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Many real-world problems do not have a simple algorithmic solution and casting these

problems as search problems is often not only the simplest way of casting them, but also

the most efficient way of solving them.

In this thesis we will present several techniques to advance search-based algorithms

in the context of solving quantified boolean formulas (QBF). QBF enables complex real-

world problems including planning, two-player games and verification to be captured in

a compact and quite natural fashion. We will discuss techniques ranging from straight

forward pre-processing methods utilizing strong rules of inference to more sophisticated

online approaches such as dynamic partitioning.

Furthermore, we will show that all of the presented techniques achieve an essential

improvement of the search process when solving QBF. At the same time the displayed

empirical results also reveal the orthogonality of the different techniques with respect to

performance. Generally speaking each approach performs well on a particular subset of

benchmarks, but performs poorly on others. Consequently, an adaptive employment of

the available techniques that maximizes the performance would result in further improve-

ments. We will demonstrate that such an adaptive approach can pay off in practice, by

presenting the results of using machine learning methods to dynamically select the best

variable ordering heuristics during search.
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Chapter 1

Introduction

Modeling and solving real-world problems are two cornerstones of Artificial Intelligence

(AI). In particular, the sub-area of Automated Reasoning tackles these challenges by

developing modeling languages to encode real-world problems as well as algorithms to

solve them. Here we focus on approaches that are mainly based on mathematical logic

that have already proven successful on a wide range of real-world applications such as

planning, verification, and robotics (see e.g., [50]).

There exists a range of distinct modeling languages that differ in an essential fash-

ion. The key difference between these languages is there expressiveness. For instance,

propositional logic [24] has limited abilities to represent real-world problems while first-

order logic [24] provides more powerful features and properties that allow it to represent

world-knowledge more compactly [72].

However, the level of expressiveness also correlates with the efficiency of reasoning

within the corresponding modeling language. For example, it is a well-known fact that

classical logical entailment is undecidable in the first-order case [24]. In contrast, rea-

soning within less expressive propositional logic is not only decidable [24], but also com-

putationally much more feasible [63, 50]. Consequently, the challenge is to determine

the right balance between the two measures within the given problem domain in order

1
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to obtain appropriate representational power along with sufficiently efficient inference.

There exist various approaches that deal with this problem, but none of them is able to

neutralize the trade-off between expressiveness and efficiency (see e.g., [65], [89]).

The fundamental steps underlying automated reasoning are summarized in Figure 1.1.

The domain-specific problem instance (e.g., planning, scheduling, games) is encoded into

a modeling language (e.g., propositional or first-order logic). An inference procedure

which operates on this language solves the original problem in its new representation

and returns a solution.

General

Inference

Engine

Solution

Domain-specific

Problem

instance

applicable to all domains

within range of modeling language

Model

Generator

(Encoder)

e.g. logistics, chess,

planning, scheduling, ...

Generic

Figure 1.1: The fundamental steps underlying automated reasoning. The domain-specific

problem instance is encoded into a modeling language. An inference procedure which

operates on this model solves the original problem in its new representation and returns a

solution. [Credit: A. Sabharwal, B. Selman, Beyond Traditional SAT Reasoning, AAAI

2007 Tutorial]
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As a matter of a fact, propositional logic, with its relatively low representational

power is for now one of the most successful modeling languages in AI. This is mainly

due to advances in propositional inference in the last 50 years. The problem of reasoning

within propositional logic is known as the Satisfiability Problem (SAT).

More precisely, SAT is the problem of deciding if there exists an assignment for

variables in a propositional formula that makes the formula true. For more details and

a thorough background on SAT the reader is referred to, for instance, [63] or [50].

One of the first algorithms presented in 1960 to solve SAT was the Davis-Putnam

algorithm (DP) [31] which is based on variable elimination. Nowadays the search-based

algorithm presented two years later, called DPLL [30], is still the state-of-the-art frame-

work for solving SAT. Of course, the original DPLL algorithm has been extended in

many essential ways. A few of these extensions are clause learning, branching heuristics,

intelligent backtracking, and parallelization. These techniques have a significant impact

on the performance of a SAT solver. Again for a summary of these techniques the reader

is referred to, e.g., [42], [63], [50]. In addition the development of data structures tailored

for SAT solving has had an enormous impact on the performance of SAT solvers (e.g.,

watched literals [73]).

SAT was the first problem shown to be NP-complete [104] and is therefore intractable

in general. Since then (1971) there has been a large amount of research on algorithms

for solving the satisfiability problem [42, 50]. Moreover it has been shown that there are

many problem instances modeled within SAT originating from real-world domains that

can be solved extremely efficiently. In fact, in the last two decades the complexity of

problem instances that have been modeled, and solved in SAT has increased in a rather

dramatic fashion. While in 1980 the problem instances that could be solved consisted of

approximately 100 variables and 300 constraints, modeled real-world problems in 2007

contain up to 1, 000, 000 variables and about 5, 000, 000 constraints (see e.g.,[63, 50]).

Figure 1.2 gives an intuitive insight into the complexity of different problem domains.
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In general, a SAT solver is faced with 2|V ariables| combinations of possible complete assign-

ments to the variables in the given problem instance. The figure shows in an approximate

fashion how different problem domains relate to this basic measure of complexity. The

applications shown (e.g., formal verification, planning) in the figure reflect only a subset

of the wide range of applications that exist for SAT. Clearly, there is a demand to be

able to solve very complex real-world problems. Again the reader is referred to the rich

literature on SAT and its applications (e.g.,[63, 50, 69, 42, 88, 103, 108, 62, 18, 17, 16]).

This strong demand for efficient solvers and the already achieved success are the reasons

that SAT solvers improved that drastically and are still the focus of several research

groups around the world.

While these achievements of SAT are not only very impressive but also extremely

useful in practice, it appears to be the case that SAT reaches its limits in real-world

modeling and solving when the problem domain becomes more complex (e.g., involves

uncertainty, multi-agent scenarios, etc.). In fact, Figure 1.2 illustrates this downside of

SAT as well: the size of the propositional encoding required by practical applications

becomes enormous. In other words, SAT is not sufficiently expressive to model complex

problems compactly. In general, problems that are in a higher complexity class than

SAT (NP-complete) such as general AI planning or two-player games like Reversi (both

PSPACE-complete [50, 57]) cannot be compactly represented in SAT. Ali et al. [1] make

the limits of the propositional encoding more apparent. They show that the propositional

encoding of some fault-diagnosis problem requires space that is beyond feasible memory

bounds. We return to this specific example later on in this section. Now we first present

a modeling language that is more expressive than pure propositional logic.

Quantified boolean formulas (QBF) are a powerful generalization of the satisfiability

problem in which variables are allowed to be universally as well as existentially quantified.

The ability to nest universal and existential quantification in arbitrary ways makes QBF

considerably more expressive than SAT. Due to alternating quantification QBF is for
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Figure 1.2: The case complexity of different real-world application. Shown are rough

estimates for propositional reasoning in the corresponding problem domain. [Credit:

Kumar, DARPA, Computer World Magazine and A. Sabharwal, B. Selman, Beyond

Traditional SAT Reasoning, AAAI 2007 Tutorial]

example able to model adversarial settings quite naturally and compactly (e.g., two-

player games like chess, multi-agent scenarios). In contrast, SAT is not able to deal with

adversarial reasoning naturally and effectively since it belongs to a higher complexity class

than SAT. In general it is the case that any NP problem can be compactly encoded in

SAT while QBF allows us to compactly encode any PSPACE problem: QBF is PSPACE-

complete [102].

This expressiveness opens a much wider range of potential application areas for a

QBF solver, including areas like automated planning (particularly conditional planning),
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non-monotonic reasoning, electronic design automation, scheduling, model checking and

verification (e.g., fault-diagnosis), strategic decision making, multi-agent scenarios, prob-

lem domains with incomplete or probabilistic knowledge, see e.g., [85, 84, 37, 36, 84, 32,

1, 52, 101, 15, 60, 61, 68, 82].

The difficulty, however, is that QBF is in practice a much harder problem to solve

than SAT. (It is also harder theoretically, assuming that PSPACE 6= NP). One indication

of this practical difficulty is the fact that current QBF solvers are typically limited to

problems that are about 1-2 orders of magnitude smaller than the instances solvable by

current SAT solvers (1000’s of variables rather than 100,000’s) (see e.g.,[63], [50]).

Nevertheless, this limitation in the size of the instances solvable by current QBF

solvers is somewhat misleading. In particular, many problems have a much more compact

encoding in QBF than in SAT due to its greater expressiveness.

In order to further illustrate the impact of the increased expressiveness available in

QBF, we briefly touch on an example application in the area of formal verification as dis-

cussed in [61]. The following example illustrates the fact that QBF is more succinct than

SAT. In bounded model checking (BMC) the correctness of a given system—normally a

finite state machine—is verified. In general, it is tested if a created system complies with

the desired design rules. In particular, it is checked if for instance an undesired state Su

is reachable in k steps from the initial state S0 (Rk(S0, Su)) given the transition relations

T (Si, Sj) between two states of the system. The classical SAT-based BMC encoding can

be formalized in the following way [61] [15]:

Rk(S0, Su) = ∃S1, S2, ..Sk−1 : I(S0) ∧ F (Su) ∧
k−1∧
i=0

T (Si, Si+1), (1.1)

In Equation 1.1, Si denote possible states in the system and I(S) (respectively F (S))

checks if S is the initial (respectively final) state. Hence, the reachability analysis is

performed by unrolling the transition relation k times and determining the truth value

of the propositional part of Equation 1.1. As [61] points out the number copies of the
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transition relation T is identical to the depth k of the reachability analysis. The bound k

is incremented iteratively so that in each additional iteration the analysis verifies if one

of the final states is reachable in one more step. Since in each iteration the number of

transition relations is increased by the corresponding iteration depth the number of copies

of the transition relations grows in size. Hence, when performing a complete verification

the SAT solver is faced with an exponential number of copies of the transition relations.

Clearly, the size of the SAT encoding can be enormous, and in fact this growth in the

encoding is the main limitation in many application domains. With QBF the same

problem can be modeled in the following way [61]:

Rk(S0, Su) = ∃S1, S2, ..Sk−1 : I(S0)∧F (Su)∧∀U, V (
k−1∨
i=0

(U ↔ Si)∧(V ↔ Si+1)) =⇒ T (U, V )

(1.2)

It is apparent from Equation 1.2 that the transition relations only appear once in the QBF

encoding regardless of the number of iterations. Only the term (U ↔ Si) ∧ (V ↔ Si+1)

has to be added in each iteration. Since the transition relations require the largest amount

of space in the encoding the savings with respect to the size of the encoding are quite

essential. In fact, it has been shown that due to the increase of representational power

this way of modeling bounded model checking is able to reduce the memory requirements

drastically in practice [61] [60].

In the similar problem domain of fault diagnosis an innovative application of QBF

to hardware debugging in electrical circuits is given by [1] [52] as mentioned earlier.

Analogous to the previous example the encoding in QBF does not require the explicit

unrolling of the complete circuit for each additional time step iteration during debugging

as the SAT encoding does. However, [52] do not only show that the QBF encoding of the

problem is many times smaller than an equivalent SAT encoding, but they are also able

to outperform SAT solvers on the SAT encoding while using a QBF solver on the QBF

encoding [52]. Results like this demonstrate the potential of QBF and the importance of

continuing to improve QBF solvers.
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Finally, it is also worthwhile to point out that the research on QBF is a much younger

and less active area than SAT. Research on QBF solvers only started about a decade ago.

Only recently have more researchers become involved with this new modeling language

and its inference engines. While SAT modeling and solving has reached a level at which

it is commercially used in a wide range of industries, QBF research has still ways to go

in order to achieve a similar impact.

1.0.1 Contributions Of This Work

In this thesis we present a range of novel approaches that make progress toward an

efficient and practically applicable QBF solver. Referring back to Figure 1.1 the work

presented here is only concerned with improving the inference engine. Recently, the topic

of how to encode real-world problems both efficiently and effectively in QBF received more

attention and several new insights and techniques have been proposed (see, e.g., [2]).

We mainly focus on several extensions of the DPLL algorithm for QBF. While the

core of this thesis concentrates on novel solving techniques based on inference, the last

part introduces a machine learning method that shows that it is possible to automatically

decide in which context to apply which solving technique in order to achieve the best

performance.

All the inference procedures presented in this thesis were able to improve state of

the art in QBF solving. While we provide the reader with an extensive amount of

benchmarking results in order to illustrate the impact of the introduced techniques, the

performance of our proposed techniques has been also independently verified by the QBF

competition [49]. In fact, a combination of the approaches and insights that we present in

Chapter 3 and 4 were able to rank first, second, and third in the international competition

of 2006. The preprocessing strategy we present in Chapter 3 is especially effective and

the impact of preprocessing seems to be much stronger than with SAT.

We show in Chapter 4 that the dynamic employment of SAT as a look-ahead technique
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within QBF solving can be extremely effective. This approach, based on the relaxation

of the underlying problem instance, integrates key technologies—especially learning—

incorporated in SAT solving very tightly within a QBF solver.

Similar observations also hold for the results achieved by dynamically partitioning

QBF during solving that we present in Chapter 5. While in SAT there exists no empirical

evidence that the effort of determining if the problem falls into independent components

appears to be worthwhile, the benchmark results by our partitioning-based solver are

much more encouraging.

Besides the empirical results we also present a number of new theoretical results.

For instance, in Chapter 5 we show how learning in a partitioned-based solver can be

accomplished soundly. In general, we show that all our extensions retain the soundness

and completeness properties of the underlying DPLL algorithm.

In addition to these previously mentioned inference techniques we also present results

on adaptive search in the context of QBF. In fact, the work discussed in Chapter 6 is

the first one reported in this area. We show that it is possible to extract features out

of QBF instances that are sufficiently strong to discriminate between problem instances

that differ in their structural properties. In the static context we present a linear clas-

sifier that is able to predict which QBF solver to employ in order to achieve the best

performance. In addition, we show that these structural properties are altered during the

solving process and that it is possible to automatically adjust the inference engine to take

these changes into account by altering the solving strategy. Again, we can demonstrate

that this technique improves our ability to solve QBF.

1.0.2 Structure of this thesis

This thesis falls naturally into seven parts, which are relatively independent:

• Solving QBF with Search (Chapter 2),
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• Preprocessing and solving QBF with strong rules of inference (Chapter 3),

• Relaxation of QBF by employing a SAT solver during QBF solving (Chapter 4),

• Dynamic partitioning during QBF solving (Chapter 5),

• Employing machine learning techniques to automatically adapt the solving strategy

(Chapter 6),

• Assessment of the work done in this thesis and ideas for future work (Chapter 7).

Chapter 2 forms the main body of the thesis, and is devoted to introducing the

necessary background as well as some novel definitions and properties of QBF. Reading

Chapter 2 sets the appropriate context required to enable a complete understanding of

the different approaches that we present in the subsequent chapters. Furthermore, this

chapter provides several novel insights on QBF and its relation to search. In addition,

we also discuss related work in this chapter.

Based on the information and insights provided in Chapter 2 the remaining chapters

can be read completely independently of each other.

Chapter 3, Chapter 4, and Chapter 5 are concerned with new inference methods

in the context of QBF. In Chapter 3 a version of extended binary clause reasoning is

employed in order to process QBF instances in a static as well as a dynamic fashion. The

underlying idea is to perform more reasoning in order to achieve a better performance in

QBF solving.

An algorithm that utilizes a SAT solver by relaxing the original QBF formula is dis-

cussed in Chapter 4. The SAT solver functions as a powerful look ahead technique during

QBF solving. Finally, Chapter 5 tries to dynamically divide the underlying problem in-

stance and to achieve better performance by tackling the sub-problems independently

instead of solving the complete problem as a whole.
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In Chapter 6 a novel framework to solving QBF is developed that combines a search-

based QBF solver with machine learning techniques. The employment of machine learn-

ing techniques allows us to automatically adapt the solving strategy and further improve

our ability to solve QBF.

Chapter 7 summarizes and assesses the work presented in this thesis and further ideas

for future work are presented.



Chapter 2

Solving QBF with Search

2.1 Introduction

In this chapter we introduce the basics required to enable a complete understanding of

the different approaches to solve quantified boolean formulas (QBFs) in the subsequent

chapters. In addition we survey several techniques that have been applied to tackle the

problem of solving quantified boolean formulas. An outline of this chapter is as follows.

First, the necessary background is provided. While presenting the required notations

and definitions at the beginning of this chapter we also cover the semantics of QBF in

more detail. Based on these fundamentals we present a framework for a generic time-

exponential search-based QBF solver based on DPLL [30]. We present in detail how

search-based QBF solvers relate to the semantics of QBF. Given this understanding of a

elementary search-based solver we move our focus to a discussion of learning techniques in

the context of QBF. In particular, we concentrate on solution learning which is a newly

introduced technique in QBF solving. We also provide a novel definition of solution

learning in order to explain how solution learning is embedded within a search-based

QBF solver. We close the section on backtracking search with a discussion on several

other extensions of this basic framework that have been developed to improve the basic

12
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algorithm.

Subsequently we address the class of QBF solvers that solve QBF by reducing it to

SAT. These techniques are mainly based on variable elimination [31] and skolemization

[100].

Furthermore we briefly discuss the classical trade off between time and space in the

context of QBF solving. We close with some conclusions.

2.2 Quantified Boolean Formulas

A quantified boolean formula has the form ~Q.F , where F is a propositional formula and

~Q is a sequence of quantified variables (∀x or ∃x). We require that no variable appear

twice in ~Q and that all variables in F appear in ~Q (i.e., F contains no free variables).

In this thesis we restrict our attention to propositional formula F expressed in CNF.

The main motivation of such a restriction is that most QBF solvers (including ours) are

restricted to CNF inputs.

A quantifier block qb of ~Q is a maximal contiguous subsequence of ~Q where every

variable in qb has the same quantifier type. We order the quantifier blocks by their

sequence of appearance in ~Q: qb1 ≤ qb2 iff qb1 is equal to or appears before qb2 in ~Q.

Each variable x in F appears in some quantifier block qb(x), and the ordering of the

quantifier blocks imposes an order on the variables. For two variables x and y we say

that x ≤q y iff qb(x) ≤ qb(y). Note that the variables in the same quantifier block

are unordered. The following definition summarizes the most important properties of a

variable and its relations to other variables.

Definition 1

1. For two variables x and y, x ≤q y if qb(x) ≤ qb(y) and x <q y if qb(x) < qb(y).

2. Variable x is universal (existential) if its quantifier in ~Q is ∀ (∃).
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3. A variable x is downstream (upstream) of a set of variables V if (1) x 6∈ V and

(2) ∀y.y ∈ V =⇒ y ≤q x (∀y.y ∈ V =⇒ x ≤q y)). That is, x is not a member of

V and appears no sooner (later) in the quantifier sequence ~Q than the last (first)

quantifier block containing elements of V .

4. A variable x is maximal (minimal) in a set of variables V if (1) x ∈ V and (2)

∀y.y ∈ V =⇒ y ≤q x (∀y.y ∈ V =⇒ x ≤q y). That is x is a member of V and

appears in the highest (lowest) quantifier block amongst all variables of V .

Each variable x generates two literals ` and ¬`. As a slight abuse of notation we often

use a literal ` to refer to `’s variable. For example, when we say that ` is maximal in a

set of variables V , we mean that `’s variable is maximal in V . Similarly, we might assert

that ` is universal if `’s variable is universal, that `1 <q `2 if `1’s variable is <q than `2’s

variable, or that ` is added to a set of variables V if `’s variable is added to V .

For example, ∃e1e2.∀u1u2.∃e3e4.(e1,¬e2, u2, e4) ∧ (¬u1,¬e3) is a QBF with the quan-

tifier prefix ~Q = ∃e1e2.∀u1u2.∃e3e4 and the propositional formula F equal to the two

clauses (e1,¬e2, u2, e4) and (¬u1,¬e3). The quantifier blocks in order are ∃e1e2, ∀u1u2,

and ∃e3e4, and we have, e.g., that, e1 <q e3, u1 <q e4, u1 is universal, e4 is existential, e4

is downstream of the set {u2, e3}, e3 is maximal in the set {u2, e3}, and u2 is upstream

of the set {u1, e3, e4}. The empty set of literals has by definition a quantifier level that

is lower than any quantifier level of a variable contained in ~Q.F (e.g.,0).

A QBF instance can be reduced by assigning values to some of its variables. The

reduction of a formula ~Q.F by a literal ` (denoted by ~Q.F |`) is the new formula ~Q′.F ′

where F ′ is F with all clauses containing ` removed and the negation of `, ¬`, removed

from all remaining clauses, and ~Q′ is ~Q with the variable of ` and its quantifier removed.

For example, ∀xz.∃y.(¬y, x, z) ∧ (¬x, y)|¬x = ∀z.∃y(¬y, z). Note that we also have that

∀z.∃y(¬y, z) is equivalent to ∀xz.∃y(¬y, z). That is if a variable does not appear in F its

presence in ~Q is irrelevant. In addition given a set of literals T we also denote by ~Q.F |T

the reduction of F by all literals in T .
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Furthermore, we also define the notion of universal reduction as introduced by [22].

A universal variable u is called a tailing universal in a clause c if for every existential

variable e ∈ c we have that e <q u. The universal reduction of a clause c is the process

of removing all tailing universals from c. The universal reduction of a QBF formula ~Q.F

is the process of applying universal reduction to all of the clauses of F . As we will show

later universal reduction produces an equivalent QBF formula.

For example, the QBF ∃e1∀u∃e2(e1, u) ∧ (u, e2) can be universally reduced to the

equivalent QBF ∃e1∀u∃e2∃(e1) ∧ (u, e2). Note that due to the CNF input format QBF

instances always have a quantifier prefix that ends with a quantifier block of existentials

after universal reduction has been performed as it is standard.

We call the application of unit propagation and universal reduction until closure

Q-propagation, and denote by QProp( ~Q.F ) the new formula that results from Q-

propagation. In Q-propagation any universal reduction steps are always performed prior

to any unit propagation steps: a unit clause containing only a universal variable should

yield the empty clause rather than forcing the universal.

Semantics. A SAT model Ms of a CNF formula F is a truth assignment π to the

variables of F that satisfies every clause in F . We denote the value of a variable v in π

by π(v). We have developed an obvious extension of SAT models for QBF[95].

Definition 2 QBF Model Mq as a tree

A QBF model (Q-model) Mq of a quantified formula ~Q.F is a tree of truth assignments

in which the root is the empty truth assignment, and every node n assigns a truth value

to a variable of F not yet assigned by one of n’s ancestors. The tree Mq is subject to the

following conditions:

1. For every node n in Mq, n has a sibling if and only if it assigns a truth value to a

universal variable x. In this case it has exactly one sibling that assigns the opposite

truth value to x. Nodes assigning existentials have no siblings.
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2. Every path π in Mq (π is the sequence of truth assignments made from the root to

a leaf of Mq) must assign the variables in an order that respects <q . That is, if n

assigns x and one of n’s ancestors assigns y then we must have that y ≤q x.

3. Every path π in Mq must be a SAT model of F . That is π must satisfy the body

of ~Q.F .

Thus a Q-model has a path for every possible setting of the universal variables of ~Q,

and each of these paths is a SAT model of F . We say that a QBF ~Q.F is QSAT iff it

has a Q-model. The QBF problem is to determine whether or not ~Q.F is QSAT.

1
e∃

1
u∀

1
e¬

2
u¬

3
e

2
u

3
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Universal Node
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Figure 2.1: An QBF Model Mq of the formula ∃e1∀u1∃e2∀u2∃e3.F represented as a tree.

An example for a Q-model represented as a tree given the underlying QBF ∃e1∀u1∃e2∀u2∃e3.(e1∨

u1∨¬e2∨¬e3)∧(e2∨u2∨e3) is shown in Figure 2.1. In the displayed tree each existential

node has exactly one child node and each universal node has exactly two child nodes as
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required by Definition 2. Furthermore, all constraints are satisfied at each leaf node of

the tree. The quantifier prefix shown on the right-hand side of the figure emphasizes the

ordering constraint the tree has to satisfy.

An alternate, and more standard way of defining QSAT is the following recursive

definition (e.g.,[95]):

Definition 3 Recursive Definition of QSAT

1. F is the empty set of clauses then ~Q.F is true.

2. F contains an empty clause then ~Q.F is false.

3. ∀v ~Q.F is true iff both ~Q.F |v and ~Q.F |¬v are true.

4. ∃v ~Q.F is true iff at least one of ~Q.F |v and ~Q.F |¬v is true.

Note that since ~Q contains all of the variables of F , cases 3 and 4 must eventually reduce

to instances of cases 1 and 2.

Proposition 1 ~Q.F has a Q-Model iff it evaluates to true under the preceding recursive

definition.

Proof: The proof is by induction on the number of variables in the prefix. If ~Q has

no variables then F can only be either a collection of empty clauses or it must be the

empty set of clauses (all variables of F must appear in ~Q). In the first case ~Q.F can have

no Q-model since no path can satisfy F . In the second case a tree consisting of only an

unlabelled root node is a Q-model for ~Q. Assume that if ~Q.F has n variables then ~Q.F

has a Q-model if and only if ~Q.F evaluates to true. Consider a formula ∃v ~Q.F that has

n+ 1 variables.

”⇐”: Assume that ∃v ~Q.F has a Q-model. Then by the definition of a Q-model, either

~Q.F |v or ~Q.F |¬v has a Q-model, which consists of the left or right subtree of the Q-model

of ∃v ~Q.F . Therefore, by the induction hypothesis, either ~Q.F |v or ~Q.F |¬v evaluates to

true. Therefore, by #4, ∃v ~Q.F evaluates to true.
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”⇒”: Assume that ∃v ~Q.F evaluates to true. Then by #4, either ~Q.F |v or ~Q.F |¬v

evaluates to true. Therefore, by the induction hypothesis, either ~Q.F |v or ~Q.F |¬v has a

Q-model Mq. Let M′
q be the Q-model consisting of a root node whose single child is the

root node of Mq. Further we relabel the root node of M′
q with v = true or v = false

depending on whether Mq is a Q-model of ~Q.F |v or ~Q.F |¬v. Clearly, M′
q is a Q-model

for ∃v ~Q.F .

Therefore, ∃vQ.F has a Q-model if and only if it evaluates to true. The case with

∀vQ.F is similar. Therefore, by induction, a formula ~Q.F has a Q-model if and only if

it evaluates to true.

The advantage of our “tree-of-models” Definition 2 is that it makes two key observa-

tions more apparent. These observations can be used to prove the correctness of various

techniques utilized in QBF solvers.

Lemma 1 If F ′ is a formula with the same variables of F that has the same satisfying

assignments (SAT models) as F then ~Q.F will have the same satisfying models (Q-

models) as ~Q.F ′.

Proof: Mq is a Q-model of ~Q.F iff each path in Mq is a SAT model of F iff each

path is a SAT model of F ′ iff Mq is a Q-model of ~Q.F ′.

This observation allows us to transform F with any model preserving SAT transfor-

mation. Note that the transformation must be model preserving, i.e., it must preserve

all SAT models of F . Simply preserving whether or not F is satisfiable is not sufficient.

A Q-model preserving (but not SAT model preserving) transformation that can be

performed on ~Q.F is universal reduction which we defined earlier. Before proving this

result we first make the following observation:

Lemma 2 Let Mq be a Q-model for ~Q.F . In addition, let F ′ denote the formula F with

either (a) clauses removed or (b) literals from the variables of F added to the clauses.

Then Mq is a Q-model for ~Q.F ′.
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Proof: For Case (a) we observe that along any path in Mq all clauses in F are

satisfied. Since F ′ has less clauses than F , Mq is clearly a Q-model for ~Q.F ′. In Case

(b) we note again that along any path in Mq all clauses are satisfied. All altered clauses

in F ′ are less constraining than the clauses in F since these clauses in F ′ express weaker

disjunctive conditions. Consequently, Mq is a Q-model for ~Q.F ′.

Now we show that universal reduction does not alter the set of Q-models.

Lemma 3 Universal reduction preserves the set of Q-models.

Proof: Say that v ∈ c is a tailing universal, then along any path π in any Q-Model

Mq of ~Q.F , c must be satisfied by π prior to v being assigned a value. Say not, then since

v is universal, the prefix of π that leads to the assignment of v must also be the prefix of

another path π′ that sets v to false: but then π′ will falsify c because at this point c is a

unit clause containing only the universal variable v. Therefore Mq cannot be a Q-model

of ~Q.F . Hence every path π satisfies the universal reduction of c (and all other clauses

in F ), and thus Mq is also Q-model of ~Q.F ′ where F ′ is F with the tailing universal v

removed from c. This process can be repeated to remove all tailing universals from all

clauses of F .

On the other hand, it is the case that if ~Q.F ′ has a Q-model, then ~Q.F is true by the

same Q-model as well. This follows directly from Lemma 2.

Before we conclude this section on the semantics of QBF we also show that the

following additional properties hold:

Lemma 4 Let e be an existential variable and Mq be a Q-model of ~Q.F |e. Then Mq can

be extended to a Q-model M′
q of ~Q.F .

Proof: Since Mq is a Q-model of ~Q.F |e each complete path in this model is a SAT

solution of F |e. Consequently, each clause c of F containing ¬e is satisfied by some other

variable in c along each path. All clauses of F not contained in or subsumed by F |e must

contain e. We can extend Mq by adding the existential node of e at any position where

it satisfies the quantifier ordering. The resulting Q-model M′
q thus satisfies every clause
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of F along each path and is a Q-model for ~Q.F .

Lemma 5 Let u be an universal variable and Mq be a Q-model of ~Q.F . Then Mq

contains a Q-model of ~Q.F |u.

Proof: By Definition 2 the Q-model Mq covers both settings of the universal u.

Consequently, ~Q.F |u simplifies the original problem by fixing u to one particular truth

value. At every appearance of a pair of siblings assigning u in the Q-tree of Mq we simply

remove the sibling labeled by ¬u and the subtree below it and replace the sibling labeled

u by its children. The resulting tree is a Q-model of ~Q.F |u.

Corollary 1 If ~Q.F is true then so is ~Q.F |u when u is a universal literal. If ~Q.F |e is

true for any existential literal e then so is ~Q.F .

The two semantic Definitions 2 and 3 also reflect the mode of operation utilized by

a search based algorithm to solve QBF. Definition 3 captures the two main properties

of QBF that must be accommodated by the search in a straight forward fashion. First,

the search must solve both settings of every universal variable, and second the variable

ordering followed during search must respect the ordering imposed by quantifier nesting.

Conceptually, a search based algorithm traverses the search space trying to uncover a

Q-model. The following section describes such an algorithm in more detail.

2.3 Search-Based QBF Solver

Most current QBF solvers, e.g., QuBE [46], Semprop [66], Quaffle [111], SSolve [39] are

adaptations of the classic DPLL backtracking search algorithm originally developed for

solving SAT [30]. In addition, there also exist approaches based on the original Davis-

Putnam procedure [31] and Skolemization [100] that will be discussed in the subsequent

section.

There are two main properties of QBF that must be accommodated by the search.

