses then Q.F is true.
2. If F contains an empty clause then Q.F is false.

Dynamically Partitioning for Solving QBF 3

3. ∀vQ.F is true iff both Q.F |v and Q.F |¬v are true.
4. ∃vQ.F is true iff at least one of Q.F |v and Q.F |¬v is true.

A quantifier block qb of Q is a maximal contiguous subsequence of Q where
every variable in qb has the same quantifier type. We order the quantifier blocks by
their sequence of appearance in Q: qb 1 ≤ qb2 iff qb1 is equal to or appears before qb 2

in Q. Each variable x in F appears in some quantifier block denoted by qb(x).
Definition 1
1. For two variables x and y, x ≤q y if qb(x) ≤ qb(y) and x <q y if qb(x) < qb(y).
2. Variable x is universal (existential) if its quantifier in Q is ∀ (∃).
3. A variable x is downstream (upstream) of a set of variables V if (1) x �∈ V and

(2) ∀y.y ∈ V → y ≤q x (∀y.y ∈ V → x ≤q y)). That is, x is not a member
of V and appears no sooner (later) in the quantifier sequence Q than the last (first)
quantifier block containing elements of V .

4. A variable x is maximal (minimal) in a set of variables V if (1) x ∈ V and (2)
∀y.y ∈ V → y ≤q x (∀y.y ∈ V → x ≤q y). That is x is a member of V and
appears in the highest (lowest) quantifier block amongst all variables of V .

As a slight abuse of notation we often use a literal � to refer to �’s variable. For example,
when we say that � is maximal in a set of variables V , we mean that �’s variable is
maximal in V . Similarly, we might assert that � is universal if �’s variable is universal,
that �1 <q �2 if �1’s variable is <q than �2’s variable, or that � is added to a set of
variables V if �’s variable is added to V .

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4)∧(¬u1,¬e3) is a QBF with Q =
∃e1e2.∀u1u2.∃e3e4 and F equal to the two clauses (e1,¬e2, u2, e4) and (¬u1,¬e3).
The quantifier blocks in order are ∃e1e2, ∀u1u2, and ∃e3e4, and we have, e.g., that,
e1 <q e3, u1 <q e4, u1 is universal, e4 is existential, e4 is downstream of the set
{u2, e3}, e3 is maximal in the set {u2, e3}, and u2 is upstream of the set {u1, e3, e4}.

We make two useful observations about QBFs (an easy proof is given, e.g., in [11]).

Observation 1

A. If F � F ′ then Q.F ⇒ Q.F ′. That is, if every SAT model of F is also a SAT model
of F ′ then if Q.F is true Q.F ′ must also be true. Note that this holds even when
F ′ contains a superset of F ’s variables.

B. A universal variable u is called a tailing universal in a clause c if for every existen-
tial variable e ∈ c we have that e <q u. The universal reduction [12] of a clause c is
the process of removing all tailing universals from c. If F ′ is the result of applying
universal reduction to some clause of F , then Q.F ⇔ Q.F ′.

2.1 Partitioning QBF

Now we discuss the conditions under which a QBF can be partitioned into a conjunction
of independent sub-formulas. First we recall two standard logical laws for quantifiers.
Let Φ1 and Φ2 be propositional formulas.

1. If Φ1 does not contain x then ∃x.(Φ1 ∧ Φ2) ⇔ (Φ1 ∧ ∃x.Φ2) and ∀x.(Φ1 ∧ Φ2) ⇔
(Φ1 ∧ ∀x.Φ2).

2. ∀x.(Φ1 ∧ Φ2) ⇔ (∀x.Φ1 ∧ ∀x.Φ2)

4 Horst Samulowitz and Fahiem Bacchus

Observation 2 If F is a CNF formula that can be divided into two CNF’s F1 and
F2 such that the clauses in F1 and F2 share no existential variables, then Q.F ⇔
Q1.F1 ∧Q2.F2, where Qi is the subsequence of Q containing only the variables of F i.

To see that this is true we first rewrite Q.F as Q.(F1 ∧ F2), then we proceed to
use the above logical laws to distribute the variables of Q to F1 or F2, starting with the
innermost quantified variables of Q. We can apply this observation multiple times to
separate Q.F into a conjunction of k smaller QBFs.

