
Non-Model-Based Algorithm Portfolios for SAT
Yuri Malitsky2, Ashish Sabharwal1, Horst Samulowitz1, Meinolf Sellmann1

© 2011 IBM Corporation

Boosting the Performance of k-NN Portfolios [CP-2011]

(a) distance-based weighting (b) clustering (c) solver scheduling

Challenging benchmark: a mix of 5567 application, crafted, and random instances

from SAT Competitions 2002-2009; split 10-ways into 70-30 training-test datasets

in a “realistic” / “mean” fashion: complete instance families missing from training!

Algorithm Portfolios for SAT
Motivation

� SAT community has produced dozens of excellent solvers!

• complementary strengths: no single solver ‘wins’ on all benchmarks �

• algorithm portfolios: given F, can we predict which solver will work best on F?

� Dominant technique: runtime prediction, e.g., highly successful SATzilla variants

• limitation: must fit a rather simplistic runtime model to complex solver behavior

� Observation: all we need for portfolios is name of best solver, not actual runtime!

Main Findings

� A simple k-NN classifier can outperform state-of-the-art portfolio solvers for SAT

� E.g., improves upon SATzilla_R, gold medal winner, random category, Competition 2009

� Further improvements: distance-weighting, clustering, and solver scheduling [CP-2011]

k-NN Classification for Algorithm Selection:
(enhanced version participating in SAT Competition 2011)

Experimental Results (sample)

Base solvers: those used in SATzilla_R (2009 Competition version)

Training instances: random category, SAT Comp. 2002-2007 | Testing: random, SAT Comp. 2009

SAT Instances

in the Feature Space

68 more instances solved

(closes 55% of gap to VBS)

24 additional solved

(closes 80% of gap)

Ttrain: training set (with features and runtimes)

k : “trained” neighborhood size

identify k nearest nbrs Tnbrs ⊆ Ttrain

output solver with best PAR10 on Tnbrs

instance F compute

features

of F

solver S

Solver Selection:

Working hypothesis:

instances close* in this space

are best solved by similar solvers

⇒ ask neighbors rather than,

e.g., try to predict runtime

[“3D” projection

of PCA on the

48-dimensional

feature space]

compute

features** &

runtimes of

all F ∈ Ttrain

Ttrain

(training set)
for all F ∈ Tvalidation:

identify k nearest* nbrs Tnbrs ⊆ Tbase

S = solver with best PAR10 on Tnbrs

performance = PAR10(S, F)

output overall performance on Tvalidation

repeat for k ∈ {1, 2, …, 200, …}

repeat for 100 random 70-30

base-validation splits of Ttrain

“best” k
(for Ttrain)

Training Phase (offline):

** features: 48 core SATzilla features

* distance: Euclidean, L2

* distance: Euclidean, L2