First, the search must solve both settings of every universal variable, and second the
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variable ordering followed during search must respect the ordering imposed by quantifier

nesting. Both of these properties make QBF solving harder than SAT solving. The first

property is intrinsic to QBF, and must be accommodated in some fashion by any QBF

solver. The second property is, however, somewhat more tractable, and various attempts

have been made to avoid the variable ordering constraint. In a subsequent chapter we

will discuss a search-based solver that tries to decrease the impact of the strict variable

ordering. In addition, the non-search based methods, discussed in the next section, can

also be viewed as being an approach for decreasing the impact of the restrictive variable

ordering of QBF.

In the remainder of this section we introduce a general framework for a search-based

QBF solver. Then we will discuss the notion of solution learning. In addition, we review

several other extensions to this framework.

2.3.1 DPLL for QBF

In this section we introduce a framework based on DPLL [30] that is close to current

search-based QBF solvers. First, we start off with a basic DPLL based algorithm where

the similarity to the recursive definition 3 is apparent. Furthermore, we describe how

it deals with the two previously mentioned main requirements of QBF search. Then we

move on to a DPLL framework that incorporates clause as well as solution learning.

DPLL works on the principle of assigning variables (reducing the theory by a variable

setting), simplifying the formula to account for that assignment and then recursively

solving the simplified formula.

The algorithm utilized in modern SAT solvers (e.g., [73], [35]) can be adapted to solve

QBF. A simple recursive version of this algorithm called QBF-DPLL-Basic is shown

in Algorithm 1.
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1: 〈bool Result〉 QBF-DPLL-Basic ( ~Q.F )

{Return true if the theory is empty}

2: if all clauses of F are satisfied then

3: return true

{Return false if the theory contains a falsified clause}

4: if F contains a falsified clause then

5: return false

6: Pick v from the first quantifier block and let ` = v or ¬v

7: Result = QBF-DPLL-Basic QProp
(
~Q.F |`

)
{If v is existential only branch on the other truth value if the first one failed}

8: if v is existential and Result == false then

9: Result = QBF-DPLL-Basic QProp
(
~Q.F |¬`

)
{If v is universal only branch on the other truth value if the first one succeeded}

10: if v is universal and Result == true then

11: Result = QBF-DPLL-Basic QProp
(
~Q.F |¬`

)
12: return Result

Algorithm 1: Basic DPLL for QBF

As input the algorithm receives the problem instance ~Q.F and it returns the corre-

sponding evaluated truth value. The lines 2-3 and 4-5 reflect the two base cases from the

recursive definition 3.

At line 6 we see that QBF-DPLL-Basic must always branch on a variable from

the outermost quantifier block. As mentioned before this imposes a constraint on the

possible variable orderings the search can use as compared to SAT. Dynamic variable

ordering is , however, allowed within a quantifier blocks. And this can have a significant

impact on performance [111]. However, research on variable ordering for QBF is not as

advanced as in SAT (e.g., [54], [67]).

After selecting a literal l the algorithm is called recursively on the theory reduced by `
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and depending on the quantification type of v the algorithm continues recursing or returns

the determined result. In the existential case the algorithm only tries the opposite truth

value of ` if the recursion failed. Otherwise it returns with success from this recursive

call. This captures #3 in the Definition 3 which requires that if v is existential only one

setting has to succeed. In contrast, if v is universal the algorithm only recurses on the

opposite truth value if the first setting returns with success. Again, the correspondence

with #4 of Definition 3 is apparent.

Theorem 1 QBF-DPLL-Basic as shown in Algorithm 1 is sound and complete.

Proof:

Soundness:

The proof is by induction on the number of variables in the prefix ~Q. The first base

case is when F is the empty theory, where QBF-DPLL-Basic soundly returns with true.

The second base case is when F contains the empty clause where QBF-DPLL-Basic

soundly returns with false.

Assume that if ~Q.F has n variables then QBF-DPLL-Basic returns from the root

node with the correct answer. Now consider a formula ∃(∀)v ~Q.F that has n+1 variables.

By the induction hypothesis the value returned by QBF-DPLL-Basic on ~Q.F with n

variables is sound. If the returned truth value is true and v is existential, QBF-DPLL-

Basic returns true and is sound. If the returned value is true and v is universal, QBF-

DPLL-Basic recurses on the opposite truth value of v. If this recursive call returns true,

both settings of the universal are verified and QBF-DPLL-Basic correctly return true.

Else, one branch of the universal failed and accordingly QBF-DPLL-Basic returns

false.

If the returned value on ~Q.F with n variables is false and v is existential, QBF-

DPLL-Basic recurses on the opposite truth value of v. If this recursive call returns

true, one setting of the existential succeeds and QBF-DPLL-Basic correctly returns

true. Else, both branches of the existential failed and accordingly QBF-DPLL-Basic
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returns false. If the returned value on ~Q.F with n variables is false and v is universal,

one universal setting failed, and QBF-DPLL-Basic soundly returns false.

Consequently, both ∃v ~Q.F and ∀v ~Q.F evaluate to the correct answer. Therefore, by

induction, QBF-DPLL-Basic applied on a formula ~Q.F is sound.

Completeness:

That QBF-DPLL-Basic is also complete follows from the fact that no recursive

call has exactly the same prefix of assignments as another call (after a failure (success)

the prefix has a different value for one of the existential (universal) variables). Since

there are only a finite number of sets of assignments, there can only be a finite number

of recursive calls, and the root QBF-DPLLinvocation must eventually return. By the

previous argument this answer must be correct.

2.3.2 Learning

Modern backtracking QBF solvers employ two non-chronological backtracking schemes:

conflict analysis and solution analysis [66, 47, 33, 109]. While conflict analysis is very

similar to the conflict analysis applied in SAT solvers, solution analysis is a technique

new to QBF. Therefore, we will put an emphasis on solution analysis here.

First we introduce an extension of Algorithm 1 that makes the algorithm close to

current search-based QBF solvers. The extension adds conflict as well as solution learn-

ing. The resulting QBF-DPLL algorithm is displayed in Algorithm 2. In addition to

the boolean truth value the algorithm also returns a backtracking level and set of literals

called a cube (which will be discussed later on). This extra information is used to enable

non-chronological backtracking.

In comparison to Algorithm 1, with learning the input formula ~Q.F must be globally

accessible. To do learning, the algorithm must examine how the original formula ~Q.F

has been altered as a result of the assumptions made during search. Furthermore, in

Algorithm 2 the parameter T is the trail of literals assumed by previous instantiations
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(variable assignments). T not only consists of decision literals but also stores the literals

forced by unit propagation. Algorithm 2 is invoked on a given input formula ~Q.F with

the empty set of literals T and with Level assigned to 1.

Conflict Analysis

Conflict analysis is a standard SAT technique that involves learning new clauses via a

resolution process. Here, we will not discuss learning based on conflicts in detail since it

is very similar to learning in the SAT case (except for universal reduction). We refer the

reader to for instance [73] for the propositional case and to [66, 47, 33, 109] for QBFs.

Instead we go through the algorithm and explain the context in which conflict-based

learning is applied.

With learning the employed propagation in Algorithm 2 requires the detection of

contradictions and the performance of clause learning. Consequently, QProp returns a

newly inferred clause if a conflict is discovered (line 7). A new clause is determined via

a process of resolution and universal reduction and is added to the original formula ~Q.F

(line 10).

QBF-DPLLwill then backtrack to the asserting level of the conflict (line 11), which

is the level where all but one of the literals in the conflict clause have been falsified. This

is the level where the conflict clause is made unit.

After returning from all levels deeper than BTLevel (line 15-16 or 21-22), the solver

arrives at line 7, where we now have that the new conflict clause is unit and forces `.

The repeat-until loop (line 6) will now invoke QProp again, which will make additional

inferences due to the new conflict clause in F . Then a new branching decision is made

(i.e., a new variable is chosen (line 12)).

Notice that the solver does not actually undo the original decision made at this level.

Rather it simply augments the reduction of ~Q.F by the new unit implicant ` (line 7).

Thus the solver might return to this level on failure a number of times: each time it
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1: 〈bool Result, cube c, int BTLevel〉 QBF-DPLL(Level, T )

2: if T [satisfies all clauses of F/triggers stored cube] then

3: c = [computed new cube by solution analysis/triggered cube]

4: u = deepest universal in c; BTLevel = Level of u was branched on

5: return 〈SUCCEED, c, BTLevel〉{Note if c is empty then BTLevel = 0}

6: repeat

7: conflict = QProp
(
~Q.F |T

)
{Must detect contradictions+perform clause learning}

8: if (conflict != NULL) then

9: BTLevel = Level where conflict clause was made unit

10: ~Q.F = ~Q.F ∪ conflict {Learnt clauses modify original formula F )}

11: return 〈FAIL, -, BTLevel〉

12: Pick minimal (i.e., outermost) v not yet assigned by T and let ` = v or ¬v

13: T’ = T ∪ ` {Add ` to trail T}

14: 〈Result, c, BTLevel〉 = QBF-DPLL
(
Level + 1, T ′

)
15: if (BTLevel < Level) then

16: return 〈Result, c, BTLevel〉

17: if (Result == SUCCEED) then

18: cube[l] = c {Store cube}

19: T’ = T ∪ ¬` {Add ¬` to trail T and solve recursively}

20: 〈Result, c, BTLevel〉 = QBF-DPLL
(
Level + 1, T ′

)
21: if (BTLevel < Level) then

22: return 〈Result, c, BTLevel〉

23: if (Result == SUCCEED) then

24: newcube = cube[l] ∪ c \ {¬l, l} {Tailing existentials are removed}

25: u = deepest universal in newcube; BTLevel = Level of u was branched on

26: return 〈SUCCEED, c, BTLevel〉 {Note if c is empty then BTLevel = 0}

27: until false {only exit from this loop via a return to a higher level}
Algorithm 2: DPLL for QBF with Learning
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discovers that another literal is implied at this level. Eventually, the recursive call at line

20 returns success at this level and it will return to a higher level. (Each failure return

sets another variable, so a failure return to this level at line 7 can only occur a finite

number of times.)

Solution Analysis

Success returns occur as a consequence of solution analysis (line 2-5). Solution analysis

(e.g., [111], [33], [66]) is a technique particular to QBF. It starts when a complete satis-

fying assignment π of F is found a subset of π is identified that satisfies every clause in

F .

Although cubes were previously discussed in [109, 33, 66] we now give a new formal-

ization of this concept. Our definition tries to capture both the formal properties of a

cube in a way that is more closely related to their usage in a search-based solver.

First we define the relation ≤u for two consistent sets of literals c and c′. A set of

literals c is consistent if ∀l.l ∈ c =⇒ ¬l 6∈ c.

We say that c′ ≤u c iff ∀l ∈ c′ \ c we have qb(l) ≤ umax(c) where umax(c) is the

deepest quantifier block containing a universal literal of c.

Definition 4 Cube

A consistent set of of literals c is a cube for the QBF formula ~Q.F iff for all consistent

sets of literals c′ such that c′ ≤u c we have that ~Q.F |c′ is QSAT.

In other words a cube is defined by the property that a QBF ~Q.F reduced by it is QSAT

regardless of the setting of the literals not mentioned in the cube that are upstream of

the deepest universal in the cube. According to this definition the empty cube c ,i.e.,

the empty set of literals is a cube iff the original formula ~Q.F is QSAT. Note that the

quantifier level of the empty set of literals is lower than any quantifier level of any variable

in ~Q.F (as defined at the beginning in Section 2.2).

As we will discuss in Chapter 5 this definition of cubes is not sufficient for solution
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learning in a context where the theory F is dynamically partitioned. However, unlike

previous definitions this definition can be more easily extended to the context of dynamic

partitioning.

The following theorem justifies standard cube learning in a search-based QBF solver.

Each item of this theorem is explained within a subsequent example.

Theorem 2

1. If c is a set of literals that satisfies every clause of F , then c is a cube.

2. If c is a cube and e is existential and maximal in c, then c′ = c \ {e} is a cube

3. If c1 and c2 are cubes such that (1) there is a unique literal u such that u ∈ c1 and

¬u ∈ c2, (2) this clashing literal is universal, and (3) u is maximal in c1 and ¬u is

maximal in c2, then c1 ∪ c2 \ {u,¬u} is a cube.

Proof:

For item 1: Let c denote the set of literals that satisfies every clause in the theory. Let

c′ ≤u c. We must show that ~Q.F |c′ is QSAT. Since ~Q.F |c is the empty theory, ~Q.F |c′ is

also the empty theory and by Definition 3 it is QSAT.

For item 2: Let c denote a cube, where the existential e is maximal in c. We want

to show that c \ {e} is a cube as well. Let c′ ≤u c \ {e}. We must show that ~Q.F |c′ is

QSAT. Since e is maximal in c we cannot have ¬e in c′ (since c′ ≤u c\{e}). Thus c′∪{e}

is consistent. Furthermore, c′ ∪ e ≤u c, and since c is a cube we have that ~Q.F |c′ ∪ e is

QSAT. Then by Lemma 4 we must also have that ~Q.F |c′ is QSAT.

For item 3: Let c1 and c2 denote cubes that satisfy the conditions of item 3. Then let

c3 denote the cube arising from the resolution of c1 and c2 with ur as the corresponding

clashing universal, ur ∈ c1, ¬ur ∈ c2, and c3 = c1 ∪ c2 \ {ur,¬ur}). Let c′ ≤u c3. We

must show that ~Q|c′ is QSAT. We do this by showing that an even stronger formula than

~Q.F |c′ is QSAT, which will imply that ~Q.F |c′ must also be QSAT.
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In particular, let E be the set of existentials upstream of ur that do not appear in

c′. Let ~e be an arbitrary consistent set of literals from E, i.e., ~e is an fixed but arbitrary

valuation of the existentials in E. Now consider the formula ~Q.F |c′∪~e—this is a stronger

formula than ~Q.F |c′ by Lemma 4. Then let ~u be the set of universal literals appearing

in c′ that do not appear in c3. Consider the formula ~Q.F |c′∪~e−~u; by Lemma 5 this is

a stronger formula than ~Q.F |c′∪~e, and thus a stronger formula than ~Q.F |c′ . We now

proceed to show that ~Q.F |c′∪~e\~u is QSAT.

The set c′∪~e\~u instantiates every existential upstream of ur. Thus Q.F |c′∪~e\~u consists

of an initial universal quantifier block containing ur. Since the variables in each quantifier

block can be ordered in an arbitrary fashion without affecting the formula, Q.F |c′∪~e\~u

can be written as the QBF ∀ur(Φ) where Φ is itself a QBF formula. By Definition 3

∀ur(Φ) is QSAT iff both Φ|ur and Φ|¬ur are QSAT. Φ|ur is equivalent to ~Q.F |c′∪~e\{~u∪ur}

while Φ|¬ur is equivalent to ~Q.F |c′∪~e\~u∪¬ur . We have that c′ ∪ ~e \ {~u ∪ ur} ≤u c1 and

~e \ {~u ∪ ¬ur} ≤ur c2. Since both c1 and c2 are cubes both of these formulas must be

QSAT, and hence ~Q.F |c′∪~e\{~u∪ur} is QSAT and hence ~Q.F |c′ is QSAT as required.

Theorem 2 captures the essential processes that occur within solution learning in a

search-based QBF solver as we illustrate in the following example. As an example assume

that we have the following QBF:

∃e1∀u1∃e2∀u2∃e3(¬e1 ∨ e3) ∧ (¬e2 ∨ u2 ∨ e3) ∧ (¬e2 ∨ u1) ∧ (¬e3 ∨ ¬u1)

In addition, we assume that the solver assigned the variables in such a way that it

achieved a complete satisfying assignment π of F . The assignment π sets the variables

to the following values:

π(e1) = false, π(u1) = false, π(e2) = false, π(u2) = true, π(e3) = false

~Q.F |π is the empty theory and consequently π is obviously a cube (by Item 1 of

Theorem 2). However, given π there exist many different valid cubes that can be extracted

from it. The main reason for this is the fact that most of the clauses are satisfied by
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more than one literal. Solvers compute and store one particular cube from each satisfying

assignment, cubes are heuristically generated (for efficiency) by greedily selecting a subset

of the satisfying assignment sufficient to satisfy all of the clauses. [109].

In general, solvers try to minimize both the number of total literals in the cube and

the number of universals (e.g., [109] [95]). The smaller the number of universals in a

cube, the fewer universal settings that remain to be verified. Hence, the right subset of

the satisfying assignment can have a critical effect on the efficiency of search.

One method that aims at maximizing both properties simultaneously is to maximize

the number of tailing existentials. The motivation for this method emerges from the

observation that tailing existentials satisfy more clauses in practice (e.g., [95], [90]) and

can be disregarded within a cube (by Item 2 of Theorem 2).

In the given example, a possible set of literals that satisfy F is: (u1 ∧ e2 ∧ u2 ∧ ¬e3).

After the removal of tailing existentials we obtain the cube C1 = (u1 ∧ e2 ∧ u2).

After determining a cube, c, and removing all tailing existentials the solver can then

backtrack to the deepest universal in the cube, skipping other universals and existentials

not mentioned in the cube. At the point the deepest universal l ∈ c has been instantiated

the solver is trying to show that ~Q.F |T∪l is QSAT (line 4 or 20). We have that T ∪ l ≤u c,

thus we have that ~Q.F |T∪l is QSAT from the fact that the determined set of literals is

provably a cube. Hence no further search is needed to verify the subformula ~Q.F |T∪l,

i.e, it is legitimate for the solver to backtrack to this point. Note that due to removal of

tailing existentials cubes always cause a backtrack to a universal variable. Thus a success

return can only occur if v is universal.

As shown in Theorem 2 Item 3 a cube containing one setting of a universal can

be combined with another cube containing the other setting to obtain a new cube in a

process akin to the resolution of clauses (line 24). In particular, if the deepest universal in

the cube has already had its other value solved, the solver will combine these two cubes

and remove the deepest universal. The apparent symmetry between clause resolution
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and cube (term) resolution was discussed in [109, 33].

Following our example, assume that the solver applied solution backtracking on the

cube, i.e. C1 = (u1 ∧ e2 ∧ u2). The deepest universal in C1 is u2. Since both settings of a

universal have to be verified the solver backtracks to u2 (undoing u2 as well) and forces

the negation of u2 (¬u2). Then it attempts to solve F |¬u1,e2,¬u2 . Suppose that this search

find the following solution π′:

π′(e1) = false, π′(u1) = false, π′(e2) = false, π′(u2) = false, π′(e3) = true

Furthermore assume that the cube C2 = ¬u1 ∧ e2 ∧ ¬u2 is extracted from π′. Now

both sides of the universal u2 are solved. The two cubes C1 and C2 are resolved on u2 to

produce the new cube C3 = ¬u1 where the tailing existential e2 has been removed (using

Item 2 and 3 of Theorem 2 ). The cube C3 captures the fact that F |¬u1 is QSAT.

Returning to Algorithm 2, we see that on success the solver always backtracks to a

universal variable whose other side is not yet solved. Simply, because it backtracks to the

level that assigned the deepest universal in the active cube (line 4-5). After backtracking

to the corresponding level line 19 flips the truth value of the universal and the algorithm

recurses with this setting (line 20).

The recursive call on line 20 returns to the current level after attempting the second

universal value. This return might also be through failure which again means that there

is a new conflict clause in F made unit by T (the conflict clause does not depend on the

setting of the flipped universal ¬l). Again the repeat-until loop (line 6-27) will reinvoke

QProp to make new inferences, followed by a a new branch decision.

One additional aspect of solution and conflict analysis is that the new clauses and

cubes can be stored (learned) (see e.g., line 10 and 18), reused along other paths in the

search (see e.g., line 2), and combined together to produce more powerful clauses and

cubes (see e.g., line 24). Cube and clause learning is essential in achieving state of the

art performance in QBF solving. Note that Theorem 2 also verifies the soundness of

triggering cubes during search.
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Besides storing newly inferred clauses and cubes Algorithm 2 also takes into account

learnt clauses and cubes. In particular, the algorithm also succeeds if any learnt cube

becomes true (line 2). Since the original theory is altered by learnt clauses (line 10) the

algorithm also fails if any learned clause was falsified (line 7). Again cube and clause

learning is also developed in more detail in, e.g., [44, 47, 66, 33, 110, 111].

With the enhancements of cube and clause learning QBF-DPLLas specified in Al-

gorithm 2 is quite close to current QBF solvers like Quaffle [111] and QuBE [46].

Soundness and Completeness

Theorem 3 QBF-DPLLas shown in Algorithm 2 is sound and complete.

Proof:

Soundness: The algorithm exits with fail only when BTLevel = 0 (see line 11: re-

turn(FAIL,-,BTLEVEL). This only occurs if a learnt clause is empty—unit clauses be-

come unit at level 1, while empty clauses become unit at level 0. Success returns to level

0 only occur if an empty cube is learnt (line 5 and 26).

In both cases the algorithm is sound as learnt clauses and cubes are correctly inferred

logical consequences of the input theory. (The correctness of the learnt cubes was demon-

strated in Theorem 2, the correctness of the learnt clauses is obvious from the fact that

these clauses are inferred via a process of resolution).

Completeness: In the algorithm no recursive call has the same trail T , and there are

only a finite number of different trails since there exists only a finite number of unique

variable assignments. Consequently, the root QBF-DPLLinvocation must eventually

return with the correct answer as well.

2.3.3 Space Complexity

Finally we point out that QBF-DPLLwithout learning requires only linear space (in the

number of variables n), and only quadratic space (in n) when it utilizes non-chronological
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conflict and solution backtracking. In the worst case with conflict and solution backtrack-

ing we must store a clause (cube) for every failed existential value (successful universal

value) along the current path being explored. These clauses (cubes) have maximum size

equal to the number variables n, and the current path can contain at most n literals.

However, when clause and/or cube learning is employed (i.e., the cubes and clauses

are stored) the algorithm can consume as much space as can be provided. Nevertheless,

learning clauses and cubes does not affect the soundness or completeness of the algorithm,

it only helps to improve performance. In particular, we can adopt any strategy for

deleting these learned clauses and cubes when we run out of space, without affecting the

correctness of the algorithm. In this sense QBF-DPLLas shown in Algorithm 2, like

most current SAT solvers, is an “any-space algorithm,” it can utilize any space provided

above and beyond its basic polynomial space requirements, but it can also work under

any fixed space bound (above its basic requirements).

2.3.4 Extensions of the Basic Framework

In order to increase the efficiency of the basic backtracking framework a number of

extensions have been purposed. The changes range from simple techniques that can be

easily embedded in the basic framework to more fundamental changes like a different

representation of clauses requiring more adaptions of the general framework that was

presented here. In this section, we review some techniques that have been introduced in

an attempt to improve on the basic search algorithm.

A first simple extension is known as trivial truth [25]. From the quantified formula

~Q.F all universal quantified variables are removed from both the quantifier prefix ~Q and

the formula F . Then the remaining formula Fr is treated as a SAT instance since there

are only existential quantified variables left. If Fr is satisfiable then ~Q.F is obviously true

too: The satisfying existential assignment satisfies F under every setting of the universal

variables. However, if Fr is unsatisfiable nothing about the truth value of ~Q.F is revealed.
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Hence, empirically the employment of trivial truth turns out to be ineffective [25, 66].

Analogously to the notion of trivial truth there also exists the notion of trivial falsity

[25]. Now no variables are removed. Instead all universal variables are treated as if they

are existential again giving rise to a SAT instance. If this SAT instance turns out to be

unsatisfiable then we know that also ~Q.F is unsatisfiable. Similarly, we know that ~Q.F

is trivially false if it contains a clause that contains universal quantified variables only. It

has been shown that trivial falsity can be beneficial on several instances [25]. However,

it remains an open question as to how often trivial falsity should be employed during the

search [25].

The idea of the inversion of quantifiers is based on the general observation that a

combination of universal variables can force upstream existential variables [86]. In a QBF

qb∃1qb∀2...qbQn .F a combination of universal quantified variables is set to to arbitrary values

to detect if any of the existentials in the first quantifier block qb∃1 become forced. The set

of forced existentials contained in qb∃1 under any combination of universal variable values

can be set accordingly since they must have the determined value in any Q-Model. In

this way the idea of inverting quantifiers reduces the number of possible combinations

of values for the existential variables in the outermost existential quantifier block—if

the outermost block is existential. Benchmark results show that this technique can be

successful on instances that start with an existential quantifier block [86, 38].

Monotone literals are literals that appear in only one polarity in the formula F . For

instance, in F = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) the literal x2 is the only monotone literal.

In a SAT solver that supports the detection of monotone literals these can be set to

true to reduce the size of the theory. Furthermore, this can be done at any stage of the

search. For example, a literal might become monotone as a consequence of previously

made assumptions. No conflicts can be caused by a truthified monotone literal. However,

in most SAT solvers monotone literals are not detected since there exists no empirical

evidence that it is beneficial [48].
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In contrast, within QBF solvers the detection of monotone literals seems to be ben-

eficial despite its overhead [48, 25]. This can be explained by the following reasons. In

the context of QBF the search is more extensive than with SAT since all universal set-

tings have to be verified. Hence the extra work to simplify the theory by purity can be

amortized over a larger search space.

Furthermore, monotone universals are treated differently than monotone existentials.

In QBF monotone existentials are handled like monotone literals in the SAT case. How-

ever, monotone universals are set to the ”hard” decision. Hence, if u is monotone the

algorithm would branch on ¬u instead of u. In the example from before x2 would be set

to false if x2 is a universal.

This is based on the fact that the solver has to verify both settings of a universal.

From Lemma 2 we have that if the subtheory generated by the hard setting is QSAT,

the subtheory under the easy setting must also be. Thus the solver needs only to solve

the hard setting.

A different representation of clauses was presented in [43]. In this work an extension

of binary decision diagrams (BDD) is used to represent the clauses of a QBF instance.

This extension is called zero suppressed BDDs (ZDDs). The authors of [43] claim that

ZDDs are suitable for modeling a CNF formula as they can present a set of subsets in

a efficient way [71]. This representation is used with an adapted version of DPLL that

has splitting and propagation rules specifically designed for ZDDs. Due to the compact

representation the approach is able to store solved subproblems (similar to cubes) with

a low overhead. In addition, the canonical representation of these subproblems allows

efficient equality comparison. The authors of [43] utilized their approach to build a solver

they called ZQSAT. The solver ZQSAT is able to detect equal subproblems in an effective

fashion.

On the eccentricity computation problems used in the experimental evaluation pre-

sented in [43] the solver ZQSAT clearly outperformed all other non-specialized QBF
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solvers. However, on the other benchmark families it did not perform as well. Surpris-

ingly, the authors claim that the chosen variable ordering within a quantifier block does

not improve the performance of their approach. In fact, the overhead of choosing an

ordering caused a worse performance than using the initial variable ordering of quantifier

prefix as specified in the input problem file.

In [41] an incomplete QBF solver was introduced. It utilizes an incomplete SAT solver

within DPLL-QBF. At each node in the DPLL search space a SAT solver was invoked.

If a SAT solution was found it could be heuristically followed in an attempt to reach

a successful leaf in the QBF search. The SAT solver itself applied a state of the art

dynamic variable ordering scheme so that the determination of a solution of F is not

constrained by the imposed ordering of the quantifier prefix.

If the incomplete solver returned ‘̀unknown” no information for the search was gained.

And even if the SAT solver could determine a solution π of F it is not the case that the

assignments made in π can be followed in the QBF context due to the stronger reasoning

(universal reduction). That is, not every SAT solution to F can serve as a path in

a Q-Model. Given this, an incomplete SAT solver used in this way becomes nothing

more than an expensive value ordering heuristic. Consequently, the empirical results of

the implemented solver called WalkQSat solver reported in [41] did not display good

performance.

2.4 Reduction to SAT

In general, all other approaches to solve QBFs are based on the idea of the quantified

propositional formula into an unquantified propositional formula. In other words, these

approaches attempt to convert QBF into SAT.

One method of reduction is based on the original resolution procedure of Davis-

Putnam [31]. Another closely related approach employs Skolemization [100] to obtain a
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purely propositional formula. We first describe how variable elimination is employed to

remove the quantifier prefix ~Q. Subsequently we discuss several extensions to this basic

scheme. Finally, we show how QBF problems can be solved by utilizing Skolemization.

2.4.1 Variable Elimination for QBF

The variable elimination scheme based on the original resolution procedure of Davis-

Putnam [31] is utilized to remove existential variables. On an innermost existential

variable v ∈ qbn all possible resolutions with respect to v are carried out and all clauses

that contain either v or ¬v are subsequently removed. Consequently, if all existentials

from a tailing quantifier block (e.g., qbn) are removed all universals from the directly pre-

ceding quantifier block (e.g., qbn−1) can be removed by universal reduction: all universals

u ∈ qbn−1 are now tailing universals in any clause they appear in.

In this way the quantifier prefix ~Q can be entirely removed by applying resolution

from the inside out. If the outermost quantifier block is existential we can stop this

process after removing all inner quantifier blocks. The remaining formula F ′ is then

a SAT instance and can be solved using any SAT technique (including continuing to

preform variable elimination). If F ′ is (UN)SAT this implies that the original QBF ~Q.F

is Q(UN)SAT. If the outermost quantifier block is universal, then variable elimination

must be applied to the end, and the process ends with a round of universal reduction.

This will yield either the empty set of clauses implying that the original QBF was Q-SAT,

or a set of empty clauses implying that the original QBF was Q-UNSAT. However, in

general the reduction to SAT based on variable elimination can result in an exponential

blow up of the original formula F .

2.4.2 Resolve and Expand

In [14] the variable elimination scheme is combined with the expansion of universally

quantified variables in order to reduce the size of the resulting grounded theory. A
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universal contained in the innermost universal quantifier block in ~Q is evaluated to its

two possible truth assignments (the expansion step). After its evaluation it is removed

from its quantifier block. Now we describe in more detail how to evaluate a universal to

both truth values.

To expand a universal variable u from the innermost universal quantifier block qbn−1

(with qbn denoting the innermost existential quantifier block) it is necessary to generate

a copy of all existential variables in the subsequent quantifier block qbn.

At the same time a copy of all the clauses that contain a variable v ∈ qbn is generated

by duplicating each of these clauses and substituting every v ∈ qbn by its corresponding

copy. Let S1 denote the set of original clauses containing a variable v ∈ qbn and S2

denotes the set of clauses consisting of the copy.

Then the universal ui ∈ qbn−1 selected for expansion is set to true in S1 and to false

in S2. Hence, the expansion step applies the following reduction on these clauses: S1|¬ui

and S2|ui
. Consequently, the resulting propositional formula F

′
after the expansion of ui

is equal to (F \ S1) ∪ S1|ui
∪ S2|¬ui

. Furthermore, the copy of the existential variables

v ∈ qbn is added to the innermost quantifier block and the expanded universal ui is

removed from qbn−1. As an example consider the following trivial QBF: ∀u∃e(u ∧ e)

Expanding u results in the new non-simplified formula: ∃e1e2(true ∨ e1) ∧ (false ∨ e2).

This method of expanding a single universal can be applied to every universal variable

in the innermost universally quantified block of variables. Consequently, it is possible to

remove all universal quantified variables by interleaving resolution and expansion so that

in the end there remains a single existential quantifier block. Hence, the resulting problem

now is a SAT instance whose SAT/UNSAT status corresponds to the QSAT/QUNSAT

status of the original QBF.