For example,

∀u1∃e1∀u2∃e2e3.
(
(u1,¬e1) ∧ (u2,¬e2) ∧ (u2, e3)

)

⇔ ∀u1∃e1∀u2∃e2.
(
(u1,¬e1) ∧ (u2,¬e2) ∧ ∃e3.(u2, e3)

)

⇔ ∀u1∃e1∀u2.
(
(u1,¬e1) ∧ ∃e2.(u2,¬e2) ∧ ∃e3.(u2, e3)

)

⇔ ∀u1∃e1.
(
(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)

⇔ ∀u1.
(∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)

⇔ ∀u1∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

2.2 Partitioning for a Search Based QBF Solver
Observation 2 immediately yields a partitioning search based QBF solver.

QBF-Prt(Q.F)1

if F contains an [empty clause/is empty] then2

return([FALSE/TRUE])3

for � ∈ {v, v̄} for some v ∈ F with outermost scope in Q do4

success = TRUE5

Partitions = Partition(Q.F |�)77

foreach Qi.Pi ∈ Partitions while success do8

if QBF-Prt(Qi.Pi) = FALSE then1010

success = FALSE11

if [¬success/success] AND v is [universal/existential] then12

return[FALSE/TRUE]13

if v is [universal/existential] then14

return[TRUE/FALSE]15

That is, we branch on variables respecting the order of quantification, just as in a
standard search based QBF solver. However, after every variable has been instantiated
(at this stage some propagation can also be performed to further reduce the remaining
theory) we check if the remaining theory can be broken up into existentially disjoint
partitions (line 7). This can be accomplished in time linear in the size of the remaining
theory with a simple depth-first search or a union-find algorithm. We then solve these
partitions independently (line 10). Since the remaining theory is equivalent to the con-
junction of these partitions, they must all be true for the entire theory to be true. Hence,
we can stop if any of these partitions is false.

Unfortunately, although partitioning is a good idea, our empirical investigations al-
lowed us to conclude that this simple version of partitioning is completely ineffective
in practice. Fundamental to the performance of search based QBF solvers are the tech-
niques of clause and cube learning [13, 14]. Without these techniques a partitioning

Dynamically Partitioning for Solving QBF 5

solver performs much worse than current search based solvers. One of the key contri-
butions of our work is to show how learning can be extended so that it can be applied
in the context of partitioning.

2.3 Quantifier Trees

In [15] Benedetti uses the logical laws for quantifiers mentioned above to build a Quan-
tifier Tree for a QBF. The quantifier tree specifies, among other things, a static decom-
position of the QBF. That is, it specifies a decomposition that ignores the truth value
assigned to each variable. Benedetti also points out that such trees can be used in a
partitioning search based QBF solver similar to QBF-Prt presented above. There are
two main differences between this work and what we present here. First, as noted above
the simple notion of of partitioning presented in QBF-Prt is ineffective without learn-
ing. As we will see adding learning to partitioning is a non-trivial new contribution of
our work. Second, the partitioning algorithm presented in QBF-Prt employs dynamic
partitioning. That is, the partitioning generated when we set v = TRUE can be entirely
different to the partitioning generated when v = FALSE. In a quantifier tree the parti-
tioning will be the same for both truth values. Since this difference compounds as we set
more variables this means that the partitions generated dynamically can be considerably
more refined than those specified in a static quantifier tree.1

3 Learning with Partitioning

Search based QBF solvers employ the powerful techniques of clause and cube (solution)
learning [13, 14]. These techniques are essential for obtaining good performance from
a search based QBF solver. In this section we show how learning can be used with
partitioning.

To facilitate the subsequent discussion the figure on the right shows
a sample path in the QBF-Prt search tree. The black circles correspond
to literals made true along the current path, arcs connecting branches
indicate points where the theory was split into partitions, and the tri-
angles correspond to the other partitions that were generated along this
path. The partitions on the left of the current path have already been
solved, while those on the right of the current path remain to be solved.
We call the partitions that lie off of the current path inactive, and the
partition currently being solved active.

3.1 Clause Learning

For the most part clause learning can be used without modification in a partitioning
solver. For example, if the current path leads to a conflict a conflict clause can be learned
and universal reduction applied—the conflict must be a subset of the literals set along
the current path. This conflict can then be used to backtrack as least far enough to
undo the conflict, as below this point no solution exists for the active partition. Since
the theory is the conjunction of its partitions, the status of the inactive partitions we

1 In [7] it was shown that for #SAT dynamic partitioning can yield a super-polynomial speedup
over any static decomposition on some instances. We suspect that a similar result holds for
QBF, but this is not yet proven.

6 Horst Samulowitz and Fahiem Bacchus

backtrack past is irrelevant—falsifying the active partition is sufficient to falsify the
entire theory. Note that backtracking further is also possible, e.g., backtracking to the
1st-UIP point. The search will continue as before from that backtrack point. Similarly,
the learnt clauses can then be used in unit propagation as they normally would be in a
non-partitioning solver.

