Non-Model-Based Algorithm Portfolios for SAT Yuri Malitsky², Ashish Sabharwal¹, Horst Samulowitz¹, Meinolf Sellmann¹

Algorithm Portfolios for SAT

Motivation

- SAT community has produced dozens of excellent solvers!
 - complementary strengths: no single solver 'wins' on all benchmarks 🟵
 - algorithm portfolios: given F, can we predict which solver will work best on F?
- Dominant technique: runtime prediction, e.g., highly successful SATzilla variants
- Observation: all we need for portfolios is <u>name</u> of best solver, not actual runtime!

Main Findings

- A simple k-NN classifier can outperform state-of-the-art portfolio solvers for SAT
- E.g., improves upon SATzilla_R, gold medal winner, random category, Competition 2009
- Further improvements: distance-weighting, clustering, and solver scheduling [CP-2011]

k-NN Classification for Algorithm Selection:

(enhanced version participating in SAT Competition 2011)

limitation: must fit a rather simplistic runtime model to complex solver behavior

repeat for $\mathbf{k} \in \{1, 2, ..., 200, ...\}$ repeat for 100 random 70-30 base-validation splits of T_{train} "best" k (for T_{train}) identify **k** nearest* nbrs $\mathbf{T}_{nbrs} \subseteq \mathbf{T}_{base}$ $S = solver with best PAR10 on T_{nbrs}$ performance = **PAR10(S, F)** output overall performance on T_{validation} **T**_{train}: training set (with features and runtimes) : "trained" neighborhood size solver **S** identify **k** nearest nbrs **T**_{nbrs} ⊆ **T**_{train} output solver with best PAR10 on T_{nbrs}

SAT Instances in the Feature Space

Working hypothesis:

instances close* in this space are best solved by similar solvers \Rightarrow ask neighbors rather than, e.g., try to predict runtime

* distance: Euclidean, L²

Experimental Results (sample)

Base solvers: those used in SATzilla_R (2009 Competition version) Training instances: random category, SAT Comp. 2002-2007

	Pure Solvers						Portfolios			
	agw-	agw-	gnov-	kenfs	march	pico-	SAT-	SAT-	12-NN	VBS
	$\operatorname{sat0}$	$\operatorname{sat}+$	elty+	KUIIIS	marcin	sat	enstein	$_{ m zilla}$		*/
PAR10	6400	6667	6362	5813	6524	7384	7089	4399	3940	3454
Avg Time	678	698	677	659	688	752	722	534	529	480
# Solved	268	255	270	298	262	220	234	366	390	413
% Solved	47.0	44.7	47.4	52.3	46.0	38.6	41.1	64.2	68.4	72.5

Boosting the Performance of k-NN Portfolios [CP-2011] (a) distance-based weighting (b) clustering (c) solver scheduling .

Challenging benchmark: a mix of 5567 application, crafted, and random instances from SAT Competitions 2002-2009; split 10-ways into 70-30 training-test datasets in a "realistic" / "mean" fashion: <u>complete instance families missing from training</u>!

						Fixed-Spli	t Schedules	
	Basic k -NN	Weighting	Clustering	Weight.+Clust.	Basic k -NN	Weighting	Clustering	Wtg+Clu
# Solved	1609	1611	1615	1617 $(9/10)$	1637	1641	1638	1642 (9/10)
# Unsolved	114	112	108	106 (9/10)	86	82	85	81 $(9/10)$
% Solved	93.5	93.6	93.8	93.9 (9/10)	95.0	95.3	95.1	95.3 (9/10)
Avg Runtime	588	584	584	577 (7/10)	455	446	452	445 (9/10)
PAR10 Score	3518	3459	3369	3314 (8/10)	2683	2567	2652	2551 (9/10)

Testing: random, SAT Comp. 2009

68 more instances solved (closes 55% of gap to VBS)

24 additional solved (closes **80% of gap**)