Quantor [14] is a state of the art QBF solver that is based on a combination of variable

elimination and universal expansion. It employs a sophisticated scheduling heuristic to

alternate between resolution and expansion. The scheme tries to estimate the costs of
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expansion and resolution and applies the less expensive operation. Hence, the heuristic

is used to pick either a universal to expand or an existential to resolve with the goal of

minimizing the increase of the resulting formula F . In addition, equivalence reasoning

and subsumption are utilized to minimize the size of the grounded theory. Finally, a

state of the art SAT solver is employed to solve the resulting propositional formula.

On some benchmark families Quantor outperforms all state of the art search based

solvers [14, 90]. In addition, it can solve instances that can not be solved by any search

based solver. However, it is also the case that search based solvers are able to solve a

range of problems that Quantor is not able to solve (mainly due to memory limitations)

[76, 77, 75].

More recently, [21] introduces a preprocessor based on Quantor. The main goal of the

preprocessor is to simplify the theory by employing variable elimination and universal

expansion without blowing up the theory by more than some fixed factor (e.g., at most

double the size of the original theory). The simplified version of the theory is then

outputted and a QBF solver is applied on it. The empirical results are not completely

convincing due to the limited amount of benchmarking and several negative results on

non-random benchmarks. Nevertheless the approach shows some promise and is worth

further investigation.

2.4.3 Symbolic Quantifier Elimination

In [79] symbolic quantifier elimination for QBFs was introduced. The technique is not

only based on the resolution procedure of Davis-Putnam [31], but also on a ZBDD [71]

representation of the clauses in F . Again the variables are eliminated from the inside

out. The elimination of existentials is based on multi-resolution [26].

Multi-resolution performs all possible resolutions of a variable v in a single opera-

tion through operations on the ZBDD representation of clauses. In other words, multi-

resolution is the previously described variable elimination applied in a symbolic fashion.
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1: 〈bool Result〉 QBF-Multi-Resolution(F, S,~v)

2: S is the ZDD representation of the clauses in F

3: ~v is the sorted list of variables in F , so that qb(vi) ≥ qb(vi+1)

4: for i = 1 to n do

5: if vi is existential then

6: S ⇐ (Sv−i × Sv+i ) + Sv′i
(Multi Resolution on Existentials)

7: else

8: S ⇐ Sv−i + Sv+i + Sv′i
(Removal of Universals)

9: S ⇐ UnitProp(S)

10: endfor

11: return 〈 S 6= {∅} 〉

Figure 2.2: Multi-Resolution for QBF employing a ZBDD representation of clauses

However, due to the ZDD representation the cost of applying multi-resolution does not

depend on the number of clauses, rather it depends on the size of the encoding of these

clauses [26].

With this representation it is possible to perform many resolutions in one step al-

though a huge number of clauses might be involved. Nevertheless, this requires that

the underlying ZDDs have reasonable size. Hence, if the representation does not yield

a significant compression of the clauses the application of multi-resolution is inefficient

[26].

The implemented algorithm QMRES introduced in [79] operates on the ZBDD rep-

resentation of clauses and applies resolution in a symbolic fashion. Starting from the in-

nermost quantifier block qbn all existential variables are eliminated by multi-resolution.

Then all universals are eliminated by applying universal reduction. The algorithm is

mainly based on the following two operators. The crossproduct operator × generates

from two sets of clauses S1 and S2 the set S = {c|∃c1 ∈ S1,∃c2 ∈ S2, c = c1 ∪ c2}.
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And the + operator applied on two sets of clauses S1 and S2 results in the subsumption

free set S so that for every c ∈ S there is no c′ ⊂ c with c′ ∈ S. The crossproduct

operator can be used to perform multi-resolution by defining the following distinct set of

clauses. Given a ZBDD f , f+
l and f−l denote the following sets f+

l = {c|c ∨ l ∈ f} and

f−l = {c|c ∨ ¬l ∈ f}. In addition, f\{l,¬l} denotes the set of clauses not containing l nor

¬l. Then multi-resolution is simply the subsumption free union of f+
l × f

−
l and f\{l,¬l}

The complete algorithm is sketched in Figure 2.2. The experimental results gained by

QMRES are competitive on a small subset of the benchmarks [79]. However, on the

entire set of benchmark families its performance is rather disappointing [76].

2.4.4 Skolemization

Skizzo [9, 11] is a QBF solver based on Skolemization [100]. The QBF is lifted to a

higher-order logic in order to make all the necessary functionality available. In particu-

lar the approach requires function symbols and quantification over functions. Once this

expressiveness is available all existential variables are replaced by their corresponding

Skolem functions. Consequently, the resulting formula consists only of universally quan-

tified variables and Skolem functions. In the next stage the Skolem functions are in turn

replaced by a conjunction of propositional formulas. These propositional formulas cap-

ture the functionality of the Skolem functions and thus they also capture the meaning of

the original QBF formula. However, the resulting propositional formula is no longer in

CNF. To convert it back to CNF so that a standard SAT solver can be applied requires

introducing additional variables and clauses. Once this is accomplished the QBF has

been successfully converted to a standard SAT problem. If the resulting propositional

formula is (UN)SAT this implies that the original QBF is Q(UN)SAT. Note, however,

that this process can cause exponential growth in the size of the formula [9].

To illustrate the process sketched above in more detail we go step by step through an

example. Assume that we have the following input formula:
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∀u1∀u2∃e1∃e2(u1, u2, e1) ∧ (¬u1 ∨ e2).

As mentioned earlier the first step is to replace the existentially quantified variables by

Skolem functions. In order to achieve this each existential must be replaced by a unique

and newly introduced Skolem function. The arity of each Skolem function depends on

the number of universals that the corresponding existential is scoped by.

In our example we have two existentials and consequently we have to introduce two

new function symbols. We choose s1 as Skolem function for e1 and s2 as the Skolem

function of e2. The arity of both Skolem functions is 2 (namely the two universals u1 and

u2). The arity of s2 can be further reduced since e2 is existentially disjoint from u2. For

more details on how to reduce the dimensionality of the Skolem functions the reader is

referred to [9]. In our example we obtain the two Skolem functions s1(u1, u2) and s2(u1).

In the next step we can replace all existentially quantified variables by their corre-

sponding Skolem function in the original formula and we acquire the following resulting

formula:

(∃s1∃s2)∀u1∀u2(u1, u2, s1(u1, u2)) ∧ (¬u1 ∨ s2(u1))

Note that we do not know what the Skolem function is, instead we only know that there

exists a Skolem function (expressed by quantification over the function symbol).

The transformation of this formula to a purely propositional formula first requires for

each Skolem function the addition of new existentially quantified variables and clauses. In

the context of QBF each Skolem function is parameterized by a set of universal variables

and the result of the function is a boolean value. First we have to introduce as many new

existential variables as there are combinations of parameter settings in the corresponding

Skolem function. Then for each possible input we use one unique variable to represent

each corresponding value of the Skolem function.

Returning to our example we have to introduce 4 new existentially quantified variables

for s1 and 2 existentials for s2 that represent each possible value of the Skolem functions

under all possible settings of the universal variables:
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s1 Function value s2 Function Value

e1s1
∧
= s1(u1, u2) e1s2

∧
= s2(u1)

e2s1
∧
= s1(¬u1, u2) e2s2

∧
= s2(¬u1)

e3s1
∧
= s1(u1,¬u2)

e4s1
∧
= s1(¬u1,¬u2)

Note that each newly introduced existential is quantified in the outermost quantifier

block.

Now we can represent each Skolem function by a propositional formula using the

newly introduced variables from before. In the propositional formula we use each pa-

rameter setting as an indicator for the value of the Skolem function evaluated with the

corresponding parameters. In our example we have the following correspondence:

s1(u1, u2)
∧
= (u1 ∧ u2 =⇒ e1s1) ∧ (¬u1 ∧ u2 =⇒ e2s1) ∧ (u1 ∧ ¬u2 =⇒ e3s1) ∧ (¬u1 ∧ ¬u2 =⇒ e4s1)

s2(u1)
∧
= (u1 =⇒ e1s2) ∧ (¬u1 =⇒ e2s2)

For instance, for s1(u1,¬u2) all premises in each implication are falsified except for (u1 ∧

¬u2 =⇒ e3s1). Hence, we capture the fact that the value of s1(u1,¬u2) corresponds to

the one of e3s1 .

Obviously, this propositional encoding is not in clausal form (due to the implications)

and consequently it has to be further transformed to achieve a proper clausal represen-

tation:

s1(u1, u2)
∧
= (¬u1 ∨ ¬u2 ∨ e1s1) ∧ (u1 ∨ ¬u2 ∨ e2s1) ∧ (¬u1 ∨ u2 ∨ e3s1) ∧ (u1 ∨ u2 ∨ e4s1)

s2(u1)
∧
= (¬u1 ∨ e1s2) ∧ (u1 ∨ e2s2)

Now we can substitute each Skolem function by its corresponding propositional rep-

resentation. Here we show the substitution of s2 in the clause (¬u1 ∨ s2(u1)):
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¬u1 ∨ ((¬u1 ∨ e1s2) ∧ (u1 ∨ e2s2))

This substitution has to be converted to CNF as shown in the following formula:

(¬u1 ∨ ¬u1 ∨ e1s2) ∧ (¬u1 ∨ u1 ∨ e2s2))

It is important to note that in this conversion to CNF no new variables can be introduced

in order to obtain a more compact formula. If one would add new existential variables to

the formula they had to be quantified in the innermost quantifier block. Consequently, the

universally quantified variables would not be tailing anymore and the resulting formula

would be a QBF and not a SAT instance as required. The potential exponential growth

in the size of the formula takes place during this conversion to CNF.

However, the resulting clauses can be further simplified (e.g., perform universal re-

duction, removal of tautologies) and in our example only e1s2 remains. The resulting

formula does not contain any universals since all of them can be removed by universal

reduction (all existentials are in the outermost quantifier block as mentioned earlier).

Consequently, the simplified formula is a propositional formula in CNF which does only

consist of existential variables as required. Skizzo then employs a current SAT solver

(e.g., [73]) on this formula and the result corresponds to the truth value of the original

QBF.

Skizzo is based on the presented approach, but it also employs other methods for

simplifying the resulting propositional formula some of which are based on symbolic

reasoning. Despite these simplifications the conversion of the skolemized formula F to

CNF can cause exponential growth in the size of the formula as mentioned above.

Benchmark results indicate that this approach is very competitive on a wide range

of benchmarks ([74, 75]). However, Skizzo is a mixture of many different techniques

(e.g., search, symbolic reasoning, and SAT solving) so the data on its empirical perfor-

mance does not allow one to quantify the specific impact of Skolemization on its overall

performance.
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2.4.5 SAT Sampling

An order unconstrained approach based on a BDD representation of a Q-model is pre-

sented in[4]. The idea here is to generate arbitrary SAT solutions with a SAT solver,

adding those solutions to the BDD. The BDD will eventually collapse to true if the set

of added SAT solutions suffice to form all paths in a Q-model.

However, the BDD can grow to an exponential size prior to collapsing. Furthermore,

the SAT solver can generate SAT solutions that form paths in disjoint Q-models—thus

the BDD might be even larger as it has to represent multiple distinct Q-models before

one collapses to a solution. The empirical results reported in [4] do not improve on the

state of the art.

2.5 Experimental Evaluation

As shown in the previous sections there already exists a variety of algorithms that solve

QBF. The problem is to classify those algorithms by there efficiency in practice. Some

algorithms might perform very well on some problem instances of QBF but exhibit an

exponential blow up, either with respect to time or space, on other instances.

In order to proceed towards a competitive and comprehensive comparison of different

solvers the quantified boolean formulas satisfiability library (QBFLIB [45]) was created in

2001. Its main goal is to provide an uniform test-bed for the empirical characterization of

QBF solvers [45]. Since 2006 the QBFLIB also organizes QBF competitions that evaluate

the performance of participating QBF solvers.

To date the problems suite is currently comprised of more than 13, 000 instances.

Among this total number of instances approximately 1, 000 structured problem instances

exist (the remaining instances are randomly generated). The structured instances are

distributed among 25 benchmark families. They have been contributed by members of

the community from different problem domains like planning, formal verification and
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model checking. The size of these problem range between hundreds of variables and

clauses to about 10, 000’s of variables and 100, 000’s of clauses. Also the number of

quantifier alternation varies between 1 and about 40. However, in the vast majority of

problem instances the number of quantifier alternations is low (between 1− 3).

While this collection is not yet as extensive as the one available for SAT (SATLIB

[53]) it already enabled QBF researchers to compare their approaches in a comprehensive

fashion. However, in contrast to SAT, there exists one additional major difficulty with

the experimental evaluation of QBF. In comparison to SAT the verification of a QBF

solution is as hard as solving the QBF itself. Consequently, the soundness of a result

returned by a QBF solver is not easily verifiable. The research on the verification of QBF

solutions is quite recent and still in progress [59, 107]. Achieved results in this area will

further improve the experimental evaluation of QBF solvers.

2.6 Conclusions

In this chapter we have set the context for this thesis. Since all presented approaches in

this thesis are improvements of the search-based DPLL algorithm for QBF we focused

our attention on this technique. We explained in detail how DPLL for QBF evaluates

the truth value of a given input formula.

In addition, we have reviewed the main techniques employed in practice for solving

quantified boolean formulas. Two techniques are mainly based on well established al-

gorithms, namely DPLL [30] and DP (variable elimination) [31]. They rely heavily on

techniques that were developed by the SAT community over the last decade. Skolemiza-

tion is a novel approach and benchmark results indicate that it is also worthwhile. While

the class of algorithms that try to achieve a reduction to SAT either by DP or Skolem-

ization require exponential space to assure correctness, the search based algorithms are

exponential in time, but are any-space algorithms as described in Section 2.3.3.
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The question of whether space intensive algorithms like Quantor [14], Skizzo [9],

or QMRES [79] will eventually be the best way to solve QBF is still open. So far

space exponential algorithms have performed very well on several benchmark families and

do clearly outperform search-based solvers on these benchmarks. However, there exist

several benchmarks that can be solved in only a few seconds by search-based solvers but

cause for example Quantor to exhaust available memory. In addition, the wide variance

in the run times achieved by search based solvers (see comparisons of search based solvers

in e.g., [90]) indicate that there is a lot of room for performance improvement.

The results of the QBF competition 2006 [75] indicate that the “best” QBF solver

would probably use a portfolio approach rather than any single solver. For example, our

2clsQ [96] (Chapter 3) entry which won the 2006 competition first applied a hyper binary

preprocessor (PreQuel [92, 93], Chapter 3), then it ran the QBF solver Quantor [14] for

a fixed period of time. Finally if the problem was still not solved 2clsQ was invoked on

output of PreQuel. Due to these results and our intuition that time is a more flexible

resource than space we have mainly concentrated our research efforts on search based

methods.



Chapter 3

Extended Binary Resolution

3.1 Introduction

In this chapter we present a novel technique that applies a stronger rule of inference

during search to improve QBF solvers. Like many techniques used for QBF, ours is

a modification of techniques already used in SAT. We employ extended binary clause

reasoning in order to process QBF instances in a static as well as a dynamic fashion.

In the static context we preprocess the input formula, without changing its meaning,

so that it becomes easier to solve for a QBF solver. As we demonstrate at the end of this

chapter our technique can be extremely effective, sometimes reducing the time it takes

to solve a QBF instance by orders of magnitude. We also investigate applying extended

binary resolution at each search node during the DPLL algorithm and discuss its impact

on QBF solving.

The outline of this chapter is as follows. We start by presenting and discussing

the underlying technique. In particular we show how to lift extended binary resolution

as it has been applied within SAT to the QBF context. We not only uncover several

differences with the SAT case, but also demonstrate how to resolve the issues that arise

from those differences. We then present further details of our approach and state some

48
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results about its correctness. Finally, we provide empirical evidence of the effectiveness

of our approach, and close with a discussion of future work and some conclusions.

3.2 Hyper Binary resolution

The foundation of our polynomial time technique for processing QBFs is the SAT method

of reasoning with binary clauses using hyper-resolution developed in [5, 7]. This method

reasons with CNF SAT theories using the following “HypBinRes” rule of inference:

Definition 5 Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set

of binary clauses {(`,¬li)|li ∈ D}, infer the new clause b = (c − D) ∪ {`} if b is either

binary or unary.

For example, from (a, b, c, d), (h,¬a), (h,¬c) and (h,¬d), we infer the new binary clause

(h, b), similarly from (a, b, c) and (b,¬a) the rule generates (b, c). The HypBinRes rule

covers the standard case of resolving two binary clauses (from (l1, l2) and (¬l1, `) infer

(`, l2)) and it can generate unit clauses (e.g., from (l1, `) and (¬l1, `) we infer (`, `) ≡ (`)).

The advantage of HypBinRes inference is that it does not blow up the theory (it

can only add binary or unary clauses to the theory) and that it can discover a lot of

new unit clauses. These unit clauses can then be used to simplify the formula by doing

unit propagation which in turn might allow more applications of HypBinRes . Applying

HypBinRes and unit propagation until closure (i.e., until nothing new can be inferred)

uncovers all failed literals. That is, in the resulting reduced theory there will be no literal

` such that forcing ` to be true followed by unit propagation results in a contradiction.

This and other results about HypBinRes are proved in the above references.

In addition to uncovering unit clauses we can use the binary clauses to perform

equality reductions. In particular, if we have two clauses (¬x, y) and (x,¬y) we can

replace all instances of y in the formula by x (and ¬y by ¬x). This might result in some

tautological clauses which can be removed, and some clauses which are reduced in length
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because of duplicate literals. The reduction might yield new binary or unary clauses

which can then enable further HypBinRes inferences. Taken together HypBinRes and

equality reduction can significantly reduce a SAT formula removing many of its variables

and clauses [7].

3.3 Hyper Binary Resolution in QBF

Given a QBF ~Q.F we could apply HypBinRes , unit propagation, and equality reduction

to F until closure. This would yield a new formula F ′, and the QBF ~Q′.F ′ where ~Q′ is

~Q with all variables not in F ′ removed. Unfortunately, there are two problems with this

approach. One is that the new QBF ~Q′.F ′ might not be Q-equivalent to ~Q.F , so that

this method is not sound. The other problem is that we miss out on some important

additional inferences that can be achieved through universal reduction. We elaborate on

these two issues and show how they can be overcome.

The reason why the straightforward application of HypBinRes , unit propagation and

equality reduction to the body of a QBF is unsound, is that the resulting formula F ′

does not have exactly the same SAT models as F , as it is required by Lemma 1 from

Chapter 2.

In particular, the models of F ′ do not make assignments to variables that have been

removed by unit propagation and equality reduction. Hence, a Q-model of ~Q′.F ′ might

not be extendable to a Q-model of ~Q.F . For example, if unit propagation forced a

universal variable in F , then ~Q′.F ′ might be QSAT, but ~Q.F is not (no Q-model of ~Q.F

can exist since the paths that set the forced universal to its opposite value will not be

SAT models of F ).

This situation occurs in the following example. Consider the following QBF:

~Q.F = ∃abc∀x∃yz(x,¬y)(x, z)(¬z, y)(a, b, c)

We can see that ~Q.F is not QSAT since when x is false, ¬y and z must be true, falsifying
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the clause (¬z, y). If we apply HypBinRes and unit propagation to F , we obtain F ′ =

(a, b, c). Note that the universal variable x has been unit propagated. As anticipated,

~Q′.F ′ = ∃abc(a, b, c) is QSAT, so this reduction of F has not preserved the QSAT status

of the original formula. However, it is easy to fix this problem. Making unit propagation

sound for QBF simply requires that we regard the unit propagation of a universal variable

as equivalent to the derivation of the empty clause. This follows directly from applying

universal reduction to the unit universal clase. Universal reduction is applied in all search

based QBF solvers, hence all of them treat unit propagation of a universal variable as a

contridiction.

Ensuring that equality reduction is sound for QBF is a bit more subtle. Consider a

formula F in which we have the two clauses (x,¬y) and (¬x, y). Since every path in any

Q-model satisfies F , this means that along any path x and y must have the same truth

value. However, in order to soundly replace all instances of one of these variables by the

other in F , we must respect the quantifier ordering. In particular, if x <q y then we

must replace y by x. It would be unsound to do the replacement in the other direction.

For example, say that x appears in quantifier block 3 while y appears in quantifier

block 5 with both x and y being existentially quantified. The above binary clauses will

enforce the constraint that along any path of any Q-model once x is assigned y must

get the same value. In particular, y will be invariant as we change the assignments to

the universal variables in quantifier block 4. This constraint will continue to hold if we

replace y by x in all of the clauses of F . However, if we perform the opposite replacement,

we would be able to make y vary as we vary the assignments to the universal variables

of quantifier block 4: i.e., the opposite replacement would weaken the theory perhaps

changing its QSAT status. The same reasoning holds if x is universal and y is existential.

However, if y is universal, the two binary clauses imply that we will never have the

freedom to assign y its two different truth values. That is, in this case the QBF is

UNQSAT, and we can again treat this case as if the empty clause has been derived.
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Again this conclusion can be justified by universal reduction. If x <q y and y is universal

the two clauses (x,−y) and (−x, y) can be universally reduced to (x) and (−x) which

immediately resolve together to produce the empty clause.

Therefore a sound version of equality reduction must respect the variable ordering.

We call this (<q preferred) equality reduction. That is, if we detect that x and y are

equivalent and x <q y then we always remove y from the theory replacing it by x. With

this restriction on equality reduction we have the following result:

Proposition 1 Let F ′ be the result of applying HypBinRes, unit propagation, and (<q

preferred) equality reduction to F until closure. If F ′ has the same set of universal

variables as F (i.e., no universal variable was removed by unit propagation or equality

reduction), then the Q-models of ~Q′.F ′ are in 1-1 correspondence with the Q-models of

~Q.F . In particular, ~Q.F is QSAT iff ~Q′.F ′ is QSAT. On the other hand, if F ′ has fewer

universal variables than F then ~Q.F is UNQSAT.

Proof: In order to prove that the Q-models of Q.F and Q’.F’ are 1-1, we first show

correspondence between the SAT models of F and F’. Clearly, any SAT model of F can be

mapped to a SAT model of F ′ by simply omitting the assignments of variables not in F ′.

This holds since the applied operations are sound transformations of the propositional

formula. In the other direction we can map any SAT model of F ′ to a SAT model of

F by assigning all forced variables their forced value, and assigning all equality reduced

variables a value derived from the variable they were made equivalent to. That is, if x

was removed because it was equivalent to ¬y/y, we assign x the opposite/same value

assigned to y in F ′’s SAT model.

Given this relationship we now show that any Q-model Mq of ~Q.F can be mapped

to a unique Q-model M′
q of ~Q.F ′ and vice versa. Here we assume that F ′ has the same

universals as F . First we show that any Q-model Mq of ~Q.F can be mapped to a Q-model

M′
q of ~Q.F ′. By Definition 2 each complete path in a Q-model corresponds to a SAT

model. Consequently, Mq can be transformed to M′
q by removing all nodes in the Q-tree
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that correspond to variables which do not appear in F ′. Due to the correspondence

between the SAT models each complete path is a SAT model for F ′ after eliminating

these nodes and the tree still contains a path for every setting of the universal variables

of F ′.

Now we show that any Q-model M′
q of ~Q.F ′ can be mapped to a Q-model of ~Q.F . We

can accomplish this by adding nodes to the Q-tree of M′
q while obeying ~Q. These added

nodes are will be labeled with values for the variables that appear in F but not in F ′. We

use the described mapping from F ′ to F to determine the setting of the variables in these

nodes. Thus each complete path of M′
q, whiich is a SAT model of F ′, is converted to a

complete in Mq that is a SAT model of F . Since we did not alter any universal nodes

in any Q-tree (any removed or added nodes must be existentials since F ′ has the same

number of universals as F ) and each complete path in the constructed Q-trees is a SAT

model of the appropriate formula, both transformations achieve the required Q-models.

Finally, we show that the described mapping is unique. Let Mq and M∗
q be different

Q-models of ~Q.F . Let M′
q denote the mapping of Mq to a Q-model of ~Q.F ′. Assume

that M∗
q also maps to M′

q. Since Mq and M∗
q are different they must disagree in at

least one variable assignment and this variable must be existentially quantified. Then all

of the employed operations are affected by this altered assignment. Consequently, the

corresponding mapping of M∗
q to a Q-model of ~Q.F ′ must be different from M′

q. The

other direction is similar.

This gives us that the number of Q-models of each formula are equal and that the

transformation must be a 1-1 mapping. Consequently, ~Q.F and ~Q′.F ′ are equivalent

formulas and in particular ~Q.F is QSAT iff ~Q′.F ′ is QSAT.

If F ′ has fewer universals than F (it cannot have more since it can only have fewer

variables than F ) it follows directly that ~Q.F is UNQSAT because one of the sound

operations applied in the transformation to F ′ has inferred that a universal has a forced

value.
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This proposition tells us that we can use a SAT based reduction of F with QBF, as

long as we ensure that equality reduction respects the quantifier ordering and check for

the removal of universals. This approach, however, does not fully utilize the power of

universal reduction as discussed in Chapter 2. So instead we use a more powerful ap-

proach that is based on the following modification of HypBinRes which “folds” universal

reduction into the inference rule. We call this rule “HypBinRes+UR”:

Definition 6 Given a single n-ary clause c = (l1, l2, ..., ln), D a subset of c, and the set

of binary clauses {(`,¬li)|li ∈ D}, infer the universal reduction of the clause (c\D)∪{`}

if this reduction is either binary or unary.

For example, from c = (u1, e3, u4, e5, u6, e7), (e2,¬e7), (e2,¬e5) and (e2,¬e3) we infer the

new binary clause (u1, e2) when u1 ≤q e2 ≤q e3 ≤q u4 ≤q e5 ≤q u6 ≤q e7. Note that

without universal reduction, HypBinRes would need 5 binary clauses in order to reduce

c, while with universal reduction, 2 fewer binary clauses are required. This example

also shows that HypBinRes+UR is able to derive clauses that HypBinRes cannot. Since

clearly HypBinRes+UR can derive anything HypBinRes can, HypBinRes+UR is a more

powerful rule of inference.

In addition to using universal reduction inside of HypBinRes we must also use it

when unit propagation is used. For example, from the two clauses (e1, u2, u3, u4,¬e5)

and (e5) (with e1 <q ui) unit propagation by itself can only derive (e1, u2, u3, u4), but

unit propagation with universal reduction can derive (e1).

It turns out that in addition to gaining more inferential power, universal reduction

also allows us to obtain the unconditionally sound processing we would like to have.

Proposition 2 Let F ′ be the result of applying HypBinRes+UR, unit propagation, uni-

versal reduction and (<q preferred) equality reduction to F until closure, where we always

apply universal reduction before unit propagation. Then the Q-models of ~Q′.F ′ are in

1-1 correspondence with the Q-models of ~Q.F .

Proof: This result can be proved given Proposition 1 by showing that universal reduc-
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tion generates the empty clause whenever a universal variable is to be unit propagated

or removed via equality reduction. For example, for a universal u to be forced it must

first appear in a unit clause (u), but then universal reduction would generate the empty

clause (given that we apply universal reduction before unit propagation). Similarly, to

make a universal variable u equivalent to an existential variable e with e ≤q u we would

first have to generate the two binary clauses (e,¬u) and (¬e, u) which after universal

reduction would yield (e) and (¬e) which after unit propagation would yield the empty

clause. Thus the cases where Proposition 1 fails to preserve Q-models are directly de-

tected through the generation of an UNQSAT ~Q′.F ′. In this case we still preserve the

Q-models—neither formula has any.

We close this section on the properties of hyper binary resolution in the context of

QBF with the following complexity result.

Proposition 3 Applying HypBinRes+UR, unit propagation, universal reduction and

(<q preferred) equality reduction to ~Q.F until we reach closure can be done in time

polynomial in the size of F .

Proof: This result is proved by the following three observations: (1) F can never

become larger than |F |2 since we are only adding binary clauses, (2) there are at most

a polynomial number of rule applications possible before closure since each rule either

reduces a clause, removes a variable or adds a binary clause, and (3) at each stage

detecting if another rule can be applied requires only time polynomial in the current size

of the theory.

3.4 Preprocessor

In our first investigation of applying extended binary clause reasoning to QBF we con-

structed a QBF preprocessor PreQuel [93]. That is PreQuel is run on the input formula

~Q.F to generate an equivalent formula ~Q′.F ′ that should be easier to solve. Prequel
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modifies ~Q.F exactly as described in Proposition 2. It applies HypBinRes+UR, unit

propagation, universal reduction, and (<q preferred) equality reduction to F until it

reaches closure. It then outputs the new formula ~Q′.F ′. Proposition 2 shows that this

modification of the formula is sound, i.e., it does not change the QSAT status of the

formula.

To implement the preprocessor we adapted the algorithm presented in [7] which ex-

ploits a close connection between HypBinRes and unit propagation. In particular, this

algorithm uses trial unit propagations to detect new HypBinRes inferences. The main

changes required to make this algorithm work for QBF were adding universal reduction,

modifying the unit propagator so that it performs universal reduction prior to any unit

propagation step, and modifying equality reduction to ensure it respects the quantifier

ordering.

To understand how trial unit propagation is used to detect HypBinRes+UR infer-

ences, consider the example above of inferring (u1, e2) from (u1, e3, u4, e5, u6, e7), (e2,¬e7),

(e2,¬e5) and (e2,¬e3). If we perform a trial unit propagation of ¬e2, dynamically per-

forming universal reduction we obtain the unit clause (u1). Because the trial propagation

started with ¬e2 this unit clause actually corresponds to the binary clause (u1, e2) (i.e.,

¬e2 → u1). The trial unit propagation has to keep track of the “root” of the propagation

so that it does not erroneously apply universal reduction (every clause reduced during

this process implicitly contains e2).

3.5 Dynamic Employment

We have also implemented HypBinRes+UR in a DPLL based QBF solver by modifying

the 2clsEq SAT solver [5]. The resulting QBF solver, 2clsQ [96], performs HypBin-

Res+UR reasoning at every node of the search tree. An abstract outline of its algorithm

is shown in Algorithm 3 which is an extension of Algorithm 2 displayed in Chapter 2.
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The following changes were made to the 2clsEq SAT solver to make it into a QBF

solver. First, branching on a variable had to be constrained so that the quantifier ordering

is respected.

Second, equality reduction had to be modified so that it respects the quantifier or-

dering. In the 2clsEq implementation an entire set of variables could be detected to be

equivalent at once, so we must pick a variable v from the outermost quantifier block

among that set and then replace all of the other variables with v.

1: 〈bool Result, int BTLevel〉 2clsQ( ~Q.F , Level)

2: if F contains an [empty clause/is empty] then

3: Compute a new [clause/cube] and backtrack level BTLevel by [conflict/solution]

analysis

4: return 〈FAIL/SUCCEED,BTLevel〉

5: Pick v from the first quantifier block and let ` = v or ¬v

6: ~Q.F = HypBinRes+ UR( ~Q.F |`) i.e., reduce by HypBinRes+UR, equality

reduction, universal reduction, and unit propagation

7: 〈Result, BTLevel〉 = 2clsQ
(
~Q.F,Level + 1

)
8: if BTLevel < Level then

9: return 〈Result, BTLevel〉

10: if v is [universal/existential] then

11: Compute new [cube/clause] from the [cubes/clauses] learned from v and v̄ by

resolution

12: return ([SUCCEED/FAIL], BTLevel)

Algorithm 3: 2clsQ Algorithm. Invoked with the original QBF and Level=1. Returns

(SUCCEED, 0) indicating QSAT or (FAIL, 0) indicating UNQSAT.