The main subtleties in using clause learning with partitioning have already been
addressed in [16] who showed how to use clause learning and partitioning in the con-
text of solving #SAT. It is not difficult to show that their insights also hold for QBF. In
particular, first, we are allowed to ignore the learned clauses when partitioning the the-
ory since the learned clauses are entailed by the original theory. Second, it is sound to
ignore existentials from inactive partitions that might be forced by the learned clauses.
Alternatively we can allow them to be forced: any conflict generated by them will still
be a valid conflict.

3.2 Cube Learning
In order to extend cube learning to allow partitioning we must first develop a new for-
malization of cube learning.

We first define the restriction of a clause c to a set of variables V to be the new
clause c′ formed by restricting c to the variables in V , i.e., removing from c all variables
not mentioned in V . For example, restrict((x,¬y,¬z), {x, y, w, t}) = (x,¬y), where
the literal ¬z has been removed since its variable z is not in the set {x, y, w, t}. We re-
strict a CNF formula F , restrict(F, V), by restricting each of its clauses. Note that if V
contains all of the variables in c then restrict(c, V) = c, and similarly restrict(F, V) =
F if V contains all variables in F . We say that a QBF Q.F is satisfied by the variables
V if the QBF Q.restrict(F, V) is true.

We observe some facts about restriction and its relationship with reduction (setting
a literal to be true).

Observation 3

1. If V ⊆ V ′, then restrict(F, V) � restrict(F, V ′).
2. If Q.F is satisfiable by any set of variables V , then it must also be true.
3. If � �∈ V then restrict(F, V ∪ {�})|� is equal to restrict(F |�, V).
4. If � �∈ V then restrict(F, V) � restrict(F |�, V).

Proof: For item 1, every clause of restrict(F, V ′) is a superclause of a clause in restrict(F, V).
For item 2, this follows from item 1 and Observation 1.A by taking V ′ to be any superset
of V that contains all variables of F . For item 3, this can be shown by considering what
happens to every clause c of F under the stated sequence of reductions and restrictions.
There are three cases to consider (a) � ∈ c, (b) ¬� ∈ c and (c) all other clauses. For item
4, using the same three cases it can be shown that restrict(F |�, V) contains a subset of
the clauses of restrict(F, V).
Definition 2 A cube for the formula Q.F is a set of literals ρ and a set of variables V
such that (a) Q.F |ρ is satisfied by the variables V , and (b) the variables of V are all
downstream of the variables of ρ. We write cube[ρ, V, F] to indicate that ρ and V is a
cube for Q.F .2

2 In the next section we will consider the case where F (the set of clauses) changes. However,
the quantifier prefix, Q, never changes so we can omit mentioning it in our notation.

Dynamically Partitioning for Solving QBF 7

In other words cube[ρ, V, F] iff Q.restrict(F |ρ, V) is true, and V is downstream of ρ.
This definition differs from the standard definition of a cube mainly in its introduction
of the set of downstream variables V .

The following theorem justifies standard cube learning in a non-partitioning QBF
solver.
Theorem 1.
1. If π is a set of literals that satisfies every clause of F , then cube[π, {}, F].
2. If cube[ρ, V, F] and � is existential and maximal in ρ, then cube[ρ − {�}, V ∪

{�}, F]
3. If cube[ρ1, V1, F] and cube[ρ2, V2, F] are cubes such that (1) there is a unique

literal � such that {�,¬�} ⊆ ρ1 ∪ ρ2, (2) this clashing literal is universal, (3) � is
maximal in ρ1∪ρ2, and (4) V1∪V2 is downstream of ρ1∪ρ1, then cube[ρ1∪ρ2−
{�,¬�}, V1 ∪ V2 ∪ {�}, F].

Proof: For item 1, we see that Q.F |π is an empty set of clause, thus it is satisfiable
by any set of variables. For item 2, we know that Q.restrict(F |ρ, V) is true, the claim
is that Γ = Q.restrict(F |ρ−{�}, V ∪ {�}) is true and that V ∪ {�} is downstream of
ρ − {�}. Since � ∈ ρ it must be upstream of all of the variables in V by the defi-
nition of a cube. Hence, � appears in the outermost quantifier block among the vari-
ables in Γ and by definition Γ is true iff Γ |� or Γ |¬� are true. In fact, Γ |� = is true:
Γ |� = Q.restrict(F |ρ−{�}, V ∪ {�})|� = Q.restrict(F |ρ, V) by Observation 3.3. To
see that V ∪{�} is downstream of ρ−{�} we observe that � is maximal in ρ, so it must
be downstream of ρ−{�}. For item 3, let ρ = ρ1 ∪ ρ2 −{�,¬�} and let V be V1 ∪ V2.
We need to show that Γ = Q.restrict(F |ρ, V ∪{�}) is true. Again we observe that � ap-
pears in the outermost quantifier block among the variables in Γ . Thus Γ is true iff Γ | �

and Γ |¬� are both true. Γ |� = Q.restrict(F |ρ, V ∪ {�})|� = Q.restrict(F |ρ∪{�}, V)
(Observation 3.3). Then we have that Q.restrict(F |ρ1 , V1) is true by assumption, that
Q.restrict(F |ρ1 , V1) ⇒ Q.restrict(F |ρ1 , V) (since V1 ⊆ V and Observation 3.1), and
that Q.restrict(F |ρ1 , V) ⇒ Q.restrict(F |ρ∪{�}, V) (ρ ∪ {�} = ρ1 ∪ (ρ2 − {¬�}), all
of the literals in ρ2 − {¬�} are upstream of V , i.e., not in V , and thus Observation 3.4
applies). The proof for Γ |¬� is similar.

Cubes are used to perform non-chronological solution backtracking that can skip
large parts of the search space. They can also be stored and triggered to short-circuit
the search of a subtree. In particular, if all of the literals in the cube are true, then the
remaining theory is true and we need not descend in the search further.

Partial Cubes. With partitioning the leaf nodes satisfy only some of the clauses of
F (see the sample path diagram at the start of this section). In particular, the clauses
in the inactive partitions need not be satisfied by the assignments along the current
path. Consider the operation of QBF-Prt where each invocation is a node in its search
tree. Say that the search descends along a particular path arriving at node n 1 where the
remaining theory partitions into Q0, Q1 and Q2. We then choose to solve Q0 (at line 2)
in the next recursive call, and continue to descend reaching a node n 2 where the theory
partitions again into P1 and P2. Continuing with P1 we finally reach a leaf node n�

without further splitting P1.
At n� some subset of the original clauses F1 have been made true by the literals set

along the path to n�, and we can use item 1 of Theorem 1 to select a subset of these

8 Horst Samulowitz and Fahiem Bacchus

literals sufficient to form a cube for F1: cube[π, {}, F1]. Note that in general this is not
a cube for the original formula. In particular, we have not considered the clauses in the
inactive partitions Q1, Q2 and P2—these clauses have not necessarily been satisfied by
the current path: cube[π, {}, F1] is a partial cube. However, F1 does include all clauses
in the active partition P1.

Now, we continue the search using this cube to backtrack to undo the most deeply
assigned literal in π. If this literal is existential, we use item 2 of Theorem 1 to construct
a new cube and backtrack further. If it is a universal we solve the other side, obtain
another cube, combine the two cubes using item 3, and continue to backtrack further.
At each node n we obtain a cube[ρ, V1, F1] such that ρ is a subset of the literals set
along the path to n, F1 includes all clauses in the active partition P1 along with all other
clauses made true along the path to n, and V1 contains only variables instantiated below
n (only variables backtracked over can be added into the cube). All of these variables
are downstream of the variable instantiated at n which ensures that the conditions of
item 3 of Theorem 1 are meet whenever it is to be applied. We also note that V 1 is
always a subset of the variables of P1 as these are the only variables branched on while
solving P1.

With partitioning, however, we cannot backtrack past node n 2 where the active par-
tition P1 was created—the remaining theory under n2 is P1∧P2 and we don’t know yet
if P2 is true. Rather, when our search in the subtree solving P1 finally produces a cube
[ρ1, V1, F1] such that all of the literals of ρ1 are true at or above n2, we can backtrack
to n2 and then proceed to solve P2.

If P2 is true, the search in P2’s subtree will yield another cube, cube[ρ2, V2, F2],
such that F2 includes all of the clauses of P2 and shares with F1 all clauses made true
along the path to n2, while V2 is a subset of the variables of P2. Now we want to
combine these two cubes to learn a cube which will allow us to backtrack further within
the subtree solving Q0. We claim that [ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] is the cube we want.

Theorem 2. Given cube[ρ1, V1, F1] and cube[ρ2, V2, F1] such that (1) ρ1 ∪ ρ2 is not
contradictory (i.e., ∀� ∈ ρ1 ∪ ρ2.¬� �∈ (ρ1 ∪ ρ2)), (2) the variables in V1 ∪ V2 are all
downstream of the variables in ρ1 ∪ ρ2 and (3) V1 and V2 share no existentials, then
cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2].

Proof: Since V1∪V2 is downstream of ρ1∪ρ2 by assumption we only need to prove that
Q.restrict(F1 ∪ F2|ρ1∪ρ2 , V1 ∪ V2) is true. For two QBF S1 and S2 we write S1 ⇐ S2

if S2 true implies S1 true.