Third, we had to modify the code that tested for possible new applications of Hyp-

BinRes to account for universal reduction. When a new binary clause (x, y) is generated
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we can continue to test all clauses containing x̄ as well as all clauses containing ȳ to see

if this new binary clause triggers any new applications of HypBinRes+UR. For example,

if x̄ ∈ c, we determine the set S of other literals ` ∈ c that can be resolved away from c

by binary clauses of the form (y, ¯̀). Then we check if c − S can be universally reduced

to a clause of length 2 or less. The other trigger used in 2clsEq for new applications of

HypBinRes occurs when a k-ary clause has been reduced in size, as discussed above.

Unfortunately, detecting if the reduction of a k-ary clause generates any new binary

or unary clauses under HypBinRes+URis relatively expensive. With just HypBinRes

when a clause c has just been reduced in size to length i, we only need to look for a

literal x such that there are i − 1 binary clauses (x, ¯̀) with ` ∈ c. From these clauses

we can then infer a new binary clause (x, y), where y ∈ c is the single literal not covered

in the set of clauses (x, ¯̀). This can be accomplished relatively efficiently by first taking

any two literals of c, l1 and l2 and examining the set of literals L = {y| either (y, l̄1) or

(y, l̄2) exists}. We then know that any literal x satisfying the above condition must be in

L—any such literal must have a binary clause with one of l̄1 or l̄2—and we can restrict

our attention to the literals in L.

Unfortunately, this strategy for limiting the set of literals to examine for potential

new HypBinRes steps against a clause breaks down when we move to HypBinRes+UR.

For example, consider the clauses c = (e1, u1, u2, u3, e2, u4, u5, e3), (e, ē2), (e, ē3) with

e <q e1 <q u1, u2, u3 <q e2 <q u4, u5 <q e3. We can infer the new binary clause (e1, e)

by applying HypBinRes+UR. In this case, the literal e has only two binary clauses that

can resolve against c, and so it does not fall into the set L defined above. Hence, it is

not possible to limit our attention to the literals in L. It is still possible to detect all

possible HypBinRes+UR inferences available from c in polynomial time, but it becomes

more expensive to do so. Hence, in our implementation we do only a partial, and cheaper,

test for new HypBinRes+UR inferences on k-ary clauses that have been reduced in size.

That is, we do not achieve HypBinRes+UR closure in 2clsQ.
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Fourth, the algorithm employs both conflict and solution analysis for learning new

clauses and solution cubes. Since literals can be forced from an extensive combination of

binary clause reasoning and equality reduction, it was very difficult to implement 1-UIP

clause learning. Instead, 2clsQ learns ‘all decision clauses’ [110]. The learned clauses

are used to enhance unit propagation. However, we do not perform HypBinRes+UR or

equality reduction against these new clauses as this appears to be too expensive. Solution

analysis (cube learning) is done in the manner presented in Chapter 2. The learned cubes

are also used to prune branches in the search. In particular, when a universal variable is

set this might trigger a cube making search below that setting unnecessary as explained

in Chapter 2.

Finally, we modified the original 2clsEq branching heuristics to take into account

the varying nature of QBF search. In our implementation we combined two branching

heuristics in the following way. Whenever 2clsQ encounters a conflict we try to generate

more conflicts by branching on variables that cause the largest number of unit prop-

agations (under HypBinRes this number is equal to the number of binary clauses the

variable appears in). On the other hand when 2clsQ finds a solution we try to generate

more solutions by branching on variables that will satisfy the most clauses. Thus the

branching heuristic switches dependent on what “mode” the search is in.

We conclude this section with the following formal results on the properties of 2clsQ.

Theorem 4 2clsQ as shown in Algorithm 3 is sound and complete.

Proof:

Both properties follow directly from Theorem 3 and Proposition 2. To the QBF-DPLL

algorithm (see Algorithm 2) we only add a sound inference procedure and consequently

the soundness of QBF-DPLL remains intact. In addition, the basic systematic recursion

of QBF-DPLL is not altered. Therefore, 2clsQ is sound and complete.



Chapter 3. Extended Binary Resolution 60

3.6 Empirical Results

We considered all of the non-random benchmark instances from QBFLib (2005) [45]

(508 instances in total). We discarded the instances from the benchmark families von

Neumann and Z since these are all very quickly solved by any state of the art QBF solver

(less than 10 sec. for the entire suite of instances). We also discarded the instances

coming from the benchmark families Jmc, and Jmc-squaring. None of these instances

(with or without preprocessing) can be solved within our time bounds by any of the QBF

solvers we tested. This left us with 468 remaining instances from 19 different benchmark

families. We tested our approach on all of these instances.

All tests were run on a Pentium 4 3.60GHz CPU with 6GB of memory. The time

limit for each run of any of the solvers or the preprocessor was set to 5, 000 seconds.

3.6.1 Performance of the Preprocessor

We first examine the time required to preprocess the QBF formulas by looking at the

runtime behaviour of the preprocessor PreQuel on the given set of benchmark families.

On the vast majority of benchmarks the preprocessing time is negligible. In particular,

the preprocessing time for even the largest instances in the benchmarks Adder, Chain,

Connect, Counter, FlipFlop, Lut, Mutex, Qshifter, Toilet, Tree, and Uclid is less than

one second. For example, the instance Adder-16-s with ≈ 22, 000 variables and ≈ 25, 000

clauses is preprocessed in 0.3 seconds.

The benchmarks that require more effort to preprocess are C, EVPursade, S, Szy-

manski, and Blocks and a subset of the K benchmark:1 k-branch-n, k-branch-p, k-lin-n,

k-ph-n, and k-ph-p. To examine the runtime behaviour on these benchmark families we

plot the number of input variables of each instance against the time required for prepro-

cessing (Figure 3.1), clustering all of the K-subfamilies into one group. Both axis of the

1This benchmark family is divided into sub-families.
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Figure 3.1: Logarithmic scale comparison between the number of input variables and the

preprocessing time in seconds on a selected set of benchmark families.
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plot are drawn in logarithmic scale.

Figure 3.1 shows that for all of these harder benchmarks the relationship between

the number of input variables and preprocessing time is approximately linear on the

loglog-plot. This is not surprising since Proposition 3 showed that the PreQuel runs in

worst-case polynomial time. Any polynomial function is linear in a loglog scale with the

slope increasing with the degree of the polynomial.

Fitting a linear function to each benchmark family enables a more detailed estimate

of the runtime, since the slope of the fitted linear function determines the relationship

between the number of input variables and preprocessing time. For instance, a slope of

one indicates a linear runtime, a slope of two indicates quadratic behaviour, etc. Except

for the benchmarks ‘k-ph-n’ and ‘k-ph-p’ the slope of the fitted linear function ranges

between 1.3 (Szymanski) and 2.3 (Blocks) which indicates a linear to quadratic behaviour

of the preprocessor. The two K-subfamilies ‘k-ph-n’ and ‘k-ph-p’ display worse behaviour,

on them preprocessing time is almost cubic (slope of 2.9).

The graph also shows that on some of the larger problems the preprocessor can take

thousands of seconds. However, this is not a practical limitation. In particular out of

the 468 instances only 23 took more than 100 seconds to preprocess. Of these 18 could

not be solved by any of our solvers, either in preprocessed form or unpreprocessed form.

That is, these problems are so hard that we have no way of evaluating the effect of

preprocessing them. Of the other 5 instances that were solved by some solver there exist

in total 25 pairs of instances and solvers. Among these there exist only 13 pairs where

some solver succeeded either on the preprocessed instance only or on both versions of the

instance. On 62% of these 13 successful runs, the preprocessor yielded a net speedup.

Furthermore, despite being a net slowdown on the other 38% of runs, another 38% of the

runs were cases where the solver was only able to solve the preprocessed instance. So

our conclusion is that except for a few instances, preprocessing is not a significant added

computational burden.
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Solver Skizzo Quantor Quaffle Qube SQBF

no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

# Instances 311 351 262 312 226 238 213 243 205 239

Time on common in-
stances

9,748 9,595 10,384 2,244 36,382 20,188 41,107 23,196 46,147 25,554

Time on new instances - 12,756 - 16,829 - 9,579 - 9,707 - 2,421

Table 3.1: Summary of results reported in Tables 3.2 and 3.3. For each solver we show its

number of solved instances among all tested benchmark families with and without preprocess-

ing, the total CPU time (in seconds) required to solve the preprocessed and un-preprocessed

instances taken over the “common” instances (instances solved in both preprocessed and un-

preprocessed form), and the total CPU time required by the solvers to solve the “new” instances

(instances that can only be solved in preprocessed form).

3.6.2 Impact of Preprocessing

Now we examine how effective the preprocessor PreQuel is. Is it able to improve the

performance of state of the art QBF solvers, even when we consider the time it takes to

run? To answer this question we studied the effect preprocessing has on the performance

of five state of the art QBF solvers Quaffle [111] (version as of Feb. 2005), Quantor [14]

(version as of 2004), Qube (release 1.3) [46], Skizzo (v0.82, r355) [9] and SQBF [90]

(see also Chapter 4). Quaffle, Qube and SQBF are based on search, whereas Quantor

is based on variable elimination. Skizzo uses mainly a combination of skolemization,

variable elimination and search, but it also applies a variety of other kinds of reasoning

on the symbolic and the ground representations of the instances. Please refer to Chapter 2

for more details.

A summary of our results is presented in Table 3.1. The second row of the table

shows the total time required by each solver to solve the instances that could be solved

in both preprocessed and unpreprocessed form (the “common instances”). The data

demonstrates that preprocessing provides a speedup for every solver. Note that the
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times for the preprocessed instances include the time taken by the preprocessor.

On these common instances Quantor was 4.6 times faster with preprocessing, while

Quaffle, Qube and SQBF were all approximately 1.8 times faster with preprocessing.

Skizzo is only slightly faster on the preprocessed benchmarks (that it could already

solve).

The first row of Table 3.1 shows the number of instances that can be solved within

the 5000 sec. time bound. It demonstrates that in addition to speeding up the solvers

on problems they can already solve, preprocessing also extends the reach of each solver,

allowing it to solve problems that it could not solve before (within our time and memory

bounds). In particular, the first row shows that the number of solved instances for each

solver is significantly larger when preprocessing is applied. The increase in the number

of solved instances is 13% for Skizzo, 19% for Quantor, 5% for Quaffle, 14% for Qube

and 17% for SQBF.

The time required by the solvers on these new instances is shown in row 3. For

example, we see that SQBF was able to solve 34 new instances. None of these instances

could previously be solved in 5,000 sec. each. That is, 170,000 CPU seconds were

expended in 34 failed attempts. With preprocessing all of these instances could be

solved in 2,421 sec. Similarly, Quantor expended 250,000 sec. in 50 failed attempts,

which with preprocessing could all solved in 16,829 sec. Skizzo expended 200,000 sec.

in 40 failed attempts which with preprocessing could all be solved in 12,756 seconds.

Quaffle expended 60,000 sec. in 12 failed attempts, which with preprocessing could all

be solved in 9,579 sec. And Qube expended 150,000 sec. in 30 failed attempts, which

with preprocessing could all be solved in 9,707 seconds.

These results demonstrate quite convincingly that our preprocessor technique offers

robust improvements to all of these different solvers, even though some of them are

utilizing completely different solving techniques.

Tables 3.2 and 3.3 provide a more detailed breakdown of the data. Table 3.2 gives a
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Benchmark Skizzo Quantor Quaffle Qube SQBF

(#

instances)
Succ.
%

time
no-
pre

time

pre

Succ.
%

time
no-
pre

time

pre

Succ.
%

time
no-
pre

time

pre

Succ.
%

time
no-
pre

time

pre

Succ.
%

time
no-
pre

time

pre

ADDER

(16)

50% 954 792 25% 24 25 25% 1 1 13% 72 27 13% 3 1

adder (16) 44% 455 550 25% 29 27 42% 5 4 44% 0 1 38% 2,678 2,229

Blocks (16) 56% 108 11 100% 308 79 75% 1,284 762 69% 1774 242 75% 7,042 1,486

C (24) 25% 1,070 1,272 21% 140 32 21% 5,356 14 8% 3 5 17% 4 0

Chain (12) 100% 1 0 100% 0 0 67% 6,075 0 83% 4,990 0 58% 4,192 0

Connect

(60)

68% 802 5 67% 14 7 70% 253 5 75% 7,013 7 67% 0 5

Counter

(24)

54% 1,036 731 50% 217 141 38% 5 5 33% 2 1 38 9 20

EV (38) 29% 1,450 1,765 3% 73 82 26% 1,962 1,960 18% 4,402 2,537 32% 4,759 4,508

FlipFlop

(10)

100% 6 4 100% 3 4 100% 0 4 100% 1 4 80% 5,027 1

K (107) 88% 1,972 2,228 63% 3,839 39 35% 21,675 17,083 37% 21,801 19,203 33% 5,563 5,197

Lut (5) 100% 9 9 100% 3 3 100% 1 1 100% 3 6 100% 1,247 66

Mutex (7) 100% 0 102 43% 0 1 29% 43 49 43% 64 71 43% 1 6

Qshift (6) 100% 8 9 100% 26 29 17% 0 0 33% 29 29 33 1,107 2,103

S (52) 27% 644 1,886 25% 910 1,530 2% 0 0 4% 401 451 2% 0 0

Szymanski

(12)

42% 1,147 179 25% 7 0 0% 0 0 8% 0 200 0% 0 0

TOILET

(8)

100% 1 25 100% 4,135 3 75% 61 84 63% 496 325 100% 1,307 621

toilet (38) 100% 84 50 100% 684 243 97% 115 207 100% 58 90 97% 395 3,060

Tree (14) 100% 0 0 100% 0 0 100% 37 9 100% 0 1 93% 1,051 1,251

Table 3.2: Benchmark family specific information about commonly solved instances. Shown

are the percentage of instances that are solved in both preprocessed and unpreprocessed form

and the total time in CPU seconds taken to solve these instances within each family with and

without preprocessing. Best times shown in bold.
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Benchmark Skizzo Quantor Quaffle Qube SQBF

no-pre pre no-pre pre no-pre pre no-pre pre no-pre pre

Blocks 69% 88% 100% 100% 75% 88% 69% 69% 75% 81%

C 25% 29% 21% 30% 21% 25% 8% 21% 17% 25%

Chain 100% 100% 100% 100% 67% 100% 83% 100% 58% 100%

Connect 68% 100% 67% 100% 70% 100% 75% 100% 58% 100%

FlipFlop 100% 100% 100% 100% 100% 100% 100% 100% 80% 100%

K 89% 91% 63% 83% 35% 36% 37% 42% 33% 35%

S 27% 37% 25% 31% 2% 8% 4% 8% 2% 8%

Szymanski 42% 75% 25% 50% 0% 0% 8% 25% 8% 0%

toilet 100% 100% 100% 100% 97% 100% 100% 100% 97% 97%

Uclid 0% 67% 0% 0% 0% 0% 0% 0% 0% 0%

Table 3.3: Benchmark families where preprocessing changes the percentage of solved instances

(within our 5,000 sec. time bound). The table shows the percentage of each families’ instances

that can be solved with and without preprocessing.
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family by family breakdown of the common instances (instances that can be solved in both

preprocessed and unpreprocessed form). Specifically, the table shows for each benchmark

family and solver (a) the percentage of instances that are solvable in both preprocessed

and unpreprocessed form, (b) the total time required by the solvable instances when no

preprocessing is used, and (c) the total time required with preprocessing (i.e., solving as

well as preprocessing time). Table 3.2 shows that the benefit of preprocessing varies

among the benchmark families and, to a lesser extent, among the solvers. Nevertheless,

the data demonstrates that among these benchmarks, preprocessing almost never causes

a significant increase in the total time required to solve a set of instances. On the

other hand, each solver has at least 2 benchmark families in which preprocessing yields

more than an order of magnitude improvement in solving time. There are only two

cases (Skizzo on Mutex, SQBF on the toilet benchmark) where preprocessing causes a

slowdown that is as much as an order of magnitude (from 0 to 102 seconds and from 395

to 3,060 seconds).

Table 3.3 provides more information about the instances that were solvable only after

preprocessing. In particular, it shows the percentage of each benchmark family that

can be solved by each solver before and after preprocessing (for those families where

this percentage changes). From this table we can see that for each solver there exist

benchmark families where preprocessing increases the number of instances that can be

solved. It is interesting to note that preprocessing improves different solvers on different

families. That is, the effect of preprocessing is solver-specific. Nevertheless, preprocessing

allows every solver to solve more instances. It can also be noted that the different solvers

have distinct coverage, with or without preprocessing. That is, even when a solver is

solving a larger percentage of a benchmark it can still be the case that it is failing to

solve particular instances that are solved by another solver with a much lower success

percentage on that benchmark. Preprocessing does not eliminate this variability.

Some instances are actually solved by the preprocessor itself. There are two bench-
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mark families that are completely solved by preprocessing: FlipFlop and Connect. While

the first family is rather easy to solve the second one is considered to be hard. In fact,

≈ 25% of the Connect benchmarks could not be solved by any QBF solver in the 2005

QBF evaluation [76]. Our preprocessor solves the complete benchmark family in less

than 10 seconds. In addition, a few benchmarks from the hard S benchmark family can

be solved by the preprocessor. Again these instances could not be solved by any of the

QBF solvers we tested within our time bounds.

In total, the preprocessor can completely solve 18 instances that were unsolvable by

any of the solvers we tested (in our time bounds). The Chain benchmark is another

interesting case (its instances have 2 quantifier alternations ∃∀∃). The instances in this

family are reduced to ordinary SAT instances by preprocessing. The preprocessor was

able to eliminate all existential variables from the innermost quantifier block and con-

sequently remove all universals by universal reduction. The resulting SAT instance is

trivial to solve (it is smaller than the original QBF instance). In all of these cases the

extended reasoning applied in the preprocessor exploits the structure of the instances

very effectively. Note that the preprocessing cannot blow up the body of the QBF since

it can only add binary clauses to the body. Thus, any time the preprocessor converts

a QBF instance to a SAT instance, the SAT instance cannot be much larger that the

original QBF.

There were only five cases where for a particular solver preprocessing changed a solv-

able instance to be unsolvable (Quaffle on one instance in the K benchmarks, SQBF

on one instance in the Szymanski benchmarks, Skizzo on two instances in the Blocks

benchmark and on one instance in the K benchmark). This is not apparent from Ta-

ble 3.3 since both Quaffle and Skizzo can still solve more instances of the K and Blocks

benchmarks respectively, with preprocessing than without. However, we can see that

the percentage of solved instances for SQBF on the Szymanski benchmark falls to 0%

after preprocessing. This simply represents the fact that SQBF can solve one instance of
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Szymanski before preprocessing and none after. That is, we have found very few cases

when preprocessing is detrimental.

In total, these results indicate that preprocessing is very effective for each of the tested

solvers across almost all of the benchmark families.

3.6.3 Impact of Dynamic Application

In our second investigation of applying extended binary clause reasoning to QBF we

constructed a QBF solver 2clsQ [96]. As described in Section 3.5, 2clsQ applies Hyp-

BinRes+UR at every node of its DPLL search, although it does not achieve closure as

explained earlier). However, at the root node closure is achieved since the processing

done before search is identical to that preformed in PreQuel. We tested 2clsQ along with

the five other state of the art QBF solvers mentioned in the previous section. In addition,

the benchmark settings are the same as the ones described earlier.

Table 3.4 shows the performance of 2clsQ and the other five solvers on the 468 problem

instances we tested. The table is broken down by benchmark family as the structural

properties of the families can be quite distinct. This structural distinctions are reflected

in fact that the “best” solver for each family varies widely, where we measure best by the

success rate of the solver on that families’ instances breaking ties by CPU time consumed.

By this measurement 2clsQ is best on 3 families, which is better than any other search

based solver (Quaffle, Qube, and SQBF), but not as good as Skizzo which is best on 8

families.

Another comparison is to examine the average success rate over all benchmark fami-

lies, shown in the final row of the table. A high average displays fairly robust performance

across structurally distinct instances. On this measure 2clsQ is again superior to the other

search based solvers with an average success rate of 58%, higher than any of the other

search based solvers, but again not as good as Skizzo or Quantor. In terms of CPU time,

the search based solvers are roughly comparable over their solvable instances, but both
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Quantor and Skizzo are notably faster.

Our first results lead to the following conclusions. Binary clause reasoning improves

search based solvers, but the non-search solver Quantor and the mixture of search and

variable elimination employed in Skizzo often have superior performance. The superior

performance of Skizzo indicates that mixing search and variable elimination (as done by

Skizzo) is very effective. We also observe that both Quantor and Skizzo are still inferior

to some search based solver on 43% of the families.

Furthermore, if we examine those cases where a solver is able to achieve a strictly

higher success rate than any other solver (indicating that it can solve some instances not

solvable by any of the other solvers), we see that 2clsQ achieves this on 2 families, Quaffle

on zero, Qube on zero, SQBF on one, Quantor on one, and Skizzo on 6 families. Thus

we conclude that binary clause reasoning as embodied in 2clsQ has some potential in

increasing our ability to solve QBF (as do the techniques embedded in SQBF, Quantor,

and Skizzo).

3.6.4 Detailed Performance Analysis of 2clsQ

In SAT it was observed that binary clause reasoning could be very beneficial even when

done prior to search, in a preprocessing phase [7]. Hence, a natural question was to

investigate the difference between dynamic and static (i.e., before search) application of

binary clause reasoning.

Here we use our preprocessor to throw light on the effect of dynamic binary clause

reasoning. In particular, we are interested in the question of how much of 2clsQ’s benefits

accrue from the dynamic application of binary clause reasoning. Is utilizing binary clause

reasoning solely in a preprocessor sufficient, or is it also useful to use such reasoning

dynamically during search? To answer this question we compare the performance of 2clsQ

with the other solvers on preprocessed instances. By using the preprocessed instances,

2clsQ’s only “advantage” over the other solvers is its dynamic application of binary clause
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Benchmark

Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(#

instances)
Succ.

%
time Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time

ADDER

(16)

44% 5,267 13% 1 19% 72 13% 3 25% 25 50% 955

adder (16) 19% 0 44% 5 44% 0 38% 2,677 25% 30 44% 454

Blocks (16) 50% 46 75% 1,284 69% 1,774 75% 2,043 100% 308 69% 2,068

C (24) 21% 16 21% 5,356 8% 4 17% 4,741 21% 140 25% 1,070

Chain (12) 100% 0 67% 6,075 83% 4,990 58% 4,192 100% 0 100% 1

Connect

(60)

100% 7 70% 254 75% 7,013 67% 0 67% 14 68% 802

Counter

(24)

33% 4,319 38% 5 33% 2 38% 9 50% 217 54% 1,035

EV-

Pursuer(38)

26% 2,836 26% 1,963 18% 4,401 32% 4,759 3% 74 29% 1,450

FlipFlop

(10)

100% 4 100% 0 100% 1 80% 5,027 100% 3,260 100% 6

K (107) 35% 20,575 35% 18,451 37% 25,397 33% 5,563 64% 3,855 88% 2,081

Lut (5) 100% 19 100% 1 100% 3 100% 1,246 100% 3 100% 9

Mutex (7) 43% 22 29% 43 43% 64 43% 1 43% 0 100% 1

Qshifter (6) 33% 59 17% 0 33% 29 33% 1,108 100% 26 100% 8

S (52) 8% 9 2% 0 4% 401 2% 1 25% 910 27% 643

Szymanski

(12)

67% 2,741 0% 0 8% 0 8% 1,203 25% 7 41% 1,147

TOILET (8) 75% 528 75% 61 63% 496 100% 1,308 100% 4,135 100% 1

toilet (38) 84% 47 97% 115 100% 58 97% 395 100% 684 100% 84

Tree (14) 100% 296 100% 37 100% 0 93% 1,051 100% 0 100% 0

Summary 58% 36,793 50% 33,653 52% 44,708 51% 35,326 64% 10,432 71% 11,817

Table 3.4: Percentage of each Benchmark family solved and time taken for solved instances in CPU seconds

(5,000 sec. consumed by each unsolved instances is not counted). For each family the solver with highest success

rate is show in bold, where ties are broken by time required to solve these instances. The summary line shows

the average success rate over all benchmark families and the total time taken (on solved instances only).
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Benchmark

Families

2clsQ Quaffle Qube SQBF Quantor Skizzo

(#

instances)
Succ.

%
time Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time

ADDER

(16)

44% 5,267 13% 1 19% 26 13% 1 25% 26 50% 792

adder (16) 19% 0 44% 4 44% 1 38% 1,546 25% 27 44% 550

Blocks (16) 50% 46 88% 1,025 69% 242 82% 3,434 100% 79 88% 11

C (24) 21% 16 25% 4,947 21% 683 25% 20 29% 5,189 29% 1,483

Chain (12) 100% 0 100% 0 100% 0 100% 0 100% 0 100% 0

Connect

(60)

100% 7 100% 7 100% 7 100% 7 100% 7 100% 7

Counter

(24)

33% 4,319 38% 5 33% 1 38% 20 50% 141 54% 731

EV-

Pursuer(38)

26% 2,836 26% 1,961 18% 2,537 32% 4,508 5% 4,809 39% 5,753

FlipFlop

(10)

100% 4 100% 4 100% 4 100% 4 100% 4 100% 4

K (107) 35% 20,575 36% 21,446 42% 30,606 35% 12,859 83% 6,898 91% 5,333

Lut (5) 100% 19 100% 1 100% 6 100% 66 100% 3 100% 9

Mutex (7) 43% 22 29% 49 43% 71 43% 6 43% 1 100% 100

Qshifter (6) 33% 59 17% 0 33% 29 33% 2,103 100% 29 100% 8

S (52) 8% 9 8% 9 10% 452 8% 9 31% 1,538 37% 1,538

Szymanski

(12)

67% 2,741 0% 0 25% 199 0% 0 25% 109 75% 4,680

TOILET (8) 75% 528 75% 84 63% 325 100% 621 100% 3 100% 3

toilet (38) 84% 47 97% 221 100% 90 97% 3,061 100% 243 100% 50

Tree (14) 100% 296 100% 8 100% 1 93% 1,251 100% 0 100% 0

Summary 58% 36,793 55% 29,772 56% 35,281 57% 29,518 69% 19,108 81% 23,895

Table 3.5: Experiments from Table 3.2 repeated except that the other solvers are supplied with instances

preprocessed by binary clause reasoning. Again unsolved instances consumed 5,000 sec., and for each family the

solver with highest success rate is show in bold, where ties are broken by time required to solve these instances.

The summary line shows the average success rate over all benchmark families and the total time taken (on solved

instances only).
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reasoning. Our results are shown in Table 3.5.

These results show that a significant part of the gains achieved from binary clause

reasoning occurs statically prior to search. In terms of average success rate, 2clsQ still

at 58% is now closer in performance to the other search based solvers all of which have

gained, and still inferior to Quantor and Skizzo which have gained significantly from bi-

nary clause preprocessing. We also see that two of the families where 2clsQ was achieving

superior performance, Chain and Connect, have been so reduced by preprocessing that

all solvers now achieve similar performance on them. In fact, all instances of Connect

are completely solved by preprocessing, and all instances of Chain are reduced to simple

SAT problems by preprocessing.

Nevertheless, the results do show that dynamic binary clause reasoning improves the

efficiency of search in QBF solvers. In particular, 2clsQ remains more effective than other

purely search based solvers even when the effect of inference prior to search is factored

out. The question now is whether or not these improvements to search are useful, given

the effectiveness of variable elimination used by Quantor and Skizzo.

3.6.5 Filtering out instances best solved by variable elimination

To address this question we look more closely at how effective dynamic binary clause

reasoning is on instances that are more suitably solved by search. In particular, it does

not really matter much if (dynamic) binary clause reasoning improves the efficiency of

solving by search instances that are more easily solved by variable elimination.

We examined those instances that would be solved very quickly by variable elimi-

nation, and to factor out the effect of binary clause reasoning prior to search we first

preprocessed these instances. In particular, we found that a large number of instances

(approximately 285) could be solved by Quantor after preprocessing in 25 seconds or less.

In fact Quantor and Skizzo are obtaining a significant head start in their average success

rate over the search base solvers from these “easy” instances.
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After filtering out these instances a number of benchmark families were completely

eliminated. That is, all of their instances were best suited for variable elimination af-

ter preprocessing. This left us with the benchmark families Adder, adder, C, Connect,

Counter, EV-Pursue, K, Mutex, S, Toilet and Szymanski. However, even among these

families several instances were eliminated as being easy. In this analysis we also elimi-

nated all instances that could not be solved by any of the solvers as such instances are

not useful when comparing solvers. In total we ended up with 72 instances remaining in

10 different benchmark families.

Table 3.6: Solver performance on “non-easy” preprocessed

instances (i.e., instances that could not be solved in 25 sec-

onds by Quantor after preprocessing. Uniquely solved in-

stances shown in bold.