Q.restrict((F1 ∪ F2)|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict((F1 ∧ F2)|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1 ∪ V2) ∧ restrict(F2|ρ1∪ρ2 , V1 ∪ V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1) ∧ restrict(F2|ρ1∪ρ2 , V2)
⇐ Q.restrict(F1|ρ1∪ρ2 , V1) ∧ Q.restrict(F2|ρ1∪ρ2 , V2)
⇐ Q.restrict(F1|ρ1 , V1) ∧ Q.restrict(F2|ρ2 , V2)

Line 1 might involve duplicating some clauses, but yields an equivalent formula. Line
2 is justified by the fact that both restriction and reduction are applied clause by clause.

Dynamically Partitioning for Solving QBF 9

Line 3 is justified by Observation 3.1: we are restricting the clauses to a smaller set so
the formula becomes stronger. Line 4 is justified because V1 and V2 share no existential
variables so the formula can be partitioned. And finally line 5 is justified by Observa-
tion 3.4: none of the literals in ρ1 ∪ ρ2 appear in V1 ∪ V2. Finally, the conjunction on
the last line is true by assumption.

This theorem says that once we obtain a cube for each partition P 1 and P2 under
the node n2 we can form a cube that satisfies all of the clauses in P1 and P2 (Pi ⊆ Fi),
as well as all of the clauses satisfied along the path to n2. In other words, the new cube
cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] satisfies all of the clauses in the partition Q0 and we
can now utilize that cube to backtrack further within the subtree solving Q 0.

Note also that (1) all of the literals of ρi are contained in the path to n2 thus ρ1 ∪ ρ2

is not contradictory, (2) if v is the variable branched on at node n 2, then we have that
all of the variables of Vi are downstream v and the literals in ρi are upstream of v thus
V1 ∪ V2 is downstream of ρ1 ∪ ρ2, and (3) since P1 and P2 share no existentials neither
do V1 and V2 since Vi is a subset of the variables in Pi.

Finally, we note that we can also trigger cubes [ρ, V, F ′] by storing both ρ and V .
In particular, it can be shown that it is sound to trigger a cube [ρ, V, F ′] (and terminate
the search of a subtree), if (a) all of the literals in ρ are true, (b) none of the existential
variables of V are assigned, and (c) the existential variables of V form a partition at the
current node of the search space. Note that we do not need to keep track of the clauses
the cube covers F ′. However, space precludes proving this result.

In sum, we have shown in this section how cubes can be used with partitioning for
non-chronological solution backtracking, and that they can also be stored and triggered
to short-circuit the search of a subtree.

4 Implementation
We have implemented dynamic partitioning within the DPLL based QBF solver 2clsQ
[17, 8]. In addition to the standard techniques employed in state of the art QBF solvers
(e.g., solution analysis) 2clsQ also applies extensive binary clause reasoning at every
search node [17]. However, 2clsQ also utilizes dynamic equality reduction which we
turned off due to the logical and implementational difficulties that arise when applying
equality reduction and partitioning simultaneously.

Partitions are computed at each decision level by a simple and straight forward
depth-first search on the current theory. The complexity of this operation can be roughly
stated as O(|F | ∗ vars∃(F)) where |F | denotes the size of the theory and vars∃(F)
the number of existentials in F .

We altered cube learning/solution backtracking as described in the previous section
so that it could be used with dynamic partitioning. We also implemented a cube database
and triggered cubes under the conditions described above.

The search requires a number of heuristic choices. Included in these choices are,
deciding how to pick variables that are more likely to break the theory into partitions,
deciding the order in which to solve detected partitions, and deciding when to turn off
partition detection so as to minimize overhead.

A heuristic that selects a literal that satisfies the largest number of clauses can result
in better partitioning since it decreases the overall connectivity. Computing articula-
tion points in the corresponding graphical representation of the theory and branching

10 Horst Samulowitz and Fahiem Bacchus

accordingly is an alternate strategy for increasing partitioning. However, in our exper-
iments it seemed that the best strategy was to branch on a literal that has the highest
potential to cause a conflict, irrespective of its ability to generate partitions.

Similarly, there exist many ways to sort the computed partitions to decide which par-
tition to process next. We used the following strategy: for each partition we computed
the number of binary clauses that contain an active existentially quantified variable.
Then we computed the ratio of active existentials and binary clauses in each partition
further weighted by the number of active universals in the partition. This weighted ratio
tries to capture the degree to which a partition is constrained. The lower the ratio the
more constrained are the existentials. The aim was to try to solve the most constrained
partition first: if a partition failed we do not have to solve any of the other partitions as
the conjunction is immediately false.

In our experiments we observed that partitioning can slow down the search process
due to its high overhead. Computing partitions at each decision level is an expensive
operation. Furthermore, it is wasted work if the theory consists of only one partition.