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

ADDER Adder2-4-c 0 - 26 - - 111

Adder2-6-c 7 - - - - -

Adder2-8-s - - - - - 12

Adder2-8-c 16 - - - - -

Adder2-10-s - - - - - 437

Adder2-10-c 3,812 - - - - -

Adder2-12-s - - - - - 230

Adder2-12-c 1,432 - - - - -

adder adder-8-sat - - - - - 12

adder-8-unsat - 0 0 0 - -

adder-10-unsat - 0 0 935 - -

adder-12-sat - - - - - 314

adder-12-unsat - 0 0 191 - -

Continued on next page
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Table 3.6—continued from previous page

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

adder-14-unsat - 0 0 419 - -

adder-16-unsat 0 2 0 - - -

C C6288-10-1-1-out - - - - - 1,436

C880-10-1-1-inp 1 4 3 3 905 23

Counter counter-16 - - - - - 721

counter-r-8 - - - - 60 1

counter-re-8 - - - - 79 3

EV-Pursue ev-pr-4x4-5-3-1-lg 1 1 0 1 82 24

ev-pr-4x4-5-3-1-s - - - - - 6

ev-pr-4x4-7-3-1-lg 17 3 16 1 - 1,469

ev-pr-4x4-7-3-1-s - - - - - 973

ev-pr-4x4-9-3-1-lg 180 65 2,174 2 - -

ev-pr-4x4-9-3-1-s - - - - - 1,679

ev-pr-4x4-11-3-1-lg 390 990 - 3 - -

ev-pr-4x4-13-3-1-lg - - - 4 - -

ev-pr-4x4-15-3-1-lg - - - 5 - -

ev-pr-4x4-17-3-1-lg - - - 7 - -

ev-pr-6x6-5-5-1-2-lg 4 5 2 24 - 2

ev-pr-6x6-5-5-1-2-s - - - - - 258

ev-pr-6x6-7-5-1-2-lg 60 67 44 172 - 2

ev-pr-6x6-7-5-1-2-s - - - - - 462

ev-pr-6x6-9-5-1-2-lg 823 784 - 3,708 - 235

ev-pr-6x6-11-5-1-2-s - - - - - 606

ev-pr-8x8-5-7-1-2-lg 3 2 3 2 4,727 3

Continued on next page
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Table 3.6—continued from previous page

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

ev-pr-8x8-7-7-1-2-lg 68 9 298 578 - 8

ev-pr-8x8-9-7-1-2-lg 1,292 34 - - - 12

ev-pr-8x8-11-7-1-2-lg - - - - - 18

K k-branch-n-4 141 - 93 1,190 - 12

k-branch-n-8 - - - - - 40

k-branch-p-4 1,858 389 20 147 32 0

k-branch-p-8 - - - - - 0

k-branch-p-12 - - - - - 52

k-d4-n-8 - - - - - 0

k-d4-n-12 - - - - - 0

k-d4-n-16 - - - - - 0

k-d4-n-20 - - - - - 1

k-d4-n-21 - - - - - 1

k-lin-n-20 1,493 - 1,370 - 66 74

k-lin-n-21 1,511 - 1,593 - 82 87

k-ph-n-16 287 261 4,729 4,334 198 198

k-ph-n-20 2,636 2,204 - - 1,790 1,806

k-ph-n-21 4,254 3,668 - - 2,950 2,977

k-ph-p-12 - - - - 1,689 -

Mutex mutex-16s - - - - - 1

mutex-32s - - - - - 9

mutex-64s - - - - - 22

mutex-128s - - - - - 70

S s499-d4-s - - - - 228 107

Continued on next page
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Table 3.6—continued from previous page

Family Instance 2clsQ Quaffle Qube SQBF Quantor Skizzo

s499-d8-s - - - - - 1,878

s641-d2-s - - - - 294 18

s713-d2-s - - - - 448 29

s820-d2-s - - - - 429 33

s3330-d2-s - - - - 107 11

Szymanski szymanski-12-s 221 - - - 105 1,183

szymanski-14-s 677 - - - - 954

szymanski-16-s 1,780 - - - - 1,992

szymanski-18-s - - - - - 373

Toilet toilet-a-10-01.16 - 59 37 - 103 32

toilet-c-10-01.16 - 72 46 655 110 9

Solved Instances 27 21 22 20 20 57

Total time on solved
instances

23,238 11,884 10,628 13,019 14,534 21,252

Number of Uniquely
solved Instances

3 0 0 3 1 22

In Table 3.6 we show the results of the solvers on these remaining preprocessed in-

stances. In the table a ’-’ is used to indicate that the particular solver could not solve the

instances within a 5,000 CPU second time bound. These results show that dynamic bi-

nary clause reasoning as performed in 2clsQ is effective on these harder instances. 2clsQ

solves more of these instances than any other solver (27) except Skizzo. We also see that

Quantor with 20 solved instances is less effective on these remaining instances than the

improved search achieved by dynamic binary clause reasoning in 2clsQ. We also see that

Skizzo, with its combination of search and variable elimination remains by far the most

effective approach on these remaining instances with 57 instances solved.
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Finally, if we look at the number of uniquely solved instances we see that both 2clsQ

and SQBF can solve 3 instances not solvable by any other solver. These include instances

that to the best our knowledge have never been solved before, e.g.,‘Adder2-10-c’ and

‘Adder2-12-c’. These two solver embed techniques for improving search, and we see that

these techniques can be useful for improving our ability to solve QBF. Skizzo can solve 20

instances not solvable by any other solver, so we see that combining variable elimination

and search appears to be the most powerful current technique for solving QBF. However,

the search employed by Skizzo does not include the innovations of SQBF or 2clsQ. Hence,

our results point to at least one direction for building a QBF solver superior to any that

currently exists.

It is also worth noting that 2clsQ and SQBF implement many of the techniques of

Quaffle and Qube, so it is hardly surprising that all of the instances solved are also solved

by some other search based solver. This does not detract from the techniques pioneered

in these solvers, like clause and cube learning, which are essential for search based solvers.

The uniquely solved instances speaks instead to the value of the new techniques utilized

in other solvers: variable elimination in Quantor, binary clause reasoning in 2clsQ, SAT

solving lookahead in SQBF (Chapter 4), and the mixture of variable elimination and

search in Skizzo. The data indicates that these new techniques all have some value in

improving our ability to solve QBF.

3.7 Related Work

In this section we review the similarities between our approach and the methods applied

in existing QBF solvers. We conclude that HypBinRes has not been previously lifted

to the QBF setting, although equality reduction and binary clause reasoning have been

used in some state-of-the-art QBF solvers. Our experimental results support this, since

our preprocessor aids the performance and reach of even the solvers that employ binary
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clause reasoning and equality reduction.

Skizzo applies equality reduction as part of its symbolic reasoning phase [9]. [9]

makes the claim that Skizzo’s SHBR rule performs a symbolic version of hyper binary

resolution. However, a close reading of the papers [9, 11, 10, 12] suggests that in fact

the SHBR rule is a strictly weaker form of inference than HypBinRes . SHBR traverses

the binary implication graph of the theory, where each binary clause (x, y) corresponds

to an edge ¬x → y in the graph. It detects when there is a path from a literal l to

its negation ¬l, and in this case, unit propagates ¬l. This process will not achieve

HypBinRes . Consider the following example where HypBinRes is applied to the theory

{(a, b, c, d), (x,¬a), (x,¬b), (x,¬c)}. HypBinRes is able to infer the binary clause (x, d).

Yet the binary implication graph does not contain any path from a literal to its negation,

so Skizzo’s method will not infer any new clauses. In fact, the process of searching

the implication graph is well known to be equivalent to ordinary resolution over binary

clauses [3]. On the other hand, HypBinRes can infer anything that SHBR is able to since

it captures binary clause resolution as a special case. Therefore SHBR is strictly weaker

than HypBinRes . This conclusion is also supported by our experimental results, which

show, e.g., that our preprocessor is able to completely solve the Connect Benchmark

where as Skizzo is only able to solve 68% of these instances.

The variable elimination algorithm of Quantor also bears some resemblance to hyper

binary resolution, in that variables are eliminated by performing all resolutions involving

that variable in order to remove it from the theory. General resolution among n-ary

clauses is a stronger rule of inference than HypBinRes , but it is difficult to use as a

preprocessing technique due to its time and space complexity (however see [34]).
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Figure 3.2: Logarithmic time scale comparison of Quantor and Skizzo on the original and

Quantor on the preprocessed benchmarks. Shown is the time in seconds versus the number of

instances solved.

3.8 Extensions of Preprocessing

Additional techniques for preprocessing remain to be investigated. Based on the data

we have gathered with our preprocessor PreQuel, we can conclude that a very effective

technique would be to run PreQuel followed by running Quantor for a short period

of time (10-20 seconds). This technique is capable of solving a surprising number of

instances. As shown in Figure 3.2 the combination of the preprocessor and Quantor

is in fact able to solve more instances than Skizzo [9]. Hence, by simply employing

hyper resolution and variable elimination it is possible to gain an advantage over such
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sophisticated QBF solvers as Skizzo. Furthermore, this technique solves a number of

instances that are particularly problematic for search based solvers. Figure 3.2 shows that

this technique (the “Quantor-Preprocessed” line) can solve approximately 285 instances

within 10 seconds. Yet if we continue to run Quantor for another 5000 seconds very few

additional problems are solved (about 25 more instances). We have also found that search

based solvers can solve a larger number of these “left-over” instances than Quantor.

This suggests the strategy of first running the preprocessor, then running Quantor,

and then a search based solver if Quantor is unable to solve the instance quickly. As a

matter of a fact this approach was the basis of the solver systems we entered in the the

QBF competition 2006 [49]. This combined approach was able to outperform all other

state-of-the-art QBF solvers, and the three systems we entered in the competition place

first, second and third in the competition. The first place was achieved by the described

preprocessing combination of first running PreQuel then Quantor and 2clsQ as a search

based solver. Second place was achieved by first running Prequel followed by running

Quantor without a time limit. And third place was achieved by the PreQuel-Quantor

preprocessing combination followed by our SQBF search based solver (see Chapter 4).

In addition to the benchmark results presented here these competition results verify the

impact of our techniques in an independent fashion.

Another interesting approach would be to investigate obtaining the partially elimi-

nated theory from Quantor after it has run for a few seconds, and then seeing if it could

be further preprocessed or fed directly into a search based solver. The Skizzo solver [9]

attempts to mix variable elimination with search in a related way, but it does not employ

the extended preprocessing reasoning we have suggested here.
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3.9 Conclusion

Our main conclusion is that extended binary clause reasoning is effective for QBF. If used

prior to search in a preprocessor it is able to speed up both search based and variable

elimination based solvers. Our empirical results as well as the QBF competition results

[49] also show that such reasoning can also be useful in a dynamic context, and that

certain problem instances can be solved with such reasoning that do not seem to be

otherwise solvable.

However, although our empirical results identify binary clause reasoning as being

useful techniques for solving QBF, understanding more clearly how to best to combine

this reasoning with other kinds of inference, especially variable elimination, remains an

open question. We investigate this question more fully in Chapter 6. There we will see

that it is possible to find ways of applying binary clause reasoning in a more focused

manner that can cooperate with other kinds of inference.



Chapter 4

Using SAT in QBF

4.1 Introduction

In this chapter we develop an algorithm that makes extensive use of order-unconstraint

SAT solving in an attempt to alleviate (but not completely remove) the constraint vari-

able ordering required by QBF (see Chapter 2). Our exploits learning in a fundamental

way but still requires only polynomial space for its correctness and retains the any-space

character common to search algorithms with learning (Chapter 2).

The idea is to utilize a backtracking SAT solver in a backtracking QBF solver. Because

both solvers are doing backtracking search we are able to develop techniques to integrate

them very tightly. For example, both solvers search the same tree and share all of their

datastructures, including using the same stack to store the current path.

The key innovation of our method lies in techniques for sharing information between

the two solvers so that information computed during SAT solving can be used to improve

QBF solving and vice versa. As we will explain the SAT solver is able to uncover

information that would be very difficult or costly for a standard QBF solver to uncover.

This information can then be used to speed up QBF solving. The result is a QBF solver

83
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that is able to improve on current state of the art on a number of benchmark suites1.

4.2 SQBF

As explained in Chapter 2 there is no escaping the fact that in QBF we have to ensure

that both settings of each universal variable are solvable. The constraint on variable

ordering imposed by the quantifier sequencing can also be a significant impediment to

performance. In SAT, e.g., it is provable that an inflexible variable ordering can cause

an exponential explosion in the size of the backtracking search tree. That is, there exist

families of UNSAT problems for which any DPLL search tree in which each branch follows

a fixed variable ordering is exponential in size, whereas a quasi-polynomially (O(nlogn))

sized DPLL search tree exists when a dynamic ordering is used [23, 8].

This observation (also bolstered by empirical observations of the tremendous impact

variable ordering has on DPLL SAT search [73]), is the underlying motivation for our ap-

proach. In particular, consider a QBF formula ~Q.F in which the body F is UNSAT. If all

of quantifier blocks have size 1, QBF-DPLL will be forced to follow a fixed static variable

ordering in proving ~Q.F to be UNQSAT. On the other hand an order unrestricted SAT

solver might be able to determine that F is UNSAT very quickly, which will immediately

tell us that ~Q.F is UNQSAT.

The idea of testing the body of the formula, F , can be used recursively at every

invocation of QBF-DPLL (see Algorithm 2 in Chapter 2) on the body of the QBF sub-

formula that is to be solved in that recursion prior to a full QBF search. If the body

F |T is UNSAT, we can backtrack immediately. If F |T is SAT, then we still do not know

whether or not ~Q.F |T is QSAT, so we have to continue recursively solving ~Q.FT with our

QBF solver. Note that this process is related to testing trival truth (see Chapter 2) at

every node. However, while with trivial truth only the binary result (SAT or UNSAT)

1This statement was made in 2005—state of the art evolved since then, but the approach presented
here remains to be competitive on several benchmark families (see e.g., [49]).
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is utilized during QBF solving we exploit the information gathered from the SAT solver

more extensively via (1) following the SAT solution in the QBF solver and (2) clause

learning during SAT solving as we will discuss in the subsequent paragraphs.

Furthermore, if FT is SAT the SAT solver will find a satisfying truth assignment

for F . This truth assignment is a sensible candidate for the left-most path in a Q-

model of FT . So after we obtain the SAT solution we can follow this solution in the

QBF solver during its first (left-most) descent. It can, however, be the case that the

SAT solution is not in fact a feasible left-most path for the QBF solver. In particular,

this truth assignment might not survive the stronger Q-propagation (unit-propagation

plus universal reduction, see Chapter 2) performed by the QBF solver. For example, if

~Q.F = ∀a, b.∃c.(a, c) ∧ (b,¬c), then the SAT solver could return π = 〈¬a, b, c〉 as SAT

truth assignment for F . However, the QBF solver following this solution would first

instantiate ¬a which by Q-Propagation would reduce ~Q.F to ∀b.(), i.e., F would contain

an empty clause.

Putting these pieces together we obtain the S-QBF algorithm given in Algorithm 4.

The algorithm is a modification of QBF-DPLL presented in Chapter 2. S-QBF is first

invoked with Level equal to 1, the empty trail T and the empty variable assignment

π = {}. Its first task is to find a SAT solution (line 3-7). The SAT solver might discover

a number of literals implied at higher levels. Literals implied at higher levels cause S-

QBF to backtrack, assert those literals, and then proceed downwards again. The SAT

solver might also discover literals implied at the current level. These literals are used to

reduce the input formula ~Q.F (line 7) via Q-propagation: these literals are independent

of any choices made by the SAT solver so their consequences need to be accounted for

by the QBF solver. After Q-propagating these implied literals the SAT solver is called

again to see if it can find a SAT solution in light of these added constraints on F .

Eventually, the SAT solver finds a SAT solution (π is returned containing this solu-

tion), or causes a backtrack to a higher level in the QBF solver. If a solution is found,
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1: 〈bool Result, cube c, int BTLevel〉 S-QBF(Level, T, π)

2: Perform non-chronological solution backtracking as in QBF-DPLL lines 2-5.

3: while π == {} do { No current SAT solution }

4: 〈π, -, BTLevel〉 = SAT
(
Level, T

)
5: if BTLevel < Level then {SAT can cause S-QBF to backtrack }

6: return 〈FAIL, -, BTLevel〉

7: QProp
(
~Q.F |T

)
8: repeat { First and subsequent invocations of S-QBF need to find new SAT

solution }

9: conflict = QProp
(
~Q.F |T

)
10: Perform non-chronological conflict backtracking as in QBF-DPLL lines 8-11.

11: Pick v from the first quantifier block and let ` = π(v)

12: T’ = T ∪ ` {Add ` to trail T}

13: 〈Result, c, BTLevel〉 = S-QBF
(
Level + 1, T ′, π

)
14: if (BTLevel < Level) then

15: return 〈Result, c, BTLevel〉

16: π = {} {Subsequent invocations need to find new SAT Solution}

17: if (Result == SUCCEED) then

18: cube[l] = c {Store cube}

19: T’ = T ∪ ¬` {Add ¬` to trail T and solve recursively}

20: 〈Result, c, BTLevel〉 = S-QBF
(
Level + 1, T ′, π

)
21: if (BTLevel < Level) then

22: return 〈Result, c, BTLevel〉

23: if (Result == SUCCEED) then

24: newcube = cube[l] ∪ c \ {¬l, l} {Tailing existentials are removed}

25: u = deepest universal in newcube; BTLevel = Level of u was branched on

26: return 〈SUCCEED, c, BTLevel〉 {Note if c is empty then BTLevel = 0}

27: until false {only exit from this loop via a return to a higher level}
Algorithm 4: S-QBF
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the QBF solver heuristically tries to follow this solution (in quantifier order) by choosing

a value for v that agrees with π (line 11). The SAT solution π is passed down to the next

recursion where it is followed as far as possible, either to a failure or a valid solution in

the QBF context at line 2. Q-propagation might cause S-QBF to fail while following π

even though π is a SAT solution. Note that Q-Propagation cannot be applied in the SAT

solver since Q-Propagation is only valid when the variables are instantiated in quantifier

order whereas the SAT solver is order unconstrained.

Any conflicts encountered will cause a backtrack which will return to line 20 or 13 of

some invocation after which the next invocation will call the SAT solver again. Thus the

SAT solver is being used to refute UNSAT subtrees, and more importantly to compute

new conflict clauses that can (a) cause the QBF solver to backtrack and (b) discover

that various literals are implied at previous levels of the search. All of this information,

computed by the SAT solver, is sound for the QBF solver: UNSAT subtrees are UNQSAT,

any new clause learned by the SAT solver is a valid new clause for the QBF solver, and

if a literal ` is SAT implied at a previous level of the tree then ` is Q-SAT implied at

that level as well.

It should be noted that the SAT solver can also make an S-QBF invocation backtrack

from line 20, even though we know that the other side of the universal branched on in

that invocation has already been successfully solved. This might seem strange, since at

this point we already know that the current prefix (above the Level of this invocation)

contains at least one satisfying assignment below it. Thus one might think that the SAT

solver could never then conclude that the prefix is contradictory. However, although the

prefix is not SAT contradictory, it could still be QBF contradictory.

For example, say that the prefix contains the literal a, the body F contains the clauses

(¬a,¬b, c, d), (¬a,¬b, c,¬d), (¬a,¬b,¬c, d), (¬a,¬b,¬c,¬d), b is universal, b <q c, and

b <q d. The QBF solver will be able to solve the setting ¬b without difficulty, as this

setting satisfies all of these clauses. However, when at line 20 the setting b is made these
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four clauses become contradictory. Q-propagation cannot detect the contradiction so the

SAT solver will be invoked in the next recursive S-QBF call. SAT will be able to learn

the new clause (¬a,¬b), which after universal reduction becomes (¬a). This will cause

the QBF solver to backtrack all the way to the point where a was added to the prefix.

4.3 Integration of SAT and QBF

In our implementation of S-QBF we built our own SAT solver (utilizing all of the modern

techniques like 1-UIP clause learning, watched literals, etc. [73]). In this way we were

able to obtain a much tighter integration between the SAT solver and the QBF solver,

e.g., sharing of datastructures.

Clause learning is the basic unit of communication between the two solvers. As

pointed out above, learned clauses are not necessary for correctness, but they are very

helpful for efficiency. In particular, both the QBF solver, via contradictions generated

via Q-propagation, and the SAT solver via contradictions generated via unit propagation

can learn clauses. Universal reduction is applied to these learned clauses to make them

more powerful. All of these learned clauses arise from sequences of Q-resolution steps,

thus as shown in [22] they are all logical consequences of the input QBF. That is, they

do not alter the QSAT status of the input. This means that any clause learned by either

solver can be used by both solvers to prune paths from the search space they explore.

This is useful as each solver is able to learn different kinds of clauses. In particular,

since the SAT solver is order unrestricted it can learn powerful clauses via its VSIDS

heuristic [73] which would never be learned by the order restricted QBF solver. These

clauses can significantly prune the set of paths explored by the QBF solver. On the other

hand the QBF solver is able to employ stronger Q-propagation and so it also can learn

clauses that the SAT solver could never learn. These clauses allow the SAT solver to

prune paths that are fine from the point of view of SAT but which are contradictory with
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respect to QBF.

Another way that the SAT and QBF solvers are integrated involves techniques for

finding “good” SAT solutions (if any exist) [41]. In particular, a good SAT solution is a

solution that will allow the QBF solver to generate a good cube (at line 3) if the QBF

solver is able to follow the SAT solution down to a leaf. Our technique here is to alter

the SAT heuristic for choosing the next decision literal so as to minimize the number of

clauses satisfied only by universal variables in the solution. In our implementation we

try to branch on existentials that appear in clauses currently only satisfied by universals.

Thus, this heuristic tries to ensure that as many clauses as possible are satisfied by

existentials. This will result in a smaller cube being generated during solution analysis

(also see Chapter 2).

Finally, unlike the rigid prescription of Algorithm 4, our implementation employs

some additional heuristic flexibility in deciding when to invoke the SAT solver.

The most important difference is that on many problems the SAT solver will return

a SAT solution that fails when we try to follow it using the stronger Q-propagation.

This failure then invokes another call to SAT which returns another SAT solution which

again fails as we follow it. This sequence of “SAT-ok”, “QBF-bad” solutions returned by

SAT can be quite long and time consuming. Hence, if this happens more than a certain

number of times (5 in our implementation) we give up on SAT solving for this descent

and instead try to find a solution using the QBF solver and Q-propagation. In most such

cases Q-propagation is able to quickly descend to a leaf from which point we continue

with S-QBF. Otherwise the Q-propagation descent learns a conflict, we backtrack, and

again continue with S-QBF.
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4.4 Formal Results

In this section we present a few formal results on the presented approach. The results

shown here are mainly based on the formal properties of Algorithm 2 discussed in Chap-

ter 2.

Theorem 5 S-QBF is sound and complete.

Proof: By Theorem 3 the underlying QBF-DPLL algorithm is sound and complete.

SAT in S-QBF only allows S-QBF to backtrack on failure, it does not affect success

backtracking. Thus, SUCCESS returns continue to correctly prove QSAT. Furthermore,

all operations performed by SAT during failure backtracking are sound Q-resolution steps

((e.g., [22], [33]), so S-QBF also preserves the property that it backtracks from the root

with false only if its input is Q-UNSAT. That is, S-QBF retains QBF-DPLL’s soundness

property.

For the same reason S-QBF retains the systematic property of QBF-DPLL from

Algorithm 2 and consequently S-QBF is also complete.

In additon, we make the following observation:

Observation 1 The SAT solver in S-QBF is semi-systematic. That is, it never revisits

the same SAT solution, but it can revisit deadend nodes not leading to a SAT solution.

Notice that we view the set of assignments visited by the SAT solver to be the prefix of

the subtree it is exploring along with the assignments it makes in that subtree. Under this

interpretation it is immediate that the same SAT solution is never revisited: the prefix

of that SAT solution must be different since S-QBF never reinvokes the SAT solver on

the same prefix (by the previous theorem).

It can be, however, that the SAT solver will revisit the same deadend nodes (from

which it will eventually backtrack). For example, in the initial call S-QBF invokes the

SAT solver with an empty prefix. This invocation can visit many deadend nodes before

finally descending to a solution. Once S-QBF follows that solution down to a leaf, it
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will start to backtrack from that solution trying to validate the alternate settings of the

universals along that path. Each alternate setting of a universal will cause the SAT solver

to be invoked again.

In its initial invocation the SAT solver might have explored this alternate setting of

the universal and might have visited many deadend nodes with the alternate setting.

Some of these nodes might be revisited when searching the new subtree below the flipped

universal. Note that clause learning can remove some of this redundancy, but not all.

The original SAT solver invocation explored with a different variable ordering, and so

the clauses it learned there might not all be applicable when searching the new subtree

(which has a prefix of assignments in a different order).

The first theorem is a basic correctness and completeness result, where as the obser-

vation shows that our method of invoking a SAT solver adds only a limited amount of

redundancy to the search.

4.5 Empirical Results

4.5.1 Benchmark Settings

We compared an implementation of our approach with two state of the art search based

QBF solvers—Quaffle [111] (version as of Feb. 2005) and Qube (release 1.3) [46]. We also

ran experiments with the non search based solver Quantor [14] (version as of Jan 2004)2

Like these solvers our implementation also utilizes techniques for detecting monotone

literals, heuristics for guiding cube resolution, and some other standard improvements

over the basic algorithm given in Algorithm 4.

We used the following benchmark families from QBFLib: Adder, FlipFlop, VonNeu-

mann, Counter, Toilet c/g, Robots D2, Term, Comp, Z4ml, S1169, S1196, S298 and

2Skizzo [9] was not yet available in 2005.
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all instances provided by Pan and Rintanen (≈ 350 instances). In addition, we used a

benchmark family introduced in [83] called Game (120 instances).

We excluded the families Mutex, Szymanski and Tree since all of them can be trivially

solved by simple preprocessing. Further details on these benchmark families are discussed

in Chapter 3.

We also excluded all of the other families from QBFLib (2004), e.g., Jmc and Uclid,

because only one or two of their instances could be solved by any of the search based

solvers.

We exclude results on any instance that had one of the following properties: (1) the

difference in solving time between all search based solvers is small (less than either 200

seconds or within 10% of the fastest time); or (2) no search based solver can solve it

in under 5,000 seconds. The remaining results are shown in Table 4.2. All experiments

were performed on a 2.4 GHz Pentium IV with 3GB of RAM.

A summary of these results is presented in Table 4.1. In this table we show the

total time used by each solver for all instances in each benchmark family (among those

instances shown in Table 4.2. The “Total” column show the sum of the time over all

benchmarks. To obtain a time in the presence of failures we added a penalty of 5, 000

seconds per failure. (Thus the times should be used only for qualitative comparisons).

In addition, the table shows the percentage of failed instances for each benchmark family

and in total.

4.5.2 Discussion

Table 4.1 shows that our new approach improves the current state of the art in search

based solvers at the time it was developed, in aggregate solving the most problems and

taking the least time of any of the solvers. In these tests S-QBF is not always the fastest

solver, but it does improve on Quaffle and Qube on 21 out of the 68 problems reported

on in Table 4.2. In many of the other cases it is very competitive, being the worst
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Solver Blocks Chain Comp Game K Robots Term Toilet Total

S-QBF 0% 66% 25% 0% 37% 0% 0% 0% 22%

2, 991s 10, 493s 5, 000s 1, 345s 70, 848s 959s 2, 577s 672s 26h

Qube 20% 0% 75% 57% 25% 0% 66% 50% 31%

10, 305s 3, 499s 16, 030 39, 723s 59, 594s 2, 373s 12, 566s 11, 057s 43h

Quaffle 20% 33% 0% 71% 50% 0% 0% 25% 43%

5, 709s 9, 978s 69s 50, 217s 96, 251s 410s 299s 6, 057s 47h

S− 0% 66% 50% 57% 43% 0% 0% 25% 40%

4, 932s 10, 439s 10, 000s 42, 548s 84, 279s 2, 400s 3, 246s 9, 486s 45h

Table 4.1: Summary of results reported in Table 4.2. Shown are the percentage of failed

runs and the CPU time used (for each benchmark family and in total).

solver of the three search based solvers on only 9 of the 68 problems. As noted above

we experimented with many other benchmarks, but on these the solvers could not be

effectively discriminated.

To obtain a more accurate assessment of the benefit provided specifically by our new

techniques for using SAT (vs. differences in implementation and heuristics), we built a

derivative of S-QBF. This derivative (denoted S−) used the same code base, the same

variable ordering heuristic, the same cube learning and clause learning techniques, etc.

S− is simply S-QBF without the SAT solver. This provided us with a much more accurate

control against which to assess our new techniques.

The summary performance of S−, shown in Table 4.1, demonstrates that although

our base QBF solver is quite effective, our new techniques for using SAT yield clear

performance advantages. Table 4.2 shows in more detail the time taken by the different

solvers on individual problems (columns S−, S-QBF, Quaffle, and QuBE ).

It is also useful to examine the effect SAT has on the size of the QBF search tree.

Columns SAT-dec, Q-dec, S− Q-dec of Table 4.2 show the number of decisions made by



Chapter 4. Using SAT in QBF 94

Problem Instance QSAT? SAT-dec Q-dec S− Q-dec S− S-QBF Quaffle QuBE Quantor

blocks3i.5.3 0 37779 50482 439625 32.05 4.53 158.25 453.98 0.36

blocks3i.5.4 1 47300 62403 298121 11.85 3.12 11.08 4626.19 0.38

blocks4i.6.4 0 7367 6438 19931487 3116.49 0.95 fail 203.99 0.31

blocks4ii.6.3 0 6087 5685 6409879 1042.46 1.1 208.19 21.02 22.63

blocks4ii.7.2 0 1804960 1444039 2860315 729.34 2981.66 312.28 fail 43.23

chain16v.17 1 65519 131582 131582 439.97 493.32 129.3 71.14 0.04

chain19v.20 1 - - - fail fail 4849.32 1123.53 0.07

chain20v.21 1 - - - fail fail fail 2304.390 0.08

comp 1 1.0 0 o 0 3401 755 - fail 0.12 1.92 fail 0.02

comp 1 1.0 1 o 1 0 34 34 0 0 0 1030.88 0.04

comp 1 0.2 1 o 1 0 58 58 0.01 0.01 0 fail 0.03

comp 1 0.2 0 o 0 - - - fail fail 67.63 fail 0.05

game20 20 40 2 1 3855587 4425993 2754583 260.23 440.94 fail 98.26 0.08

game20 25 25 1 1 4517800 2213579 - fail 309.46 fail 369.5 fail

game20 25 25 2 1 2109107 1168113 - fail 125.29 fail 2874.96 fail

game20 25 25 3 1 920314 413170 2027831 326.64 40.06 fail 1150.51 fail

game20 25 25 4 1 3298510 1680483 - fail 222.13 fail 1651.43 fail

game20 25 50 1 1 3298510 1680483 - fail 221.74 fail 1657.63 fail

game50 25 25 1 1 2452664 954186 12368548 477.79 64.22 fail 1869.7 fail

game50 25 25 3 1 188743 66888 6182150 220.99 4.13 fail fail fail

game50 25 25 4 1 72203 34183 - fail 1.63 fail 51.48 fail

game100 25 25 2 1 36165 24291 - fail 0.73 fail fail 9.26

game100 25 25 3 1 32923 16184 - fail 0.63 4.06 fail 0.04

game150 25 25 1 0 0 21 21 0 0 0 fail 0.01

game150 25 25 2 1 208546 175239 - fail 4.22 4.34 fail 0.01

game150 25 25 4 1 14604 13567 41798186 1262.76 0.3 208.79 fail 0.01

k branch p-5 1 - - - fail fail fail 3854.78 fail

k d4 p-6 0 5542611 55260801 2005 0.42 1689.13 fail 837.45 1.43

k dum n-6 1 1876929 1639193 1692680 221.21 122.79 fail 117.42 0.02

k dum n-8 1 - - - fail fail fail 2916.89 0.06

k dum p-11 0 - - - fail fail 871.44 1014.83 5.32

k grz n-9 1 366963 294974 736851 117.68 22.32 3534.32 67.06 3.86

k grz n-12 1 1231288 1106900 2884937 3093.12 285.7 fail 250.53 10.3

k grz n-13 1 1420342 1277434 3339392 4046.65 353.39 fail 253.01 11.29

k grz n-16 1 5110635 4232820 - fail 711.97 fail 1253.97 32.15

k grz n-17 1 6310863 5229135 - fail 1396.91 fail 1321.97 20.7

k grz p-10 0 - - - fail fail fail 164.81 6.78

k grz p-14 0 - - - fail fail fail 1270.28 17.19

k grz p-16 0 - - - fail fail 2481.57 1694.67 27.73

k grz p-17 0 - - - fail fail 3107.51 1922.98 21.37

k lin n-7 1 1836874 900248 174011 404.32 194.34 169.26 49.75 454.34

k lin n-14 1 4503632 2422960 - fail 4030.32 2525.31 1353.86 fail

k lin n-15 1 - - fail fail 3008.53 2108.53 fail

k path n-5 1 3814468 3658630 3037899 473.3 493.5 fail 158.02 0

k path n-6 1 - - - fail fail fail 1514.29 0.01

k path p-6 0 2895489 2490412 823834 101.87 406.71 270.42 30.26 0.01

k ph n-15 1 - - 4072609 3731.09 fail 283.51 158.02 2962.78

k poly n-3 1 4702368 2945933 5078474 1445.27 426.24 fail 151.16 0

k poly n-4 1 - - - fail fail fail 1651.2 0

k poly p-7 0 0 83 83 0 0 0 fail 0.01

k poly p-8 0 0 99 99 0 0 0 fail 0.02

k poly p-10 0 0 123 123 0 0 0 fail 0.04

k poly p-11 0 0 131 131 0.01 0.01 0 fail 0.03

k poly p-12 0 0 147 147 0.01 0.01 0 fail 0.03

k poly p-14 0 0 171 171 0.01 0.01 0 fail 0.03

k poly p-17 0 0 203 203 0.01 0.01 0 fail 0.03

k t4p n-2 1 2400994 2228055 1410656 645.73 709.56 fail 84.11 0.02

k t4p p-4 0 - - - fail fail fail 194.57 0.1

robots1 5 2 72.7 1 21720 3002426 313292 44.14 221.7 19.64 1385.68 fail

robots1 5 2 42.7 0 29395 7713081 4458791 1519.08 672.14 288.06 565.01 fail

robots1 5 2 61.6 0 17992 4529115 4619291 836.47 268.29 99.34 424.87 fail

term1 1 0.2 0 i 0 2708395 2655162 2906302 3238.12 2555.78 296.52 fail fail

term1 1 1.0 1 o 1 129 88 722 0.03 0.02 0.06 2566.76 0.07

term1 1 1.0 0 o 0 36105 6769 7276 7.86 18.65 3.11 fail 1.57

toilet6.1.11 0 54468 44831 108215 48.5 22.47 9.21 307.92 0.09

toilet7.1.13 0 347166 273852 1225940 3570.54 617.92 39.76 fail 1.14

toilet7.1.14 1 888 1097 712183 867.72 0.32 45.65 749.85 0.02

toilet10.1.20 1 57 264 - fail 0.1 fail fail fail

Table 4.2: Detailed benchmark results achieved by S-QBF, S−, and other QBF solvers
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the SAT solver, the number of decisions made by the QBF solver (in S-QBF), and the

number of decisions made by S− (where SAT is not used). In most cases we see that the

SAT solver is able to significantly reduce the number of decisions the QBF solver needs

to make (comparing columns Q-dec and S− Q-dec). In fact, in many cases the sum of

the SAT and QBF decisions in S-QBF is less than the number of QBF decisions used by

the pure QBF solver S−.

QBF decisions are more expensive than SAT decisions as they require extra work (e.g.,

triggering of cubes, detecting monotone literals, detecting the empty theory). Hence

reducing the number of QBF decisions has a strong impact on the run-time (e.g, in

the Blocks, Game, and Toilet benchmarks). In our implementation SAT decisions are

made 5 to 10 times faster than QBF decisions depending on the problem instance. This

means that using SAT can yield improvements even when the sum of decisions in SAT

and QBF is higher than the number of decision made by pure QBF (in S−) (e.g., the K

benchmarks).

The SAT solver can, however, sometimes be a waste of time. For example the Chain

benchmarks contain Q-propagation implication chains under which a QBF solver will

never encounter a failure. Thus it is pointless to use a SAT solver to detect failures, and

we see that on chain16v.17 S-QBF performs the same number of Q-decisions as S−. S−

fails on the two larger chain problems, even without the slow down of extraneous SAT

solving. This is because the low-level efficiency of our solver is not as optimized as Qube

or Quaffle. In some cases SAT solving can even be harmful, as following its solutions

can be misleading. For example, on k d4 p-6 S-QBF makes many more QBF decisions

than when SAT is not used (S−). But in the vast majority of the cases SAT is more

informative than misleading.

Quantor is another state of the art QBF solver, but it is not based on backtracking

search. Instead Quantor utilizes a variable elimination scheme based on the original res-

olution procedure of Davis-Putnam [31] and an additional scheme of universal expansion
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(see Chapter 2). Quantor’s approach often superior on these benchmarks. However, its

failure rate is 24% which is slightly higher than that achieved by S-QBF. Furthermore,

while we expect a few more problems could be solved by S-QBF given more time, Quan-

tor is exhausting addressable memory on most of its failures. Overall, space exponential

algorithms have the disadvantage that space is a much less flexible resource than time.

Again, the question of whether space intensive algorithms like Quantor, Skizzo [9], or

QMRES [79] will eventually be the best way to solve QBF remains open. However, we

are more optimistic about search based methods as we already concluded in Chapter 2.

In particular, the wide variance in the times achieved by search based solvers shows that

there is a lot of room for improvements in heuristics. Several instances in the Game

benchmark family illustrate this point. Some can be solved in only a few seconds by

S-QBF but cause Quantor to exhaust available memory.

4.6 Conclusions

In this chapter we have presented an approach for integrating order unconstrained SAT

solving within an order constrained QBF solver. By utilizing clause learning techniques,

and the fact that a SAT learned clause is valid for QBF, we have been able to achieve

a tight integration between the SAT solver and the QBF solver so that information

computed in each part can be used to improve the performance of the other part.

A number of natural questions remain, most of which center around the issue of

obtaining more information from the SAT solving computations. Our techniques mainly

take advantage of failure information computed by the SAT solver, and we have shown

that this can make a tremendous difference in performance. We have also found that

the heuristic technique of guiding the SAT solver to find a “good cube” solution can

have a large impact on performance. In general, however, there is considerable room

for improvement in the whole area of heuristics for QBF as it is for instance shown in
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Chapter 6, and an intriguing open question is whether or not useful heuristic information

could be gathered during SAT solving.



Chapter 5

Dynamically Partitioning

5.1 Introduction

In this chapter we extend the idea of dynamic partitioning, originally utilized in #SAT

solvers, to make it applicable in a QBF solver. #SAT is the problem of counting the

number of models of a CNF formula, and the idea of dynamic partitioning for solving

#SAT was first utilized in [58]. That work presented a DPLL based algorithm for #SAT

which examined the remaining CNF theory at each node of the search tree. The algorithm

tried to partition the remaining theory into disjoint components that shared no variables.

The disjoint components could then be solved independently of each other, resulting in

a significant improvement in run time. In particular, since the run time is worst case

exponential in the number of variables, partitioning can move us from O(2n) to kO(2n/k)

if the problem can be broken into k equally sized partitions. Applying this recursively

can potentially yield an exponential speed up. See [27, 6] for more detailed theoretical

results characterizing the speedups that can be achieved from partitioning.

Here we apply dynamic partitioning to QBF. We first make the observation that a

QBF theory can be partitioned into independent components as long as these components

share no existential variables. That is, QBF components do not have to be completely

98
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disjoint as is the case with #SAT, just so long as they are existentially disjoint.

We then show how clause learning in search based QBF solvers can be quite easily

extended to deal with partitioning. Extending cube (solution) learning to the case where

partitioning is used is considerable more complex, and is perhaps the key innovation of

our work. We have implemented our ideas in a new QBF solver 2clsP. 2clsP is built on

top of the 2clsQ [96] solver (see Chapter 3), which with the addition of some preprocess-

ing techniques was the top scoring solver in the 2006 QBF competition [77]. We show

empirically that these new ideas yield a significant improvement in 2clsQ’s performance.

We also demonstrate that 2clsP offers performance that is superior to other search

based solvers and in many cases superior to non-search based solvers like Quantor [14]

and Skizzo [9]. These results underscore the potential that partitioning, when properly

augmented with clause and cube learning, has for helping us improve current QBF solvers.

In the sequel we first present some necessary additional background not introduced in

Chapter 2, setting the context for our methods. We then present the details of how clause

and particularly cube (or solution) learning can be extended to partitioning. Then we

provide empirical evidence of the effectiveness of our approach, and close with a discussion

of future work and some conclusions.

5.1.1 Partitioning QBF

We begin this section with a discussion on the conditions under which a QBF can be

partitioned into a conjunction of independent sub-formulas. First we recall the following

two standard logical laws for quantifiers. Let Φ1 and Φ2 be propositional formulas.

1. If Φ1 does not contain x then

∃x.(Φ1 ∧ Φ2)⇔ (Φ1 ∧ ∃x.Φ2) and ∀x.(Φ1 ∧ Φ2)⇔ (Φ1 ∧ ∀x.Φ2).

2. ∀x.(Φ1 ∧ Φ2)⇔ (∀x.Φ1 ∧ ∀x.Φ2)
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Observation 2 If F is a CNF formula such that F = F1∧F2 where F1 and F2 are CNF

and the clauses in F1 and F2 share no existential variables, then ~Q.F ⇔ ~Q1.F1 ∧ ~Q2.F2,

where ~Qi is the subsequence of ~Q containing only the variables of Fi.

To see that this is true we first rewrite ~Q.F as ~Q.(F1 ∧ F2), then we proceed to use

the above logical laws to distribute the variables of ~Q to F1 or F2, starting with the

innermost quantified variables of ~Q. We can apply this observation multiple times to

separate ~Q.F into a conjunction of k smaller QBFs.

For example,

∀u1∃e1∀u2∃e2e3.
(
(u1,¬e1) ∧ (u2,¬e2) ∧ (u2, e3)

)
⇔ ∀u1∃e1∀u2∃e2.

(
(u1,¬e1) ∧ (u2,¬e2) ∧ ∃e3.(u2, e3)

)
⇔ ∀u1∃e1∀u2.

(
(u1,¬e1) ∧ ∃e2.(u2,¬e2) ∧ ∃e3.(u2, e3)

)
⇔ ∀u1∃e1.

(
(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)
⇔ ∀u1.

(
∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

)
⇔ ∀u1∃e1.(u1,¬e1) ∧ ∀u2∃e2.(u2,¬e2) ∧ ∀u2∃e3.(u2, e3)

5.1.2 Partitioning for a Search Based QBF Solver

Observation 2 immediately yields a partitioning search based QBF solver as shown in

Algorithm 5.

We branch on variables respecting the order of quantification, just as in a standard

search based QBF solver (see Chapter 2). However, after every variable has been in-

stantiated (at this stage some propagation can also be preformed to further reduce the

remaining theory) we check if the remaining theory can be broken up into existentially

disjoint partitions (line 7). This can be accomplished in time linear in the size of the

remaining theory with a simple depth-first search or a union-find algorithm. We then

solve these partitions independently (line 10). Since the remaining theory is equivalent
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QBF-Prt( ~Q.F )1

if F contains an [empty clause/is empty] then2

return([false/true])3

for ` ∈ {v, v̄} for some v ∈ F with outermost scope in ~Q do4

success = true5

Partitions = Partition( ~Q.F |`)77

foreach ~Qi.Pi ∈ Partitions do8

if QBF-Prt( ~Qi.Pi) = false then1010

success = false11

if [¬success/success] AND v is [universal/existential] then12

return[false/true]13

if v is [universal/existential] then14

return[true/false]15

Algorithm 5: DPLL for QBF with dynamic partitioning

to the conjunction of these partitions, they must all be true for the entire theory to be

true. Hence, we can stop if any of these partitions is false.

Unfortunately, although partitioning is a good idea, our empirical investigations al-

lowed us to conclude that this simple version of partitioning is completely ineffective in

practice. Fundamental to the performance of search based QBF solvers are the tech-

niques of clause and cube learning (see Chapter 2 and [111, 47, 33, 66]). Without these

techniques a partitioning solver performs much worse than current search based solvers

that employ learning. One of the key contributions in this chapter is to show how learning

can be extended so that it can be applied in the context of partitioning.
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5.1.3 Quantifier Trees

In [12] Benedetti uses the logical laws for quantifiers mentioned above to build a Quantifier

Tree for a QBF. The quantifier tree specifies, among other things, a static decomposition

of the QBF. That is, it specifies a decomposition that ignores the truth value assigned

to each variable. Benedetti also points out that such trees can be used in a partitioning

search based QBF solver similar to QBF-Prt presented above.

There are two main difference between this work and what we present here. First,

as noted above the simple notion of of partitioning presented in QBF-Prt is ineffective

without learning. As we will see adding learning to partitioning is a non-trivial new

contribution of our work. Second, the partitioning algorithm presented in QBF-Prt

employs dynamic partitioning. That is, the partitioning generated when we set v =

true can be entirely different to the partitioning generated when v = false. In a

quantifier tree the partitioning will be the same for both truth values. Since this difference

compounds as we set more variables (and as we set variables via propagation) this means

that the partitions generated dynamically can be considerably more refined than those

specified in a static quantifier tree.1

5.2 Learning with Partitioning

Search based QBF solvers employ the powerful techniques of clause and cube (solution)

learning as discussed in Chapter 2 and [66, 111, 47]. As pointed out in Chapter 2 these

techniques are essential for obtaining good performance from a search based QBF solver.

In this section we show how learning can be used with partitioning.

1In [6] it was shown that for #SAT on some instances dynamic partitioning can yield a super-
polynomial speedup over any static decomposition. We suspect that a similar result holds for QBF, but
this is not yet proven.
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To facilitate the subsequent discussion the figure on the right shows a

sample path in the QBF-Prt search tree. The black circles correspond to

literals made true along the current path, arcs connecting branches indicate

points where the theory was split into partitions, and the triangles corre-

spond to the other partitions that were generated along this path. The partitions on the

left of the current path have already been solved, while those on the right of the current

path remain to be solved. We call the partitions that lie off of the current path inactive,

and the partition currently being solved active.

5.2.1 Clause Learning

For the most part clause learning as described in Chapter 2 can be used without mod-

ification in a partitioning solver. For example, if the current path leads to a conflict

a conflict clause can be learned and universal reduction applied—the conflict must be

a subset of the literals set along the current path. This conflict can then be used to

backtrack as least far enough to undo the conflict, as below this point no solution exists

for the active partition.

Since the theory is the conjunction of its partitions, the status of the inactive parti-

tions we backtrack past is irrelevant—falsifying the active partition is sufficient to falsify

the entire theory. Note that backtracking further is also possible, e.g., backtracking to

the 1st-UIP point [73]. The search will continue as before from that backtrack point.

Similarly, the learned clauses can then be used in unit propagation as they normally

would be in a non-partitioning solver.

The main subtleties with using clause learning with partitioning have already been

addressed in [97] who showed how to use clause learning and partitioning in the context

of solving #SAT. It is not difficult to show that their insights also hold for QBF. First, we

are allowed to ignore the learned clauses when partitioning the theory since the learned

clauses are entailed by the original theory. Second, it is sound to ignore existentials from
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inactive partitions that might be forced by the learned clauses. Alternatively we can

allow them to be forced: any conflict generated by them will still be a valid conflict.

5.2.2 Cube Learning

In order to extend the definition of cubes and learning to allow partitioning we must first

develop a new formalization of cube learning. In comparison to the definition of cubes

we provided in Chapter 2 the following redefinition of cubes makes more explicit some

features of cubes that are needed to extend them to partitioning.

We first define the restriction of a clause c to a set of variables V to be the new

clause c′ formed by restricting c to the variables in V , i.e., removing from c all variables

not mentioned in V . For example, restrict((x,¬y,¬z), {x, y, w, t}) = (x,¬y), where the

literal ¬z has been removed since its variable z is not in the set {x, y, w, t}. We restrict a

CNF formula F , restrict(F, V ), by restricting each of its clauses. Note that if V contains

all of the variables in c then restrict(c, V ) = c, and similarly restrict(F, V ) = F if V

contains all variables in F . We say that a QBF ~Q.F is satisfied by the variables V if

the QBF ~Q.restrict(F, V ) is true.

We observe some facts about restriction and its relationship with reduction (Chap-

ter 2).

Observation 3

1. If V ⊆ V ′, then restrict(F, V ) � restrict(F, V ′).

2. If ~Q.F is satisfiable by any set of variables V , then it must also be true.

3. If ` 6∈ V then restrict(F, V ∪ {`})|` is equal to restrict(F |`, V ).

4. If ` 6∈ V then restrict(F, V ) � restrict(F |`, V ).

Proof: For item 1, every clause of restrict(F, V ′) is a superclause of a clause in

restrict(F, V ). For item 2, this follows from item 1 and Lemma 1 by taking V ′ to
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be the superset of V that contains all variables of F . For item 3, this can be shown

by considering what happens to every clause c of F under the stated sequence of re-

ductions and restrictions (both restriction and reduction operate on a clause by clause

basis). There are three cases to consider (a) ` ∈ c, (b) ¬` ∈ c and (c) all other

clauses. For case (a) let c = {v1, ..., vj,m1, ...,mk, `} where the vi are in V and the

mi are not in V . Then restrict(c, V ∪ {`}) = {v1, ..., vj, `} and reduction by ` causes

c to vanish. Clearly c vanishes from restrict(F |`, V ) as well. For case (b) let c =

{v1, ..., vj,m1, ...,mk,¬`} (vi and mk as before) then (restrict(c, V ∪{`}))|` = {v1, ..., vj}

, similarly restrict(c|l, V ) = {v1, ..., vj} so c is the same in both sets. Finally for

case (c) let c = {v1, ..., vj,m1, ...,mk}. Then (restrict(c, V ∪ {`}))|` = {v1, ..., vj} =

restrict(c|`, V ) and again c is the same in both sets. For item 4, we use the same three

cases to show that restrict(F |`, V ) contains a subset of the clauses of restrict(F, V ).

For case (a) let c = {v1, ..., vj,m1, ...,mk, `} (vi ∈ V and mi 6∈ V as before). Then

restrict(c, V ) = {v1, ..., vj} but restrict(c|`, V ) is the empty set of clauses. For case (b)

let c = {v1, ..., vj,m1, ...,mk,¬l}, then restrict(c, V ) = {v1, ..., vj} = restrict(c|`, V ).

For case (c) let c = v1, ..., vj,m1, ...,mk, then restrict(c, V ) = {v1, ..., vj} = restrict(c|`, V ).

Thus in cases (b) and (c) the same clause is in both sets, while in case (a) restrict(F, V )

contains a clause not in restrict(F |`, V ).

Definition 7 A cube for the formula ~Q.F is a set of literals ρ and a set of variables

V such that (a) ~Q.F |ρ is satisfied by the variables V , and (b) the variables of V are all

downstream of the variables of ρ. We write cube[ρ, V, F ] to indicate that ρ and V is a

cube for ~Q.F .2

In other words cube[ρ, V, F ] iff ~Q.restrict(F |ρ, V ) is true, and V is downstream of ρ.

This definition differs from the previous definition of a cube (see Chapter 2) mainly in

its introduction of the set of downstream variables V . The previous definition required

2In the next section we will consider the case where F (the set of clauses) changes. However, the
quantifier prefix, ~Q, never changes so we can omit mentioning it in our notation.
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that ~Q.F |ρ be true irrespective of how the variables upstream of the deepest universal in

ρ are set. That is, ~Q.F |ρ,σ is true for any set of upstream literals σ.

Our new definition, on the other hand, requires that ~Q.F |ρ can be made true by

setting only variables downstream of ρ (i.e., the variables in V ). That is, it requires that

a Q-Model for ~Q.F |ρ be constructed entirely from the variables in V .

If ~Q.F |ρ can be satisfied by a set of downstream variables it is clearly true irrespective

of how the variables upstream of the deepest universal in ρ are set. That is, the Q-model

over the variables V for ~Q.F |ρ will continue to be a Q-model for ~Q.F |ρ,s for any additional

set of upstream literals s.

Thus if cube[ρ, V, F ] for some V by our new definition, it will also be the case that

ρ is a cube for ~Q.F by our previous definition. Note however that it could be that ρ is a

cube by our previous definition even though for no set V do we have cube[ρ, V, F ].

Our new definition is motivated by a need to be explicit about the set of variables

V that suffice to satisfy ~Q.F |ρ. Explicit mention of these variables is needed when we

deal with cubes verifying partitions of the original formula, but not the entire original

formula.

The following theorem shows that the standard technique for learning cubes in a

search based solver (Chapter 2) are in fact sufficient to learn cubes that satisfy our new

stronger definition.

Theorem 6

1. If π is a set of literals that satisfies every clause of F , then cube[π, {}, F ].

2. If cube[ρ, V, F ] and v is downstream of ρ then cube[ρ, V ∪ {v}, F ].

3. If cube[ρ, V, F ] and ` is existential and maximal in ρ, then cube[ρ−{`}, V ∪{`}, F ]

4. If cube[ρ1, V1, F ] and cube[ρ2, V2, F ] are cubes such that (1) there is a unique literal

` such that ` ∈ ρ1 and ¬` ∈ ρ2, (2) this clashing literal is universal, and (3) ` is

maximal in ρ1 and ¬` is maximal in ρ2, then cube[ρ1∪ρ2−{`,¬`}, V1∪V2∪{`}, F ].
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Proof: For item 1, we see that ~Q.F |π is an empty set of clause, thus it is

satisfiable by any set of variables. For item 2, this follows from Observation 3.1 since

we are simply restricting by a larger set of variables V ∪ {v}. For item 3, cube[ρ, V, F ]

means that ~Q.restrict(F |ρ, V ) is true and that V is downstream of ρ, the claim is that

~Q.restrict(F |ρ\{`}, V ∪ {`}) is true and that V ∪ {`} is downstream of ρ \ {`}. Denote

this formula by Γ. Since ` ∈ ρ it must be upstream of all of the variables in V . Hence, `

appears in the outermost quantifier block among the variables in Γ (the variables or Γ are

only from the set V ∪ {`}) and by definition Γ is true iff Γ|` or Γ|¬` are true. In fact, Γ|`

is true: Γ|` = ~Q.restrict(F |ρ\{`}, V ∪ {`})|` = ~Q.restrict(F |ρ, V ) by Observation 3.3.

Since ~Q.restrict(F |ρ, V ) is true, so is Γ|` and so is Γ as required. To see that V ∪ {`}

is downstream of ρ \ {`} we observe that ` is maximal in ρ, so it must be downstream of

ρ\{`}, while all of the V are already downstream of ρ. For item 4, let ρ = ρ1∪ρ2\{`,¬`}

and let V be V1 ∪V2. We need to show that Γ = ~Q.restrict(F |ρ, V ∪{`}) is true. Again

we observe that ` appears in the outermost quantifier block among the variables in Γ.

Thus Γ is true iff Γ|` and Γ|¬` are both true. Γ|` = ~Q.restrict(F |ρ, V ∪ {`})|` =

~Q.restrict(F |ρ∪{`}, V ) (Observation 3.3). We have that ~Q.restrict(F |ρ1 , V1) is true

by assumption, that ~Q.restrict(F |ρ1 , V1) ⇒ ~Q.restrict(F |ρ1 , V ) (since V1 ⊆ V and

Observation 3.1), and that ~Q.restrict(F |ρ1 , V ) ⇒ ~Q.restrict(F |ρ∪{`}, V ) (ρ ∪ {`} =

ρ1 ∪ (ρ2 \ {¬`}), ` is maximal in ρ∪ {`}, ` is upstream of V1 ∪ V2, hence all of the literals

ρ2 \ {`} added to ρ1 are also upstream of V = V1 ∪ V2 and so not in V , and we can apply

Observation 3.4 multiple times by adding the literals in ρ2 \ {¬`} one by one to ρ1 to

obtain F |ρ∪{`}). The proof for Γ|¬` is similar.

Items 1, 3, and 4 of this theorem indicate that the standard technique of cube learning

actually learns the newly defined cubes. Item 1 justifies finding a covering set for the

clauses preformed at solution leaf nodes, item 3 justifies removing tailing existentials

from a cube, and item 4 justifies combining the two cubes learnt when solving two sides

of a universal variable. Standard QBF solvers do not however keep track of the set of
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variables V . As we will see in a partitioning solver it becomes important to keep track

of this set of variables.
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Figure 5.1: While search descends it breaks up the theory into several disjoint partitions.

When the search arrives at n1 and branches on it the theory splits up into the disjoint

partitions Q0, Q1 and Q2. By branching on n2 the search continues with solving partition

Q0 and again breaks up the remaining theory into two partitions (P1 and P2). Branching

on n` yields a solution leaf node within P1.

Partial Cubes

With partitioning solution leaf nodes satisfy only some of the clauses of F (see the sample

path diagram at the start of this section). In particular, the clauses in the inactive

partitions need not be satisfied by the assignments along the current path. Consider

the operation of QBF-Prt where each invocation is a node in its search tree. Say, as



Chapter 5. Dynamically Partitioning 109

illustrated in Figure 5.1, that the search descends along a particular path arriving at

node n1 where the remaining theory partitions into Q0, Q1 and Q2. We then choose to

solve Q0 (at line 2) in the next recursive call, and continue to descend reaching a node

n2 where the theory partitions again into P1 and P2. Continuing with P1 we finally reach

a leaf node n` without further splitting P1.

At n` some subset F1 of the original clauses F have been made true by the literals

set along the path to n`, and we can use item 1 of Theorem 6 to select a subset of these

literals sufficient to form a cube for F1: cube[π, {}, F1]. Note that in general this is not

a cube for the original formula. In particular, we have not considered the clauses in the

inactive partitions Q1, Q2 and P2—these clauses have not necessarily been satisfied by

the current path: cube[π, {}, F1] is a partial cube. However, among the clauses of F1

are included all clauses in the original formula F that contain an existential variable of

the active partition P1. In particular, let e be existential contained in P1, and let c be

a clause containing e. c must have been made true by the path to nl (and thus must

be in F1). If not then c must lie in an inactive partition (in example one of Q1, Q2, or

P2). But then that partition would share an existential variable with P1, contradicting

the fact that P1 is a partition.

Now, we continue the search using this cube to backtrack to undo the most deeply

assigned literal in π. Using item 2 of Theorem 6 we can add all variables we backtrack

across into the variables of the cube. Once we reach the most deeply assigned literal in

π, if that literal is existential, we use item 3 of Theorem 6 to construct a new cube and

backtrack further to the next deepest literal in π. If it is a universal we solve the other

side, combine the two cubes using item 4, and continue to backtrack further. At each

node n we obtain a cube[ρ, V1, F1] such that F1 includes all clauses containing existentials

of the active partition P1 (this includes all clauses of P1) along with all other clauses made

true along the path to n from and V1 contains all variables instantiated below n.

With partitioning, however, we cannot backtrack past node n2 where the active par-
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tition P1 was created—the remaining theory under n2 is P1 ∧ P2 and we don’t know yet

if P2 is true. Rather, when our search in the subtree solving P1 finally produces a cube

[ρ1, V1, F1] such that all of the literals of ρ1 are true at or above n2, we can backtrack to

n2 and then proceed to solve P2. At this stage, V1 will be precisely the set of variables

in P1.

If P2 is true, the search in P2’s subtree will yield cube[ρ2, V2, F2] such that F2 includes

all of the clauses containing existentials of P2 (this includes P2) and shares with F1 all

clauses made true along the path to n2, while V2 contains the variables of P2. Now we

want to combine these two cubes to learn a cube which will allow us to backtrack further

within the subtree solving Q0. We claim that [ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] is the cube we

want.

Theorem 7 Given cube[ρ1, V1, F1] and cube[ρ2, V2, F1] such that (1) ρ1 ∪ ρ2 is not

contradictory (i.e., ∀` ∈ ρ1 ∪ ρ2 : ¬` 6∈ (ρ1 ∪ ρ2), (2) the variables in V1 ∪ V2 are all

downstream of the variables in ρ1 ∪ ρ2 and (3) V1 and V2 share no existentials, then

cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2].

Proof: First we observe that by assumption V1 ∪ V2 are downstream of ρ1 ∪ ρ2. So we

only need to prove that ~Q.restrict(F1 ∪ F2|ρ1∪ρ2 , V1 ∪ V2) is true. For two QBF S1 and

S2 we write S1 ⇐ S2 if S2 true implies S1 true.

~Q.restrict((F1 ∪ F2)|ρ1∪ρ2 , V1 ∪ V2)

⇐ ~Q.restrict((F1 ∧ F2)|ρ1∪ρ2 , V1 ∪ V2)

⇐ ~Q.restrict(F1|ρ1∪ρ2 , V1 ∪ V2) ∧ restrict(F2|ρ1∪ρ2 , V1 ∪ V2)

⇐ ~Q.restrict(F1|ρ1∪ρ2 , V1) ∧ restrict(F2|ρ1∪ρ2 , V2)

⇐ ~Q.restrict(F1|ρ1∪ρ2 , V1) ∧ ~Q.restrict(F2|ρ1∪ρ2 , V2)

⇐ ~Q.restrict(F1|ρ1 , V1) ∧ ~Q.restrict(F2|ρ2 , V2)

Line 1 might involve duplicating some clauses, but yields an equivalent formula. Line 2

is justified by the fact that both restriction and reduction are applied clause by clause.
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Line 3 is justified by Observation 3.1: we are restricting the clauses to a smaller set so

the formula becomes stronger. Line 4 is justified because V1 and V2 share no existential

variables (by assumption) so the formula can be partitioned. And finally line 5 is justified

by Observation 3.4: none of the literals in ρ1∪ρi appear in V1∪V2. Finally, the conjunction

on the last line is true by assumption.

This theorem says that once we obtain a cube for each partition P1 and P2 under

the node n2 we can form a cube that satisfies all of the clauses containing existentials

of P1 or P2 (this includes all of the clauses in P1 and P2) in P1 and P2 (each Pi ⊆ Fi),

as well as all of the clauses satisfied along the path to n2. In other words, the new

cube cube[ρ1 ∪ ρ2, V1 ∪ V2, F1 ∪ F2] satisfies all of the clauses containing existentials of

the partition Q0 (this includes all clauses of Q0) since all such clauses either are in F1

(contain an existential of P1), in F2 (contain an existential of P2) or were made true along

the path to n2. We can then utilize that cube to backtrack further within the subtree

solving Q0.

Note also that (1) all of the literals of ρ1 and ρ2 are contained in the path to n2 thus

ρ1 ∪ ρ2 is not contradictory, (2) if v is the variable branched on at node n2, then we have

that all of the variables of Vi are downstream v and the literals in ρi are upstream of

v thus V1 ∪ V2 is downstream of ρ1 ∪ ρ2, and (3) since P1 and P2 share no existentials

neither do V1 and V2 since Vi is the set of variables in Pi.

These observations demonstrate that the conditions of Theorem 7 are satisfied during

search when partial cubes from multiple partitions are to be combined.

Although we have explained the processing of partial cubes in the context of a partic-

ular example, it is not difficult to see that the same processing works for any search tree

explored by QBF-Prt. By adding this processing to QBF-Prt we obtain a partitioning

QBF solver that is able to correctly learn cubes, and perform solution backtracking. This

allows the search to preform non-trivial backjumping, i.e., jumping back over instanti-

ated universals without having to check the other value, when it is searching within a
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partition.

5.2.3 Triggering Learnt cubes

Besides using cubes to perform solution backtracking during QBF-Prt, we also want

to remember previously learnt cubes and use them to avoid solving sub-formulas that

can already be verfied as being QSAT by a learnt cube. In particular, a cube[ρ, V, F ′]

allows us to conclude that the residual formula ~Q.restrict(F ′|ρ, V ) is QSAT. This also

means that for any subset of the clauses in F ′, say E, ~Q.restrict(E|ρ, V ) is QSAT.

Hence, any time the current sub-formula is implied by ~Q.restrict(E|ρ, V ) for some learnt

cube[ρ, V, F ′] with E ⊆ F it can be declared QSAT without further search.