In general, it is unlikely that a theory breaks into multiple partitions when the ratio
between clauses and existentially quantified variables is rather high (e.g., 15). And in
fact empirically it turned out to be the case that when partitioning was turned off on
instances with a high clause/variable ratio the resulting performance was consistently
improved.

Furthermore, it seems to be the case that a theory with a rather low clause/variable
ratio (e.g., 3) appears to be unsuitable for dynamic partitioning as well. In this case,
the theory is easily solved without partitioning, so again partitioning is not worth the
overhead. Hence, when the input instance has a low or high clause/variable ratio we
do not bother to try to detect partitions, and simple solve the theory as if it is a single
partition.

5 Experimental Results
To evaluate the empirical effect of our new approach we considered all of the non-
random benchmark instances from QBFLib (2005) [18] (508 instances in total). We
discarded the instances from the benchmark families von Neumann and Z since these
can all be solved very quickly by any state of the art QBF solver (less than 10 sec. for the
entire suite of instances). We also discarded the instances in benchmark families Uclid,
Jmc, and Jmc-squaring. None of these instances can be solved within a time bound of
5,000 seconds by any of the QBF solvers we tested. This left us with 465 instances
from 18 different benchmark families. We tested all of these instances on a Pentium
4 3.60GHz CPU with 6GB of memory (this is a 32 bit processor so only 4GB of this
memory is actually addressable by our program). The time limit for a run of any solver
was set to 5,000 seconds.

5.1 2clsQ vs. 2clsP

We first compared 2clsP with 2clsQ. These two solvers are the most similar, with 2clsP
only adding partitioning to the processing already performed by 2clsQ (and subtracting
equality reduction). Hence this comparison gives the most information on the effective-
ness of partitioning taken in isolation. Table 1 shows the comparison between these two

Dynamically Partitioning for Solving QBF 11

Benchmark
Families

2clsQ 2clsP

(# instances) Succ.
%

time Succ.
%

time

ADDER (16) 44% 5,267 56% 8,346

adder (16) 19% 0 38% 1,374

Blocks (16) 50% 46 50% 46

C (24) 21% 16 25% 14

Connect (60) 100% 66 100% 66

Counter (24) 33% 4,319 33% 1,220

EV-Pursuer(38) 26% 2,836 34% 2,282

FlipFlop (10) 100% 4 100% 4

K (107) 35% 20,575 36% 20,039

Lut (5) 100% 19 100% 19

Mutex (7) 43% 22 43% 22

Qshifter (6) 33% 59 67% 1,924

S (52) 8% 9 15% 3,405

Szymanski (12) 67% 2,741 67% 2,741

TOILET (8) 75% 528 75% 528

toilet (38) 84% 47 84% 531

Tree (14) 100% 296 100% 0

Summary 58% 36,791 63% 42,502

Table 1. Results achieved by 2clsQ and 2clsP on all tested benchmark families. Instances were
timed out after 5,000 sec., and for each family the solver with highest success rate is shown in
bold, where ties are broken by time required to solve these instances. The summary line shows
the average success rate over all benchmark families and the total time taken (on solved instances
only).

solvers. The table is broken down by benchmark family as the structural properties of
the families can be quite distinct.

For each solver and benchmark the success rate and the time consumed by the solver
on the successfully solved instances are displayed. Bold values indicate that the partic-
ular solver achieved the highest success rate on that families’ instances, where ties are
broken by CPU time consumed.

On this measure 2clsP is the best solver in 9 out of the 18 benchmark families. There
exists only one benchmark family (toilet) where 2clsQ outperforms 2clsP. On the 8
remaining benchmark families 2clsP achieves the same performance as 2clsQ. On these
benchmarks the clause/variable ratio was unfavorable for partitioning, so 2clsP operated
without it on these families. That is, on these families 2clsP operates exactly the same as
2clsQ does. Normally, the clause/variable ratio stays fairly constant among the problems
of the same benchmark family. However, in the case of the toilet benchmark the ratio
varies across instances, so that some of the problems in this benchmark were solved by
2clsP using partitioning and others without. This also holds for other benchmarks (e.g.,
Adder, S).

The average success rate over all benchmark families is shown in the final row of
the table. A high average displays fairly robust performance across structurally distinct
instances. On this measure 2clsP is superior to 2clsQ solving 63% of all instances on
average compared to 58%.

12 Horst Samulowitz and Fahiem Bacchus

Benchmark
Families

Skizzo Quantor 2clsP Quaffle Qube SQBF

(# instances) Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time Succ.
%

time

ADDER (16) 50% 954 25% 24 56% 8,346 25% 1 13% 72 13% 3

adder (16) 44% 455 25% 29 38% 1,374 42% 5 44% 0 38% 2,678

Blocks (16) 56% 108 100% 308 50% 46 75% 1,284 69% 1774 75% 7,042

C (24) 25% 1,070 21% 140 25% 14 21% 5,356 8% 3 17% 4

Chain (12) 100% 1 100% 0 100% 0 67% 6,075 83% 4,990 58% 4,192

Connect (60) 68% 802 67% 14 100% 7 70% 253 75% 7,013 67% 0

Counter (24) 54% 1,036 50% 217 33% 1,220 38% 5 33% 2 38% 9

EVPursade (38) 29% 1,450 3% 73 34% 2,282 26% 1,962 18% 4,402 32% 4,759

FlipFlop (10) 100% 6 100% 3 100% 4 100% 0 100% 1 80% 5,027

K (107) 88% 1,972 63% 3,839 36% 20,039 35% 21,675 37% 21,801 33% 5,563

Lut (5) 100% 9 100% 3 100% 19 100% 1 100% 3 100% 1,247

Mutex (7) 100% 0 43% 0 43% 22 29% 43 43% 64 43% 1

Qshifter (6) 100% 8 100% 26 67% 1,924 17% 0 33% 29 33% 1,107

S (52) 27% 644 25% 910 15% 3,405 2% 0 4% 401 2% 0

Szymanski (12) 42% 1,147 25% 7 67% 2,741 0% 0 8% 0 0% 0

TOILET (8) 100% 1 100% 4,135 75% 528 75% 61 63% 496 100% 1,307

toilet (38) 100% 84 100% 684 84% 531 97% 115 100% 58 97% 395

Tree (14) 100% 0 100% 0 100% 0 100% 37 100% 0 93% 1,051

Summary 71% 9,747 64% 10,412 63% 42,502 51% 36,873 52% 41,109 51% 34,385

Table 2. Results achieved by 2clsP and five other state-of-the-art QBF solvers on all tested
benchmark families. Unsolved instances were timed out after 5,000 sec., and for each family the
solver with highest success rate is shown in bold, where ties are broken by time required to solve
these instances. The summary line shows the average success rate over all benchmark families
and the total time taken (on solved instances only).

The total CPU time is lower with 2clsQ than with 2clsP which was expected. Com-
puting partitions at every decision level is an expensive operation. In summary, these
results demonstrate quite convincingly that our new technique offers robust improve-
ments to 2clsQ.

5.2 2clsP vs. Other solvers

We also compared our new solver 2clsP to five other state of the art QBF solvers Quaffle
[13] (version as of Feb. 2005), Quantor [9] (version as of 2004), Qube (release 1.3)
[19], Skizzo [10] (release 0.82), SQBF [20].

Quaffle, Qube, and SQBF are based on search, whereas Quantor is based on variable
elimination and SAT grounding. Skizzo uses a combination of variable elimination,
SAT grounding, and search, and also applies a variety of other kinds of reasoning on
the symbolic and the ground representations of the instances.

Table 2 shows the performance of 2clsP and all other search based solvers on the
465 problem instances we tested, broken down by benchmark family.

As in the previous table we display for each solver and benchmark the success rate
and the time consumed by the solver on the successfully solved instances. Again, bold
values indicate that the particular solver gained the highest success rate on that families’
instances breaking ties by CPU time consumed.

Dynamically Partitioning for Solving QBF 13

On this measure 2clsP is the best solver on 7 out of the 18 benchmark families.
Skizzo follows with 6, Quantor with 4, Qube with 4, and Quaffle with 1. SQBF is not
the best performer on any benchmark family.

The average success rate over all benchmark families is shown in the final row of
the table. A high average displays fairly robust performance across structurally distinct
instances. On this measure 2clsP is superior to all other search based solvers with an
average success rate of 63%. It is followed by Qube (−11%), SQBF (−12%) and Quaf-
fle (−12%). However, both Skizzo (+8%) and Quantor (+1%) achieve a better average
success rate. In terms of the total CPU time, 2clsP requires the highest amount of CPU
time.

In total 2clsP is a very competitive QBF solver that achieves the best performance
on more benchmark families than any other solver. In addition, its average success rate
is close to the best achieved by any of the tested solvers. Although the new techniques
employed in 2clsP are rather complex we see that they pay off in terms of performance
gains.

5.3 State of the art solver

The results of the QBF competition 2006 [21] indicate that the “best” QBF solver would
probably use a portfolio approach rather than any single solver. For example, our 2clsQ
entry which won the 2006 competition first applied a hyperbinary preprocessor (Pre-
Quel [11, 22]), then it ran the QBF solver Quantor for a fixed period of time. Finally if
the problem was still not solved 2clsQ was invoked on output of PreQuel.