Recognizing when a previously learnt cube verifies the sub-formula currently being

solved can be accomplished by detecting the following conditions during search:

1. All of the literals in ρ are true.

2. The existential variables of the current sub-formula are precisely the existential

variables of V (thus none of these variables have been assigned)

These conditions can be detected fairly easily during search. In particular, we know

the current set of true literals, and thus can we determine which of the learnt cube[ρ, V, F ′]

have all of their literals ρ true. Similarly since the search preforms existential partitioning

and knows the partition it is currently working it, we can test if the currently uninstanti-

ated existential variables of the active partition are the same as the existential variables

in V . Note that these three conditions do not require testing whether or not the clauses

of the current sub-formula (these are the remaining unsatisfied clauses of the active par-

tition) are all contained in F ′. Hence, when storing a cube[ρ, V, F ′] for latter triggering

we in fact need only to store < ρ, V > and can ignore F ′. This also means that when pro-

cessing cubes during search, as described above, we can do all of the processing without

keeping track of the clauses covered by each cube (i.e., F ′). In particular, we do not need
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to store that information for triggering, and since the clauses covered always includes the

clauses in the subtree we are backtracking out of we do not need that information for

backtracking either.

Theorem 8 Let < ρ, V > be a learnt cube, and let n be a node in the QBF-Prt search

tree such that

• The path to n makes every literal in ρ true

• The set of (unassigned) existential variables in the sub-formula being solved at n is

the same as the set of existential variables in V .

• The sub-formula being solved at n does not contain the empty clause.

Then the sub-formula being solved at n is QSAT.

Proof: Since < p, V > is a learnt cube, their is some set of clauses F ′ that it covers, i.e.,

such that ~Q.restrict(F ′|ρ, V ) is QSAT. From the discussion above we know that when

< ρ, V > was first computed during search F ′ must include clauses of the original QBF

that contain an existential of V . Now consider the sub-formula being solved at n, and

denote it by ~Q.E|π, where E is a subset of the original clauses (those in the active partition

not yet made true) and π is the set of literals assigned along the path to n. Note that

π = ρ ∪ σ, i.e., π includes ρ. All of the clauses in E contain an existential of V else they

would contain no existential (the subformula contains no other existentials) and would be

reduced to the empty clause by universal reduction (the subformula does not contain the

empty clause). Thus the set of clauses E is a subset of F ′ and thus ~Q.restrict(F ′|ρ, V )

QSAT implies that ~Q.restrict(E|ρ, V ) is also QSAT. Since none of literals in π are in

V (the variables of V are unassigned), and π = ρ ∪ σ, we can apply Observation 3 item

4 multiple times to see that ~Q.restrict(E|ρ∪σ, V ) = ~Q.restrict(E|π, V ) is QSAT, and

then by Observation 3 item 2 we have that ~Q.E|π, i.e., the subformula below n, is QSAT.
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The final item needed for triggering cubes within search is that every solved sub-

tree must return a cube that can be used in the ongoing cube processing preformed by

search (i.e., the processing described above). From that discussion it can be seen that the

requirement for this cube be that the clauses it covers must include all clauses containing

existentials of the active partition as well as all clauses made true by the current path.

We know that the triggered cube < ρ, V > covers all clauses containing an existential of

V , so we need only to examine the set R of clauses made true along the path to n that

do not contain any existential of V . We then add to ρ a set of literals from the current

path, σ, sufficient to satisfy all of the clauses in R. The resulting cube[ρ ∪ σ, V,R] can

then be used just as if it had been computed by a search of the subtree below n rather

than by a cache hit to a previously learnt cube.

In sum, we have shown in this section how cubes can be used with partitioning for

non-chronological solution backtracking, and that they can also be stored and triggered

to short-circuit the search of a subtree.

5.3 Soundness and Completeness

We conclude this section on the properties of our partitioning-based solver 2clsP with a

soundness and completeness result. As mentioned earlier, 2clsP is an extension of 2clsQ

(see Chapter 3). In addition to the techniques employed in 2clsQ it utilizes a partitioning-

scheme similar to the one show in Algorithm 5. Furthermore, 2clsP incorporates the novel

learning technique that was developed in the previous section.

Theorem 9 The partitioning-based solver 2clsP with learning is sound and complete.

Proof:

This result is based on Theorem 4 where it is shown that the underlying solver 2clsQ is

sound and complete.
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Soundness: We have to verify that conflict as well as solution learning as introduced

in this chapter is a sound operation to determine the truth value of a node within the

search tree of a partitioned-based solver.

Again the proof is by induction on the number of variables in the prefix ~Q. The first

base case is when there are no variables and F is the empty theory (no partitions), where

2clsP soundly returns with true. The second base case is when F contains the empty

clause and consists of k partitions where 2clsP soundly returns with false.

Assume that if ~Q.F has n variables then 2clsP returns from the root node with the

correct answer. Now consider a formula ∃(∀)v ~Q.F that has n+1 variables and that splits

into k existentially disjoint partitions at the root node. By the induction hypothesis the

value returned by 2clsP on ~Q.F with n variables on each of the k partitions is sound.

First assume that v is universal. If the returned value of one of the k partitions is false

then 2clsP invoked on ∀v ~Q.F soundly returns false. If the return values of all k partitions

are true, then 2clsP flips v’s truth value and recurses with ¬v. If this recursive invocation

returns true on all underlying l partitions then 2clsP soundly returns true on ∀v ~Q.F .

Otherwise, 2clsP soundly returns false.

Now assume that v is existential. If the returned value of one of the k partitions

is false then 2clsP recurses with ¬v. If this recursive invocation returns true on all l

partitions then 2clsP soundly returns true on ∃v ~Q.F . Otherwise, 2clsP soundly returns

false. If the return values of all k partitions are true, then 2clsP soundly returns true on

∃v ~Q.F .

If 2clsP returns false on one of the partitions based on learned clauses we know

that the result is sound (see Section 5.2.1). In addition, if 2clsP returns true on one of

the partitions based on triggering a learned cube, we know by the results of the previous

sections that we can soundly combine results from different partitions and the aggregated

result is sound. Consequently, 2clsP invoked on ∃(∀)v ~Q.F is sound.
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Completeness: The proof of completeness is identical to the one for Theorem 4 except

for the fact that now recursive calls can also result in splitting the theory into existentially

disjoint sub-theories. However, by Observation 2 it is the case that a theory F can only

be divided in a finite number of existentially disjoint partitions. Consequently, 2clsP

invoked on a formula ~Q.F is complete.

5.4 Implementation

We have implemented dynamic partitioning within the DPLL based QBF solver 2clsQ

[95, 96]. In addition to the standard techniques employed in state of the art QBF solvers

(e.g., solution analysis) 2clsQ also applies extensive binary clause reasoning at every

search node (see Chapter 3, [95]). However, 2clsQ also utilizes dynamic equality reduction

which we turned off due to the logical and implementational difficulties that arise when

applying equality reduction and partitioning simultaneously.

Partitions are computed at each decision level by a simple depth-first search on the

current theory. The complexity of this operation can be roughly stated as O(|F | ∗

vars∃(F )) where |F | denotes the size of the theory and vars∃(F ) the number of ex-

istentials in F .

We altered cube learning/solution backtracking as described in the previous section so

that it could be used with dynamic partitioning. We also implemented a cube database

and triggered cubes under the conditions described above.

The search requires a number of heuristic choices. Included in these choices are,

deciding how to pick variables that are more likely to break the theory into partitions,

deciding the order in which to solve detected partitions, and deciding when to turn off

partition detection so as to minimize overhead.

A heuristic that selects a literal that satisfies the largest number of clauses can result

in better partitioning since it decreases the overall connectivity. Computing articulation
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points in the corresponding graphical representation of the theory and branching accord-

ingly is an alternate strategy for increasing partitioning. However, in our experiments it

seemed that the best strategy was to branch on a literal that has the highest potential

to cause a conflict, irrespective of its ability to generate partitions.

Similarly, there exist many ways to sort the computed partitions to decide which

partition to process next. We used the following strategy: for each partition we computed

the number of binary clauses that contain an active existentially quantified variable. Then

we computed the ratio of active existentials and binary clauses in each partition further

weighted by the number of active universals in the partition. This weighted ratio tries

to capture the degree of to which a partition is constrained. The lower the ratio the

more constrainted are the existentials. The aim was to try to solve the most constrained

partition first: if a partition fails we do not have to solve any more as the conjunction is

immediately false.

In our experiments we observed that partitioning can slow down the search process

due to its high overhead. Computing partitions at each decision level is an expensive

operation. Furthermore, it is wasted work if the theory only consists of one partition.

In general, it is unlikely that a theory breaks into multiple partitions when the ratio

between clauses and existentially quantified variables is rather high (e.g., 15). And in

fact empirically it turned out to be the case that when partitioning was turned off on

instances with a high clause/variable ratio the resulting performance was consistently

improved.

Furthermore, it seems to be the case that a theory with a rather low clause/variable

ratio (e.g., 3) appears to be unsuitable for dynamic partitioning as well. In this case,

the theory is easily solved without partitioning, so again partitioning is not worth the

overhead. Hence, when the input instance has a low or high clause/variable ratio we

do not bother to try to detect partitions, and simple solve the theory as if it is a single

partition.
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5.5 Experimental Results

To evaluate the empirical effect of our new approach we considered all of the non-random

benchmark instances from QBFLib (2005) [45] (508 instances in total). We discarded

the instances from the benchmark families von Neumann and Z since these can all be

solved very quickly by any state of the art QBF solver (less than 10 sec. for the entire

suite of instances). We also discarded the instances in benchmark families Uclid, Jmc,

and Jmc-squaring. None of these instances can be solved within a time bound of 5,000

seconds by any of the QBF solvers we tested. This left us with 465 instances from 18

different benchmark families. We tested all of these instances on a Pentium 4 3.60GHz

CPU with 6GB of memory (this is a 32 bit processor so only 4GB of this memory is

actually addressable by a single process). The time limit for each run of any solvers was

set to 5,000 seconds.

5.5.1 2clsQ vs. 2clsP

We first compared 2clsP with 2clsQ. These two solvers are the most similar, with 2clsP

only adding partitioning to the processing already performed by 2clsQ (and subtracting

equality reduction). Hence this comparison gives the most information on the effective-

ness of partitioning taken in isolation. Table 5.1 shows the comparison between these

two solvers. The table is broken down by benchmark family as the structural properties

of the families can be quite distinct.

For each solver and benchmark the success rate and the time consumed by the solver

on the successfully solved instances are displayed. Bold values indicate that the particular

solver achieved the highest success rate on that families’ instances, where ties are broken

by CPU time consumed.

On this measure 2clsP is the best solver in 9 out of the 18 benchmark families.

There exists only one benchmark family (toilet) where 2clsQ outperforms 2clsP. On the
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Benchmark

Families

2clsQ 2clsP

(#

instances)
Succ.

%
time Succ.

% time

ADDER

(16)

44% 5,267 56% 8,346

adder (16) 19% 0 38% 1,374

Blocks (16) 50% 46 50% 46

C (24) 21% 16 25% 14

Connect

(60)

100% 66 100% 66

Counter

(24)

33% 4,319 33% 1,220

EV-

Pursuer(38)

26% 2,836 34% 2,282

FlipFlop

(10)

100% 4 100% 4

K (107) 35% 20,575 36% 20,039

Lut (5) 100% 19 100% 19

Mutex (7) 43% 22 43% 22

Qshifter (6) 33% 59 67% 1,924

S (52) 8% 9 15% 3,405

Szymanski

(12)

67% 2,741 67% 2,741

TOILET (8) 75% 528 75% 528

toilet (38) 84% 47 84% 531

Tree (14) 100% 296 100% 0

Summary 58% 36,791 63% 42,502

Table 5.1: Results achieved by 2clsQ and 2clsP on all tested benchmark families. Instances were timed out

after 5,000 sec., and for each family the solver with highest success rate is shown in bold, where ties are broken by

time required to solve these instances. In addition, the results of 2clsP are emboldened whenever it outperforms

2clsQ. The summary line shows the average success rate over all benchmark families and the total time taken

(on solved instances only).
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8 remaining benchmark families 2clsP achieves the same performance as 2clsQ. On these

benchmarks the clause/variable ratio was unfavorable for partitioning, so 2clsP operated

without it on these families. That is, on these families 2clsP operates exactly the same as

2clsQ does. Normally, the clause/variable ratio stays fairly constant among the problems

of the same benchmark family. However, in the case of the toilet benchmark the ratio

varies across instances, so that some of the problems in this benchmark were solved by

2clsP using partitioning and others without. This also holds for other benchmarks (e.g.,

Adder, S ).

The average success rate over all benchmark families is shown in the final row of

the table. A high average displays fairly robust performance across structurally distinct

instances. On this measure 2clsP is superior to 2clsQ solving 63% of all instances on

average compared to 58%.

When partitioning is not effective the CPU time is lower with 2clsQ than with 2clsP

which was expected. Computing partitions at every decision level is an expensive opera-

tion. In summary, these results demonstrate quite convincingly that our new technique

offers robust improvements to 2clsQ.

5.5.2 2clsP vs. Other solvers

We also compared our new solver 2clsP to five other state of the art QBF solvers Quaffle

[111] (version as of Feb. 2005), Quantor [14] (version as of 2004), Qube (release 1.3)

[46], Skizzo [9] (release 0.82), SQBF [90].

Quaffle, Qube, and SQBF are based on search, whereas Quantor is based on variable

elimination and SAT grounding. Skizzo uses a combination of variable elimination, SAT

grounding, and search, and also applies a variety of other kinds of reasoning on the

symbolic and the ground representations of the instances.

Table 5.2 shows the performance of 2clsP and all other search based solvers on the

465 problem instances we tested, broken down by benchmark family.
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As in the previous table we display for each solver and benchmark the success rate

and the time consumed by the solver on the successfully solved instances. Again, bold

values indicate that the particular solver gained the highest success rate on that families’

instances breaking ties by CPU time consumed.

On this measure 2clsP is the best solver on 7 out of the 18 benchmark families. Skizzo

follows with 6, Quantor with 4, Qube with 4, and Quaffle with 1. SQBF is not the best

performer on any benchmark family.

The average success rate over all benchmark families is shown in the final row of

the table. A high average displays fairly robust performance across structurally distinct

instances. On this measure 2clsP is superior to all other search based solvers with an

average success rate of 63%. It is followed by Qube (−11%), SQBF (−12%) and Quaffle

(−12%). However, both Skizzo (+8%) and Quantor (+1%) achieve a better average

success rate. In terms of the total CPU time, 2clsP requires the highest amount of CPU

time.

In total 2clsP is a very competitive QBF solver that achieves the best performance

on more benchmark families than any other solver. In addition, its average success rate

is close to the best achieved by any of the tested solvers. Although the new techniques

employed in 2clsP are rather complex we see that they pay off in terms of performance

gains.

5.5.3 State of the art solver

The results of the QBF competition 2006 [49] indicate that the “best” QBF solver would

probably use a portfolio approach rather than any single solver. For example, our 2clsQ

entry which won the 2006 competition first applied a hyper-binary preprocessor (PreQuel

[92, 93]), then it ran the QBF solver Quantor for a fixed period of time. Finally if the

problem was still not solved 2clsQ was invoked on output of PreQuel.

Given the results displayed in [92] a very promising strategy in the competition would
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Benchmark

Families

Skizzo Quantor 2clsP Quaffle Qube SQBF

(#

instances)
Succ.

%
time Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time
Succ.

% time

ADDER

(16)

50% 954 25% 24 56% 8,346 25% 1 13% 72 13% 3

adder (16) 44% 455 25% 29 38% 1,374 42% 5 44% 0 38% 2,678

Blocks (16) 56% 108 100% 308 50% 46 75% 1,284 69% 1774 75% 7,042

C (24) 25% 1,070 21% 140 25% 14 21% 5,356 8% 3 17% 4

Chain (12) 100% 1 100% 0 100% 0 67% 6,075 83% 4,990 58% 4,192

Connect

(60)

68% 802 67% 14 100% 7 70% 253 75% 7,013 67% 0

Counter

(24)

54% 1,036 50% 217 33% 1,220 38% 5 33% 2 38% 9

EVPursade

(38)

29% 1,450 3% 73 34% 2,282 26% 1,962 18% 4,402 32% 4,759

FlipFlop

(10)

100% 6 100% 3 100% 4 100% 0 100% 1 80% 5,027

K (107) 88% 1,972 63% 3,839 36% 20,039 35% 21,675 37% 21,801 33% 5,563

Lut (5) 100% 9 100% 3 100% 19 100% 1 100% 3 100% 1,247

Mutex (7) 100% 0 43% 0 43% 22 29% 43 43% 64 43% 1

Qshifter (6) 100% 8 100% 26 67% 1,924 17% 0 33% 29 33% 1,107

S (52) 27% 644 25% 910 15% 3,405 2% 0 4% 401 2% 0

Szymanski

(12)

42% 1,147 25% 7 67% 2,741 0% 0 8% 0 0% 0

TOILET (8) 100% 1 100% 4,135 75% 528 75% 61 63% 496 100% 1,307

toilet (38) 100% 84 100% 684 84% 531 97% 115 100% 58 97% 395

Tree (14) 100% 0 100% 0 100% 0 100% 37 100% 0 93% 1,051

Summary 71% 9,747 64% 10,412 63% 42,502 51% 36,873 52% 41,109 51% 34,385

Table 5.2: Results achieved by 2clsP and five other state-of-the-art QBF solvers on all tested benchmark

families. Unsolved instances were timed out after 5,000 sec., and for each family the solver with highest success

rate is shown in bold, where ties are broken by time required to solve these instances. The summary line shows

the average success rate over all benchmark families and the total time taken (on solved instances only).
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be to apply PreQuel and a time-limited version of Quantor as before, and Skizzo as final

solver. This observation is mainly due to the good standard performance of Skizzo and

the positive impact of preprocessing on Skizzo [92]. It is not clear if the employment of

Quantor in the context of Skizzo would be as beneficial as it is for a search-based solver

but given the performance of Quantor it should not turn out to be a drawback either.

However, depending on the benchmark families in the competition, the results shown

here indicate that 2clsP together with the initial two stage processing of PreQuel and

Quantor would also be able to achieve a high ranking. This is due to the fact that 2clsP

remains to be a competitive solver on several benchmark families even when Skizzo is

supplied with a preprocessed problem instances (e.g., the Adder benchmark family).

5.6 Conclusions

We have shown how dynamic partitioning can be used to obtain significant improvements

to a state of the art QBF solver, 2clsQ. The key to making dynamic partitioning work

is finding a way to utilize clause and cube learning in conjunction with partitioning. In

this chapter we have presented an approach for accomplishing this.

There is, however, much scope for further improvements. These include better heuris-

tics for promoting the dynamic creation of partitions, and better heuristics for deciding

when to and when not to partition. One possible way to improve the approach presented

here is to make use of machine learning techniques as we present in Chapter 6. For

instance, it is very beneficial to know in advance if the given problem instance is likely

to break into independent sub-theories otherwise the overhead of partitioning does not

pay off and as pointed out earlier might be even harmful with respect to the perfor-

mance. Chapter 6 introduces a general learning technique that would also allow us to

automatically predict if it is useful to apply dynamic partitioning on an (sub-)instance

or not.
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In addition, the theory behind partial cubes can probably be elaborated further, and

perhaps used to obtain further algorithmic insights.



Chapter 6

Adaptive Search

6.1 Introduction

In this chapter we develop a novel framework for solving QBF that combines a search-

based QBF solver with machine learning techniques [94]. We use statistical classification

to predict optimal heuristics within a portfolio-, as well as in a dynamic, online-setting.

Our experimental results show that it is possible to obtain significant gains in efficiency

over existing solvers in both settings.

While a few preliminary approaches exist that apply machine learning methods to

solve SAT, no such approaches have been reported yet for QBF. For SAT, [78, 106]

describe a methodology that starts with a fixed set of pre-chosen solvers and uses learning

to determine which solvers to use for given problem instances. Similarly, [56] describe an

approach to choosing optimal solvers along with optimal parameter settings for a set of

problem instances, by trying to predict their run-times. Common to these and similar

approaches is that they make use of a fixed-, pre-determined set of solvers. Learning

methods are used to make an optimal assignment ahead of time, as a pre-processing step.

The main motivation behind such portfolio-based approaches is that they can make

use of already developed and already highly optimized machinery, since they merely need

125
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to solve a simple assignment problem.
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Figure 6.1: Shown is the performance of the QBF solvers 2clsQ, SQBF, and 2clsP (see

previous chapters) on a range of benchmark families. For each solver we display on each

benchmark family the percentage of solved instances within the corresponding benchmark

family.

That such a static prediction would be also beneficial in the context of QBF is for

example apparent from Figure 6.1. In this figure we show a performance comparison

of the QBF solvers presented in the previous chapters. Shown is the percentage solved

among several benchmark families and the performance of each solver on each benchmark

family. As we can observe in Figure 6.1 the performance of the shown approaches is quite

orthogonal. Clearly, the ability to automatically employ the best performing solver on

each benchmark family would achieve in a better overall performance than any of those
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solvers is capable of on its own.

However, a potential disadvantage of portfolio-based approaches is that they give up

on the opportunity to obtain entirely novel methods that show a qualitatively differ-

ent behavior than previous methods. Our dynamic approach therefore make use of a

portfolio-based scheme on the level of sub-components and uses classification to choose

online among a set of heuristics to solve sub-instances.

Among existing work on using learning to solve SAT the method that comes closest to

our approach is probably [64]. The approach uses reinforcement learning to dynamically

adjust the branching behavior of a solver, but does not make use of the properties of

sub-instances that need to be solved in each step, and it failed to show an improvement

over non-learning based approaches.

In this chapter, in contrast we use discriminative learning in order to dynamically

predict optimal branching heuristics from the (sub-)instances a solver encounters at each

step. Experimental results on a large corpus of example problems show the usefulness

of our approach in terms of run-time as well as the ability to solve previously unsolved

problem instances.

6.2 Dynamic Prediction

In this section we present our approach to integrate machine learning techniques within a

search-based QBF solver. First, we briefly summarize how a search-based solver works in

general. For a more detailed discussion the reader is referred back to Chapter 2. Second,

we point out the main idea behind our approach and how it differs from the standard

way of solving QBF.
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6.2.1 An Adaptive Search-Based QBF Solver

As discussed in Chapter 2 search-based QBF solvers are based on a modification of

the Davis-Putnam-Longman algorithm (DPLL, [30]). In general, DPLL works on the

principle of assigning variables, simplifying the formula to account for that assignment

and then recursively solving the simplified formula. The main difference to the original

algorithm used to solve SAT is the fact that with QBF it is not only necessary to backtrack

from a conflict but also from a solution in order to verify both settings of each universally

quantified variable. A recursive version of this basic algorithm is displayed in Algorithm 2

in Chapter 2. Here we use the extended Algorithm 3 presented in Chapter 3 as the

baseline algorithm.

As mentioned earlier Algorithm 2 shows how search relates to the earlier stated se-

mantic definition of QBF. Modern backtracking QBF solvers employ conflict as well as

solution learning to achieve a better performance (e.g., [111], [66], [33] and Chapter 2).

Furthermore, several degrees of reasoning at each search node have been proposed. For

instance, in addition to the standard closure under unit propagation, stronger inference

rules like hyper-binary resolution were introduced [95] (Chapter 3). Other approaches

employ a relaxation to SAT to perform a powerful look-ahead [90] (Chapter 4) or dy-

namic partitioning at every search node [91] (Chapter 5). Consequently, at each node

the theory is not simply reduced by a single literal, but more extensive and powerful

reasoning is applied.

This iterative application of reduction steps is likely to change the structural prop-

erties of the initial theory in an essential fashion. And since it is a well-known fact that

for instance the performance of a heuristic varies essentially across different instances it

is one of our purposes in this work to show that the performance of a heuristic can also

change dynamically as we descend into the search tree.
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1: 〈bool Result, int BTLevel〉 QBF-2clsQ-Adaptive( ~Q.F , Level)

2: if F contains an [empty clause/is empty] then

3: Compute a new [clause/cube] and backtrack level BTLevel by [conflict/solution]

analysis

4: return 〈FAIL/SUCCEED,BTLevel〉

5: Compute features of F

6: Predict best heuristic h among h1, ..., hn

7: Select variable v according to heuristic function h

8: Let ` = v or ¬v

9: ~Q.F = restrict( ~Q.F, `) reduced by HypBinRes+UR, equality reduction, universal

reduction, and unit propagation

10: 〈Result, BTLevel〉 = QBF-2clsQ-Adaptive
(
~Q.F,Level + 1

)
11: if BTLevel < Level then

12: return 〈Result, BTLevel〉

13: if v is [universal/existential] then

14: Compute new [cube/clause] from the [cubes/clauses] learned from v and v̄ by

resolution

15: return ([SUCCEED/FAIL], BTLevel)

Algorithm 6: Adaptive search-based algorithm based on the 2clsQ algorithm (see

Chapter 3). Lines 5 to 7 can cause the algorithm to automatically and dynamically

adapt its variable ordering heuristic based on the structural properties of the underlying

sub-problem.

Our changes to the recursive Algorithm 3 introduced in Chapter 3 are depicted in

Algorithm 6 shown above (Lines 5 to 7). Before selecting a new variable we compute

the properties of the current theory, which has been dynamically generated. Then, we

use a previously trained classifier to determine which heuristic is suited best for this
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theory. Note that this simple change is also applicable to other versions of search-based

solvers we developed in this thesis (e.g., 2clsP in Chapter 5) but for simplicity we chose

to display only the extension of 2clsQ. Since all employed heuristics are sound in the

context of QBF (e.g., obey the variable ordering according to the given quantifier prefix)

and the implementation presented here is based on Algorithm 3 the following result

follows immediately:

Theorem 10 The adaptive algorithm as shown in Algorithm 6 is sound and complete.

Proof:

Both properties follow directly from Theorem 4 and the fact that all heuristics are sound.

In the following subsections we describe the different heuristics we designed and how

we capture the structural properties of a theory.

6.2.2 Heuristics

In order to achieve a wide variety of solver characteristics we developed 10 different

heuristics. All heuristics are crafted so that each of them tries to be orthogonal to the

others. The next branching literal was mainly selected based on one or a combination

of the VSIDS score [73] and cube score [111], the number of implied unit propagations

and satisfied clauses. The VSIDS score is mainly based on recent conflicts during the

search. In particular, the score of each literal participating in the conflict is increased.

Analogously, the cube score [111] is computed. However, it is based on the recently

encountered solutions. Stated differently, branching according to VSIDS tries to discover

another conflict while the cube score guides the search towards the solution space. The

other two measures behave in a similar dual fashion.

For instance, picking a literal with a high number of implied literals is likely to reduce

and constrain the remaining theory maximally. In contrast, a literal that satisfies the

highest number of clauses reduces the theory as well, but it does not necessarily reduce
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the length of the remaining clauses in an essential way. We also use the inverse of these

measures in several heuristics. As an example, Heuristic H1 employs a heuristic that

is biased towards remaining within the conflict space when encountering a conflict and

when discovering a solution it applies a heuristic that tries to stay within the solution

space. In contrast, H3 and H4 are only biased towards conflicts or towards solution

respectively. While the overall percentage of solved instances remains unchanged there

are several benchmark families where those two heuristic choices result in a significant

difference (see e.g., C, Toilet, Ev, and Texas).

We also employ other measures like the weighted sum between the number of literals

forced by a literal and its corresponding VSIDS score in order to provoke a conflict even

more drastically (see Heuristic H6).

The results achieved by Heuristic H8 are based on a heuristic that performs a look

ahead for the existential variables and branches according the cube score for universally

quantified variables. The look ahead consists of counting the number of clauses satisfied

when branching on the positive/negative literal l. The count is based on the literals

that are forced by the binary clauses which contain ¬l. The heuristic then choses the

existential that satisfies the highest number of clauses.

Another example is pure literal detection which has a strong impact on the perfor-

mance in QBF solving. For instance, the only difference between Heuristics H1 and H2

is that the latter does not detect purity.

There exist several other parameters that have a crucial impact on the performance

of a heuristic, but we will not discuss all of them. Mainly because of the fact that it

is not always straight-forward to relate a particular parameter to the performance of a

heuristic.

However, it is worth mentioning that we also use a heuristic that simply employs a

static variable ordering which performs surprisingly well on a subset of benchmarks (see

Heuristic H10). In SAT it is provable that an inflexible variable ordering can cause an
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exponential explosion in the size of the backtracking search tree. That is, there exist

families of UNSAT problems for which any DPLL search tree where each branch follows

a fixed variable ordering is exponential in size, whereas a quasi-polynomially sized DPLL

search tree exists when a dynamic ordering is used [23].

However, the displayed results might indicate that the behaviour of a static variable

ordering is more complex in the QBF setting. One reason for this could be that solution

learning in QBF can potentially benefit from a static variable ordering. In addition, it

would be interesting to explore how the use of a fixed variable ordering relates to the

approach used in SAT introduced by [80]. There variable assignments are stored and

after backtracking from a conflict the solver follows the stored assignments if possible.

That approach achieves remarkable empirical results. Clearly, the static variable ordering

we used here is related to this technique.

Finally note, that in contrast to the SAT case, the variables have to be assigned in

quantifier order except for pure literals. Consequently, the branching possibilities are

limited by the quantifier prefix in an essential fashion. However, it also appears to be the

case that a poor decision with QBF has a much more dramatic impact than with SAT.

6.2.3 Feature Choice

In this section we point out the basic measures and give a detailed description on which

features we used to characterize a QBF instance. While we summarize all extracted

measures in a subsequent table we do not discuss each feature individually since this

is initial work on feature selection for QBF and several of the displayed features are of

question with respect to their importance to classification.

In total, we selected 62 features to capture the structure contained within an instance.