Given the results displayed in [11] a very promising strategy in the competition
would be to apply PreQuel and a time-limited version of Quantor as before, and Skizzo
as final solver. This observation is mainly due to the good standard performance of
Skizzo and the positive impact of preprocessing on Skizzo [11]. It is not clear if the em-
ployment of Quantor in the context of Skizzo is as beneficial as it is for a search-based
solver but given the performance of Quantor it should not turn out to be a drawback
either.

However, depending on the benchmark families in the competition, the results shown
here indicate that 2clsP together with the initial two stage processing of PreQuel and
Quantor would also be able to achieve a high ranking. This is due to the fact that 2clsP
remains to be a competitive solver on several benchmark families even when Skizzo is
supplied with a preprocessed problem instances (e.g., the Adder benchmark family).

6 Conclusions

We have shown how dynamic partitioning can be used to obtain significant improve-
ments to a state of the art QBF solver, 2clsQ. The key to making dynamic partitioning
work is finding a way to utilize clause and cube learning in conjunction with partition-
ing. In this paper we have presented an approach for accomplishing this.

There is, however, much scope for further improvements. These include better heuris-
tics for promoting the dynamic creation of partitions, and better heuristics for deciding
when to and when not to partition. Also the theory behind partial cubes can probably
be elaborated further and perhaps used to obtain further algorithmic insights.

14 Horst Samulowitz and Fahiem Bacchus

References

1. Bryant, R., Lahiri, S., Seshia, S.: Convergence testing in term-level bounded model checking.
Technical Report CMU-CS-03-156, Carnegie Mellon University (2003)

2. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quanti-
fied boolean formulas. In: AAAI/IAAI. (2000) 417–422

3. Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intel-
ligence Research 10 (1999) 323–352

4. Ali, M., Safarpour, S., Veneris, A., Abadir, M., Drechsler, R.: Post-verification debugging of
hierarchical designs. In: International Conf. on Computer Aided Design (ICCAD). (2005)
871–876

5. Jr., R.J.B., Pehoushek, J.D.: Counting models using connected components. In: Proceedings
of the AAAI National Conference (AAAI). (2000) 157–162

6. Darwiche, A.: On the tractable counting of theory models and its application to truth main-
tenance and belief revision. Journal of Applied Non-Classical Logics 11(1-2) (2001) 11–34

7. Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and Complexity Results for #SAT and
Bayesian Inference. In: 44th Symposium on Foundations of Computer Science (FOCS).
(2003) 340–351

8. Samulowitz, H., Bacchus, F.: QBF Solver 2clsQ (2006) available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

9. Biere, A.: Resolve and expand. In: Seventh International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT). (2004) 238–246

10. Benedetti, M.: sKizzo: a QBF decision procedure based on propositional Skolemization and
symbolic reasoning. Technical Report TR04-11-03 (2004)

11. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Principles and Practice of
Constraint Programming, Springer-Verlag, New York (2006)

12. Büning, H.K., Karpinski, M., Flügel, A.: Resolution for quantified boolean formulas. Inf.
Comput. 117(1) (1995) 12–18

13. Zhang, L., Malik, S.: Towards symmetric treatment of conflicts and satisfaction in quan-
tified boolean satisfiability solver. In: Principles and Practice of Constraint Programming
(CP2002). (2002) 185–199

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: Learning for quantified boolean logic satisfi-
ability. In: Eighteenth national conference on Artificial intelligence. (2002) 649–654

15. Benedetti, M.: Quantifier Trees for QBFs. In: Proc. of the Eighth International Conference
on Theory and Applications of Satisfiability Testing (SAT05). (2005)

16. Sang, T., Bacchus, F., Beame, P., Kautz, H., Pitassi, T.: Combining component caching and
clause learning for effective model counting. In: SAT. (2004)

17. Samulowitz, H., Bacchus, F.: Binary clause reasoning in qbf. In: Ninth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT 2006), Lecture Notes in
Computer Science 2919. (2006)

18. Giunchiglia, E., Narizzano, M., Tacchella, A.: Quantified Boolean Formulas satisfiability
library (QBFLIB) (2001) www.qbflib.org.

19. Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding quantified
boolean formulas satisfiability. In: International Joint Conference on Automated Reasoning
(IJCAR). (2001) 364–369

20. Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: Principles and Practice of Constraint
Programming, Springer-Verlag, New York (2005)

21. Giunchiglia, E., Narizzano, M., Tacchella, A.: The qbf2006 competition (2006) available on
line at http://www.qbflib.org/.

22. Samulowitz, H., Davies, J., Bacchus, F.: QBF Preprocessor Prequel (2006) available at
http://www.cs.toronto.edu/˜fbacchus/sat.html.