All features are mainly based on the following basic properties of a QBF instance:

• # Variables (# Existentials, # Universals)
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# Feature description # Feature description

1 Number of active Variables 32 Ratio 10: #19 / #3

2 Number of Clauses 33 Ratio 11: #20 / #3

3 Number of Existentials 34 Ratio 12: #21 / #4

4 Number of Universals 35 Ratio 13: #22 / #4

5 Number of Quantifier Alternations 36 Ratio 14: #7 / #3

6 Number of Binary Clauses (BC) 37 Ratio 15: #7 / #4

7 Number of Ternary Clauses 38 Ratio 16: #8 / #3

8 Number of k-ary Clauses (k > 3) 39 Ratio 17: #8 / #4

9 Number of BC with Universals 40 Ratio 18: #6 / #1

10 Number of BC with only Existentials 41 Ratio 19: #6 / #3

11 Number of Pure Literals 42 Ratio 20: #9 / #4

12 Number of Pure Existential Literals 43 Ratio 21: #10 / #3

13 Number of Pure Universal Literals 44 Ratio 22: #4 / #6

14 Variable/Clause Ratio 45 Ratio 23: #3 / #6

15 Only Existentials/Clause Ratio 46 Ratio 24: #4 / #7

16 Only Universals/Clause Ratio 47 Ratio 25: #3 / #7

17 Positive Literals in BC: ∑V ars BC(pos(v)) 48 Ratio 26: #4 / #8

18 Negative Literals in BC: ∑V ars BC(neg(v)) 49 Ratio 27: #3 / #8

19 Positive Existentials in BC: ∑∃ BC(pos(e)) 50 Ratio 28: #1 / #8

20 Negative Existentials in BC: ∑∃ BC(neg(e)) 51 ∑∃(BC(e) ∗ Prefix-Level of e)

21 Positive Universals in BC: ∑∀ BC(pos(u)) 52 ∑∀(BC(u) ∗ Prefix-Level of u)

22 Negative Universals in BC: ∑∀ BC(neg(u)) 53 Current Prefix Level

23 Ratio 1: #3 / (#10 * #4) 54 Current Quantification

24 Ratio 2: #3 / (#7 * #4) 55 Added max. VSIDS over all Vars

25 Ratio 3: #3 / (#7 * #4 * Max-Prefix Level/2) 56 Added min. VSIDS over all Vars

26 Ratio 4: #3 / (#6 * #4) 57 Added max. VSIDS over all ∃

27 Ratio 5: #3 / (#6 * #4* Max-Prefix Level/2) 58 Added max. VSIDS over all ∀

28 Ratio 6: #3 / (#8 *#4) 59 Normalized max. VSIDS (#55/#1)

29 Ratio 7: #3 / (#8 * #4 * Max-Prefix Level/2) 60 Normalized min. VSIDS (#56/#1)

30 Ratio 8: #17 / #1 61 Added normalized max. Cube Score

31 Ratio 9: #18 / #1 62 Added normalized min. Cube Score

Table 6.1: Overview of the extracted features from a QBF instance. BC denotes binary

clauses and BC(v/l) denotes binary clauses of a variable/literal respectively. Features

#59 to #62 are normalized by the number of total, active variables.
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• # Clauses (# binary, # ternary, # k-ary)

• # Quantifier Alternations

• # Literal Appearances (# in binary, # in ternary, # in k-ary)

• VSIDS [73] and Cube Score [111]

Based on these fundamental attributes we additionally compute several ratios be-

tween combinations of these attributes, like the clause/variable ratio. Again, we also

compute this ratio in the context of binary, ternary, and k-ary clauses. The features we

computed are all summarized in Table 6.2.3. Note that we make extensive use of binary

clauses in our features. This is mainly motivated by the underlying solver 2clsQ (see

Chapter 3), which is based on binary clause reasoning. During its initialization process

2clsQ infers new binary clauses and consequently these clauses are also available in the

feature computation of the portfolio-approach.

While we compute many features that are also applicable with SAT (see e.g., [78])

we also take into account properties that are specific to QBF. For instance, based on the

the number of binary clauses that contain existentially quantified variables we compute

the ratio of existentials and binary clauses further weighted by the number of universals

(see for instance Feature #23). This weighted ratio tries to capture the degree of con-

strainedness of an instance: The lower the ratio the more constrained are the existentially

quantified variables.

While the previous ratio focuses on the two different quantification types, we also take

the number of quantifier alternations into account. For instance, we weighted the number

of literal appearances by the number of the corresponding quantifier block. This is

motivated by the fact that variables from inner quantifier blocks are often less constrained

than variables from outer quantifier blocks (see for instance Features #52 and #53).

While all features are dynamically updated during search it is worthwhile to point out

that Features #54 to #62 were especially chosen to capture the changes in the online
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setting more carefully. For instance, the VSIDS score as well as the cube score can

change quite drastically during search and different values might indicate distinct states

of the search as well as different properties of the underlying sub-instances. In addition,

Features #54 and #55 keep track of the actual depth of the search tree and the current

type of quantification.

6.2.4 Classification

In the following we describe the approach that we use for predicting optimal heuristics

for problem (sub-)instances. A key requirement for the predictor is run-time efficiency,

because it can potentially be applied very often when solving a given problem instance.

Furthermore, it is important to obtain well-calibrated outputs that reflect the confidences

in the classification decisions over all possible heuristics. If calibrated correctly, these

confidences allow us to determine at run-time, when it is worth switching the heuristic,

and when not.

A simple classifier that satisfies both these requirements is multinomial logistic re-

gression (MLR) (see e.g., [51]). While classification in general refers to the problem

of learning a function that maps instances to class-labels, MLR solves this problem by

building a model of the conditional probability p(h|x) over (all possible) labels h given

an instance x. Given such a probabilistic model, classification decisions can be made for

new instances x, at ‘test time’, by choosing the heuristic h for which p(h|x) is maximal.

In our case problem instances x are represented using the features described in the

previous section. In other words, we represent a problem instance as a 62-dimensional

real vector, and we define as the class for a problem instance x the heuristic that can

solve x the fastest. (To obtain training data we applied each heuristic as the top-level

decision on a set of benchmark datasets and recorded the run times resulting from using

each heuristic. We then defined as the winning heuristic for a given problem instance

simply the one whose runtime is smallest.)
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We can think of the conditional probability p(h|x) as a function that maps a 62-

dimensional vector x to a discrete distribution over the 10 heuristics. A standard way of

modeling this function is by defining

p(h|x) =
exp(wT

h x)∑
h′ exp(wT

h′x)
, (6.1)

where the exponential ensures positivity and the normalization that
∑

h p(h|x) = 1.

Given a set of training pairs {(xi, hi)}, that is, a set of instances xi for which the

optimal heuristic hi is known, we can optimize this probabilistic model (or equivalently

its logarithm) by maximizing:

∑
i

log p(hi|xi) + λ‖w‖2 (6.2)

with respect to the parameters w := (wh)h=1,...,n. The term λ‖w‖2 penalizes large pa-

rameter values and helps avoid overfitting ([51]).

Any gradient based optimization method can be used for the maximization. Since the

objective is convex, there are no local minima. (Note that, to apply the trained model

to a new instance x it is sufficient to compute wT
h x for each h and to pick the h which

gives the largest value, as this h obviously also maximizes p(h|x) as defined above).

The dataset we chose is certainly suboptimal because of its limited size, and to obtain

even better performance additional training data could be gathered from the running

system by collecting sub-instances. However, we obtained very good results already using

this limited dataset, which shows that there is a sufficient degree of ‘self-similarity’ present

in the problem-instances: The features of top-level problem instances have properties that

are comparable to those of sub-instances and are good enough for generalization.

6.3 Experimental Evaluation

To evaluate the empirical effect of our new approach we considered all of the non-random

benchmark instances from QBFLib 2005 and 2006 [75] (723 instances in total). To in-
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crease the number of non-random instances we applied a version of static partitioning

on all instances. A QBF can be divided in to disjoint sub-formulas as long as each of

these sub-formulas do not share any existentially quantified variables (see, e.g. Chap-

terr̃efdynp).

This way we obtained a total of 1647 problem instances. However, among these

instances there existed several duplicates (instances that fall into symmetric sub-theories)

and instances that were solved by all approaches in 0 seconds. We discarded all of these

cases and ended up with 897 instances across 27 different benchmark families. To obtain

a larger dataset for training we used 800 additional random instances, that were not used

for testing. On all test runs the CPU time limit was set to 5, 000 seconds. All runs were

performed on 2.4GHz Pentiums with 4GB of memory which were provided by Sharcnet

[98].

6.3.1 Variable Elimination vs. Search

To see whether QBF can gain from statistical approaches, we first experimented with a

pure portfolio-approach, where the goal is to predict which method from a set of pre-

defined methods is the best one for a given instance.

It is often easy to construct specialized methods that are very good at solving a very

small set of problems, but it is much more difficult to develop a method that shows

consistently good performance across a large set of problems. The advantage of using

learning based approaches is that they allow us to combine highly specialized methods,

since they can predict the right method for each (sub-)instance.

To illustrate that the features of instances can capture this orthogonality, we visualize

a subset of the above mentioned data using principal components analysis (PCA) (see

[51]). PCA is a standard method for reducing the dimensionality of data. It finds a

lower-dimensional subspace of the original data-space, such that the projection of the

data onto this subspace has maximal variance. Intuitively, this means that we find a
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Figure 6.2: Low dimensional projection of problem instances that could be solved either

by variable elimination (circles) or the search-based method (diamonds).

low-dimensional data representation that captures as much of the variability in the data

as possible. For visualization we can simply choose a subspace whose dimensionality is

less than or equal to 3.

Figure 6.2 shows the 2-dimensional PCA-representations of those instances that could

be solved by exactly one of two solvers (but not by both simultaneously), using different

symbols to indicate which of the two solvers was able to solve each instance. The two

solvers are based on (i) variable elimination [14] and (ii) search as described earlier.
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problems

solved

time spent

(in sec)

increase problems

solved (in %)

only variable elimination 595 7918.58 +12%

only search-based 423 31116.24 +50%

automatic prediction 666 27923.81

Table 6.2: Performances: Variable elimination vs. search and the automatic prediction.

The plot shows that there is a quite clear separation of these instances already in two

dimensions, and suggests that a linear classifier using all available features should indeed

yield good performances in practice. As described above, we used logistic regression

to predict which of the two methods to use in each case. We estimated λ using cross-

validation on the training set. All reported final performances were computed on an

independent test set. Each of the two methods has a time-out of 5, 000 seconds, after

which we declare it as unable to solve the instance within a reasonable amount of time.

Table 6.2 displays the results on the test set and shows that choosing the best heuris-

tic based on the data on an item-by-item basis yields much better performance than

each of the two methods alone. In fact, the automatic prediction compared to variable

elimination achieves a 12% improvement while the performance of the search based solver

can be improved by more than 50%.

These results further underline the orthogonality of these two approaches. The two

distinct characteristics were exploited also by the winning QBF solver of the 2006 QBF-

competition [74]. The winning search-based solver used Quantor (a solver based on

variable elimination [14]) as a time-limited preprocessor. Here we are able to uncover

this difference and use learning to exploit it in an automated fashion.



Chapter 6. Adaptive Search 140

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 PF Dyn

CPU(s) 26,178 29,255 22,757 14,781 26,732 26,722 31,136 25,570 28,079 18,485 23,816 30,530

% sol 81% 74% 81% 81% 70% 77% 83% 79% 80% 79% 90% 93%

Table 6.3: Summary of the results achieved by the 10 different heuristics, the portfolio solver

(PF), and the dynamic version (DYN) on instances across 20 benchmark families contained in

the test set. For each approach the total CPU time required for the solved instances amongst

all benchmark families is shown. For each approach the average percentage of solved instances

amongst all solved instances per family is shown in the last row.

6.3.2 Predicting Heuristics

In this section we take the top-scoring search-based solver 2clsQ [95] from the QBF

competition [74]. We add 9 new heuristics to the original heuristic. Furthermore, we

add the functionality to compute features on the fly for the current theory, and enable

the solver to compute the linear classification decision in order to determine the most

suitable heuristic for this theory.

We tested all heuristics on all instances and recorded their CPU times. This data was

used in part to train the classifier off-line. Therefore, the data was split into a training

set (628 instances, including random instances) and test set (576 instances across 20

benchmark families). All parameters were set on the training set (using cross-validation

for λ).

We show a summary of the results for each heuristic (H1,..,H10) on each benchmark

family in Table 6.3.2 contained in the test set. The heuristic H1 is the original heuristic

employed in 2clsQ and consequently the performance displayed under H1 is a reference

to the state of the art. In addition, we show the performance of the portfolio version

which choses one solver for the problem in this context. Finally, we also include the

results of the solver that dynamically alters its heuristic at different nodes of its search

tree.
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In the table we show in the first row the CPU time in seconds required on solved

instances. As shown, all versions of the search-based solvers are roughly comparable in

terms of CPU time over their solvable instances. We consider instances to be solvable,

if they were solved by at least one approach. In the second row we display the average

percentage of solvable instances among all solved instances per benchmark family and

approach. On this measure approaches using a fixed heuristic for all instances vary

between 70% and 83%. This variability in performance reflects the degree of variance

induced by changes in the heuristic only. The table also shows that the portfolio approach

– choosing a heuristic on a per-instance basis – is able to significantly outperform any

approach employing a fixed heuristic. More importantly, the strategy to dynamically

adjust the heuristic performs best among all approaches. In fact, it is able to outperform

the best fixed heuristic by 10% on average. Furthermore, it is able to perform better

than choosing the best heuristic on a per-instance basis.

In Table 3 and 4 we display more detailed results. Again we show the percentage of

solved instances among all instances solved by any approach per benchmark family and

approach as well as the CPU times for each approach and benchmark family. Also on

these more detailed results the dynamic approach displays a robust performance (e.g.,

being the best method on 5 benchmark families). Table 3 also shows that our approach

of dynamically adjusting the heuristic choice is able to solve instances not solvable by any

other approach (see e.g., the K benchmark). Furthermore, Table 4 also shows that the

overhead introduced by the dynamic feature extraction and classification is negligible.

In total, our empirical results show that the portfolio approach as well as dynamically

adjusting the variable branching heuristics can be a very effective tool for solving QBF.
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Bench H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 Portfolio Dynamic

Adder 83 33 83 78 33 83 77 56 50 100 94 67

BLOCKS 75 100 75 75 50 100 100 75 75 75 100 100

C 89 89 100 89 33 100 100 100 100 100 100 89

TOILET 67 67 83 33 67 33 66 100 67 67 83 83

adder 88 88 88 80 88 88 92 84 96 88 100 88

Counter 75 75 75 75 75 75 75 100 75 75 75 100

Eijk 100 100 100 100 100 100 100 100 100 100 100 100

EV 57 57 57 71 57 57 84 57 100 57 71 100

irst 100 100 100 100 100 100 100 100 100 100 100 100

K 95 95 95 90 95 90 95 90 90 86 95 100

Ken 100 100 100 100 100 50 100 100 100 50 100 100

Lut 67 67 67 67 67 67 66 67 100 33 67 67

Mutex 25 25 25 25 25 25 25 25 25 100 75 75

Nusmv 100 100 100 100 100 100 100 100 80 100 100 100

Qshifter 57 60 57 57 60 60 60 100 100 100 100 100

S 100 100 100 100 100 100 100 80 100 100 100 100

Sort 94 96 100 92 94 96 94 96 94 94 98 94

Szymanski 100 0 100 100 0 100 100 0 0 13 100 100

Texas 50 25 50 100 50 50 50 50 50 50 50 100

toilet 100 100 71 88 100 65 94 94 100 100 94 88

Summary 81 74 81 81 70 77 83 79 80 79 90 93

Table 6.4: Success rates achieved by the 10 different heuristics, the portfolio solver, and the dynamic version

on instances across 20 benchmark families contained in the test set. For each benchmark and approach the

percentage of solved instances among all solved instances per family is shown. For each family the solver with

highest success rate is shown in bold, where ties are broken by time required to solve these instances. The

summary line shows the average success rate over all benchmark families.
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Bench H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 PF Dyn

Adder 2754 513 4041 387 246 5012 669 7366 6844 2412 2090 1121

BLOCKS 1 3077 3 0 1 161 2002 1 1 4 3077 4413

C 0 0 1 0 0 1 1 1 1 1 1 1

TOILET 450 424 55 116 579 206 749 832 1344 1972 1973 4159

adder 6234 8835 2790 938 9767 788 5332 2187 5652 2355 5332 4478

Counter 10 10 0 227 10 9 38 903 16 10 16 732

Eijk 255 244 1621 386 191 1782 89 20 4 5 89 255

EV 68 104 35 4423 183 66 3859 24 22 149 96 39

irst 4 4 2 8 4 2 1 1 1 1 1 1

K 7207 5794 6664 5709 5872 5409 9270 9274 10567 4306 5042 11410

Ken 0 0 0 0 0 0 0 0 0 0 0 0

Lut 0 0 207 4 0 302 3 4 89 0 0 0

Mutex 0 0 0 0 0 0 0 0 0 1 0 0

Nusmv 22 21 1149 21 21 936 1678 606 342 175 749 938

Qshifter 13 2785 13 13 2763 3430 2602 48 41 19 20 23

S 0 0 0 0 0 0 0 0 0 0 0 0

Sort 2216 2640 3252 58 26 4809 2620 3589 1225 57 3250 31

Szymanski 1805 0 1944 1122 0 1133 1103 0 0 4492 1133 1900

Texas 0 0 0 0 0 0 0 0 0 0 0 0

toilet 4090 3847 1 438 6014 1630 3 3 923 1768 15 16

Summary 26178 29255 22757 14781 26732 26722 31136 25570 28079 18485 23816 30530

Table 6.5: CPU times achieved by the 10 different heuristics, the portfolio solver (PF), and the dynamic

version (DYN) on instances across 20 benchmark families contained in the test set. For each benchmark and

approach the CPU times used on solved instances is shown. The summary line shows the total CPU time over

all benchmark families.
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6.4 Conclusions and Future Work

We believe that machine learning can be helpful to a much larger degree when solv-

ing hard combinatorial problems than it is already shown here. With QBF there ex-

ist many additional choices besides heuristics (e.g., whether to apply stronger infer-

ence/partitioning/relaxation/incomplete techniques or not) that, if selected automati-

cally, could drastically improve the performance of a QBF solver. This applies to the

portfolio-approach as well as to the online setting. Since the problem of predicting mul-

tiple labels simultaneously can entail a combinatorial explosion, recent work on structure

prediction (see e.g., [70] for an overview) could be useful for this purpose.

Further directions for future work include optimal feature selection (e.g., sparse lo-

gistic regression [99]), and the use of non-linear prediction models. Besides reducing the

run-time complexity of the classifier further, optimal feature selection might also shed

some light on which features correlate with which technique. For instance, given only

a limited amount of features is it possible to say that variable elimination is a better

technique when some particular features are high/low? And do these particular features

have any practical or theoretical meaning? In general, it would be interesting to de-

termine which problem structures work well with which technique in a more focused,

transparent manner. These insights might then also help us to proceed toward a theo-

retical comparison between for example search and variable elimination in the context of

QBF.

The hardest challenge for the non-linear prediction models (e.g., neural networks

[87], [51]) will be run-time efficiency, which might rule out kernel-based, and other non-

parametric, methods.

Finally, the most important task remains developing novel solving techniques. Since

we showed here that we can automatically predict the appropriate technique on a par-

ticular (sub-)instance it is now also more sensible to develop more specialized techniques

that only work on a few benchmarks or even on only a single benchmark family. Then
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every such technique can be employed in its appropriate context yielding an effective

general purpose solver given a wide range of solving techniques. Clearly, the presented

approach provides us with a powerful tool to advance our abilities to solve QBF and

other related problems such as #SAT (e.g.,[28]), QCSP (e.g.,[40],[20]), SCSP (e.g.,[19]).



Chapter 7

Conclusions and Future Work

In this chapter we provide the reader with a summary and some conclusions of the work

that has been done during this thesis. Furthermore, we also discuss directions for future

research.

7.1 Summary

In this thesis we have presented a wide range of novel approaches to proceed toward

an efficient and a practically applicable QBF solver. The first part of this thesis has

provided a detailed and novel overview on solving QBF with search. In particular, we

have illustrated how search relates to the semantics of QBF in a novel fashion. In addition,

we presented a new formalization of solution learning in the context of a search-based

QBF solver.

Subsequently we have introduced several new techniques based on inference that have

been able to improve the state-of-the-art in QBF solving. The employment of the stronger

rule of inference based on extended binary resolution has been particularly successful.

Especially, the crafted preprocessor achieved outstanding empirical results (Chapter 3).

These benchmark results were also independently verified by the QBF competition [49].

The employment of SAT as a powerful look-ahead with in QBF solving shows how two

146
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different search-based algorithms can be tightly integrated in order to achieve a better

performance (Chapter 4). The presented divide and conquer approach shows that it is

worthwhile to employ dynamic partitioning in order to solve QBF. In this context we

also provide another novel theoretical insight into QBF solving by showing how learning

in a partitioning-based solver can be accomplished soundly. In general we show that all

techniques introduced in this thesis are sound and complete extensions of the underlying

DPLL framework.

Finally, we have presented the novel idea of dynamically adapting search during QBF

solving by applying machine learning techniques. We have been able to show that it is

possible to automatically adjust the solving strategy during search in order to improve

the overall performance. The displayed initial results verify that this approach is very

promising (Chapter 6).

7.2 Conclusions From This Work

There exist two main conclusions that can be drawn from the work presented here.

First, search-based solvers provide a powerful machinery to tackle the intrinsically hard

problem of QBF solving. However, in contrast to SAT there exist also other approaches

besides search that are worthwhile in the context of QBF. Second, QBF is in practice

a much harder problem to solve than SAT. Additionally, in order to catch up with the

effectiveness of SAT solvers there still exists a need to elaborate further on the current

techniques employed for QBF solving.

The presented empirical results—for instance, the benchmark results in Chapter 3—

show that search-based solvers are among the best for QBF. More importantly, in many

cases search-based solvers define the state-of-the-art. The newly introduced approaches

based on stronger rules of inference (Chapter 3), SAT as a look-ahead (Chapter 4), and

dynamic partitioning (Chapter 5) not only improve our ability to solve QBF (as we have
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demonstrated in our empirical results), but also provide new insights into QBF solving.

The technique discussed in Chapter 6 approaches such hard problems as QBF from a

novel angle by employing machine learning to adapt the solving strategy in a dynamic

fashion. Chapter 3, 4, 5, and 6 show quite convincingly that the basic DPLL framework

can be effectively extended by a wide variety of techniques. For instance, the discussed

machine learning approach shows how a technique quite different from DPLL and logical

reasoning can be seamlessly integrated. Finally, it is also worthwhile to mention that

other techniques that are for instance based on variable elimination or Skolemization are

also powerful tools to solve QBF (see for instance Chapters 2 and 3). Consequently, the

question of whether search will eventually be the best way to solve QBF remains open

despite the results achieved by the techniques developed in this thesis.

The results presented in this thesis also indicate that QBF is not only in theory a much

harder problem to solve than SAT, but that it also appears to be much harder in practice.

Although standard QBF solvers already utilize nearly all major and highly-developed

techniques employed in todays SAT solvers (e.g., data structures, learning techniques,

etc.) the performance of QBF solvers clearly lags behind the effectiveness common to SAT

solvers. Only recently have benchmark families been presented that encode competitive

real-world problems and that can be efficiently solved by QBF solvers (e.g., see [52]).

However, the hardness of QBF also has its upsides. As shown in Chapter 6 it appears to

be worthwhile to apply for instance online classification due to the complexity of QBF. In

contrast, this technique seems to cause too much overhead in the context of SAT solving

[55]. In summary, although we advanced research on QBF in this thesis there still exists

quite some room to improve on the approaches for QBF solving.
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7.3 Future Work

The techniques introduced in this thesis can be extended and further improved by a

wide variety of approaches. In this section we focus on the most important ideas for

future work. Concerning the preprocessor presented in Chapter 3 there exist several

obvious extensions. For instance, the approach presented here could be combined with

the preprocessor based on variable elimination and universal expansion ([21] and Chap-

ter 2) in order to achieve a even more effective, complete preprocessor. In addition, the

preprocessor PreQuel now only outputs the reduced original theory. However, for some

benchmarks and/or solvers it might be also useful to additionally output the computed

newly inferred binary clauses since they can potentially cause more propagations. For

instance, a search-based solver might be guided by these additional constraints towards

a solution much more rapidly.

The QBF-solvers SQBF, 2clsQ, and 2clsP (see Chapters 3, 4, and 5) can also be im-

proved in several different ways. First, one composed solver that would tightly integrate

all the techniques employed in each of these solvers (e.g., SAT as look-ahead, dynamic

partitioning, etc.) and other additional techniques (e.g., incomplete strategies [41]) would

clearly achieve a better performance. Furthermore, this solver could be equipped with

the machine learning approach presented in Chapter 6 in order to be able to predict when

to apply which technique. This would also eliminate the major drawback that is caused

by these techniques when they are not effective. For instance, as shown in Chapter 5

applying dynamic partitioning on an instance that does not break up into existentially

independent subcomponents can be quite harmful with respect to run-time performance.

The ability to predict these cases allows us to turn off dynamic partitioning and conse-

quently to remove this overhead from the solving procedure. Second, in order to verify

the soundness of the different implementations it would be highly beneficial to either

integrate a QBF verifier or at least to output a certificate of the discovered model or a

refutation. The research on the verification of QBF solutions is quite recent and still in
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progress [59] [107]. Note, that in contrast to the polynomial time verification of a SAT

solution the verification of QBF certificates is PSPACE-complete as well [107].

The adaptive search approach presented in Chapter 6 not only shows promising re-

sults but also opens up a rich area of research. While there exist many possible technical

extensions to the work presented here (see Chapter 6, e.g., non-linear prediction mod-

els, multi-label classification, etc.) it is important to realize that this approach is not

restricted to search nor to QBF. For instance, one could think of a solver that combines

search and a variable elimination based scheme to solve QBF. Then in this solver at each

search node we could predict whether or not to proceed with search or to employ variable

elimination. Given the orthogonality of search and variable elimination with respect to

run-time performance and the results achieved by the portfolio-approach of those two

techniques (see Chapter 6) a dynamic combination of these two approaches appear to

be a very promising strategy to solve QBF. In addition, online prediction could also be

integrated in a solver solely based on variable elimination in order to guide the proce-

dure for instance towards resolving variables that cause minimal growth in the resulting

theory minimally. Furthermore, the adaptive strategy can not only be utilized within

different approaches for QBF solving but obviously it can also be employed in other hard

combinatorial problems like for instance #SAT (e.g.,[28]), QCSP (e.g.,[40], [20]), SCSP

(e.g.,[19]).

Beyond the scope of QBF the conducted research in QBF solving could also be applied

to improve solving closely related problems. For instance, in #SAT the introduced

technique of solution learning in QBF could be applied as well in order to determine

a count on the number of solutions [29]. Similarly, in the area of QCSPs there already

exists a quite active transfer from technologies developed for QBF to QCSPs (e.g., [105])

. However, there still exist powerful techniques like solution learning that can be adapted

to QCSPs. Furthermore, it would be also interesting to extend the research on areas even

more closely related to QBF. For instance, the problem of k−QBF provides an interesting
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modeling framework to cover a even wider range of real-world problems. With k−QBF

we try to answer the question of whether there exists a Q-model that satisfies along each

complete path at least k clauses ([81]). This derivate of QBF could be for instance used

to model preferences in a quite natural fashion (e.g., planning with preferences [13]).

Note, that k−QBF is PSPACE-complete as well.

However, as already pointed out earlier further research should first probably focus

on QBF itself in order to develop a more practically viable solver before spreading out

to other sometimes even harder problems.
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formulas. Inf. Comput., 117(1):12–18, 1995.

[23] Joshua Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution re-

finements. In IEEE Symposium on Logic in Computer Science, pages 138–147,

2003.



Bibliography 155

[24] S.R. Buss. An introduction to proof theory. In S.R. Buss, editor, Handbook of

Proof Theory, pages 1–78. Elsevier Science Publishers B. V., 1998.

[25] M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified

boolean formulae. In Proceedings of the 13st AAAI Conference on Artificial Intel-

ligence (AAAI-07), pages 262–267, 1998.

[26] P. Chatalic and L. Simon. Multi-resolution on compressed sets of clauses. In ICTAI

’00: Proceedings of the 12th IEEE International Conference on Tools with Artificial

Intelligence (ICTAI’00), page 2, Washington, DC, USA, 2000. IEEE Computer

Society.

[27] Adnan Darwiche. On the tractable counting of theory models and its application

to truth maintenance and belief revision. Journal of Applied Non-Classical Logics,

11(1-2):11–34, 2001.

[28] J. Davies and F. Bacchus. Using more reasoning to improve #sat solving. In

Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-07).

AAAI Press, 2007.

[29] J. Davies, E. Hsu, and H. Samulowitz. Solution backjumping for #sat. NESCAI

2007 (North East Student Colloquium on Artificial Intelligence), 2007.

[30] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.

Communications of the ACM, 4:394–397, 1962.

[31] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal

of the ACM, 7:201–215, 1960.

[32] James P. Delgrande, Torsten Schaub, Hans Tompits, and Stefan Woltran. On

Computing Belief Change Operations using Quantified Boolean Formulas. Journal

of Logic Computation, 14(6):801–826, 2004.



Bibliography 156

[33] A. Tacchella E. Giunchiglia, M. Narizzano. Clause/term resolution and learning

in the evaluation of quantified boolean formulas. Journal of Artificial Intelligence

Research (JAIR), 36(4):345–377, 2006.

[34] N. Een and A. Biere. Effective Preprocessing in SAT through Variable and Clause

Elimination. In Proceedings of the 8th International Conference on Theory and

Applications of Satisfiability Testing (SAT’05). 2005.

[35] Niklas Een and Niklas Srensson. An extensible sat-solver. In Proceedings of the

Sixth International Conference on Theory and Applications of Satisfiability Testing,

2003.

[36] U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Computing stable models

with quantified boolean formulas: Some experimental results. In Proceedings of the

AAAI Spring Symposium, pages 53–59, 2001.

[37] Uwe Egly, Thomas Eiter, Hans Tompits, and Stefan Woltran. Solving advanced

reasoning tasks using quantified boolean formulas. In AAAI, pages 417–422, 2000.

[38] R. Feldmann, B. Monien, and S. Schamberger. A distributed algorithm to evaluate

quantified boolean formulae. In Proceedings of the AAAI National Conference

(AAAI), pages 285–290, 2000.

[39] Rainer Feldmann, Burkhard Monien, and Stefan Schamberger. A distributed algo-

rithm to evaluate quantified boolean formulae. In AAAI, pages 285–290, 2000.

[40] Ian P. Gent, Peter Nightingale, and Kostas Stergiou. QCSP-solve: A solver for

quantified constraint satisfaction problems. In Proceedings of the International

Joint Conference on Artifical Intelligence (IJCAI), pages 138–143, 2005.



Bibliography 157

[41] I.P. Gent, H.H. Hoos, A.G.D. Rowley, and K. Smyth. Using stochastic local search

to solve quantified boolean formulae. In Principles and Practice of Constraint

Programming — CP’2003, pages 348–362, 2003.

[42] I.P. Gent and T. Walsh. The search for satisfaction. Internal Report, Department

of Computer Science, University of Strathclyde, 1999.

[43] M. GhasemZadeh, V. Klotz, and Ch. Meinel. Zqsat: A useful tool for circuit verifi-

cation. In International Workshop on Logic and Synthesis (IWLS 2004), California,

USA, pages 135–142, 2004.

[44] E. Giunchiglia, M. Narizzano, and A. Tacchella. Backjumping for quantified

boolean logic satisfiability. In Proceedings of the International Joint Conference

on Artifical Intelligence (IJCAI), pages 275–281, 2001.

[45] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas

satisfiability library (QBFLIB), 2001. www.qbflib.org.

[46] E. Giunchiglia, M. Narizzano, and A. Tacchella. QUBE: A system for deciding

quantified boolean formulas satisfiability. In International Joint Conference on

Automated Reasoning (IJCAR), pages 364–369, 2001.

[47] E. Giunchiglia, M. Narizzano, and A. Tacchella. Learning for quantified boolean

logic satisfiability. In Eighteenth national conference on Artificial intelligence, pages

649–654, 2002.

[48] E. Giunchiglia, M. Narizzano, and A. Tacchella. Monotone literals and learning in

QBF reasoning. In Principles and Practice of Constraint Programming (CP2004),

pages 260–273. Springer-Verlag, New York, 2004.

[49] E. Giunchiglia, M. Narizzano, and A. Tacchella. The QBF2006 competition, 2006.

available on line at http://www.qbflib.org/.



Bibliography 158

[50] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability

Solvers. Elsevier Science Publishers B. V., to appear.

[51] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statis-

tical Learning. Springer, 2001.

[52] H.Mangassarian, A.Veneris, and M.Benedetti. Fault diagnosis using quantified

boolean formulas. In IEEE Silicon Debug and Diagnosis Workshop (SDD), 2007.
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