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ABSTRACT

We consider in this paper the problem of image inpainting,
where the objective is to reconstruct large continuous regions
of missing or deteriorated parts of an image. Traditional in-
painting algorithms are unfortunately not well adapted to han-
dle such corruptions as they rely on image processing tech-
niques that cannot properly infer missing information when
the corrupted holes are too large. To tackle this problem,
we propose a novel approach where we rely on the halluci-
nations of pre-trained neural networks to fill large holes in
images. To generate globally coherent images, we further im-
pose smoothness and consistency regularization, thereby con-
straining the neural network hallucinations. Through illustra-
tive experiments, we show that pre-trained neural networks
contain crucial prior information that can effectively guide the
reconstruction process of complex inpainting problems.

Index Terms— Inpainting, neural networks, graph-based
regularization, hallucination, image completion.

1. INTRODUCTION

Image inpainting is the task of reconstructing missing or
deteriorated parts of an image. This fundamental problem
has received significant attention from the image process-
ing and computer vision communities throughout the years,
and led to key advances in the field (see [6] and references
therein). Traditionally, image inpainting is addressed either
using diffusion-based approaches that propagate local struc-
tures into the unknown parts, or examplar-based approaches
that construct the missing parts one pixel (or patch) at a time,
while maintaining the consistency with the neighbourhood.
Unfortunately, these approaches fail when the size of the
missing part is large, and an additional component providing
plausible hallucinations is therefore needed to tackle such
challenging inpainting problems. This additional information
might be provided by high-order models of natural images,
such as those computed by deep neural networks.

Deep neural networks have recently led to seminal ad-
vances in many machine learning tasks, such as supervised
image classification [7]. In supervised image classification,
each image has a specific label, and neural networks are
learned to approximate the image-label mapping through a
cascade of elementary operations. When trained on huge

training datasets (millions of images with thousands of la-
bels), deep networks have remarkable classification perfor-
mance that can occasionally surpass the human accuracy
[11]. Interestingly, the availability of free pre-trained models
furthermore makes deep networks particularly easy to use,
as one can readily use such networks without having to train
them from scratch. State-of-the-art deep neural networks
can therefore be seen as easy-to-use blackbox models that
have learned valuable information on millions of different
images and thousands of labels during the training procedure,
and have therefore built up important prior knowledge on
the statistics of natural images. This prior knowledge can
be extremely useful in solving difficult tasks, such as image
inpainting.

In this paper, we explore an approach that relies on the
hallucinations of a pre-trained deep neural network to solve
the image inpainting problem. Deep neural networks seem in-
deed to be a suitable candidate to guide the image reconstruc-
tion process, as these networks have gathered a significant
amount of information about natural images that is extremely
valuable in intricate inverse problems. We specifically build a
hybrid approach where the hallucination of a deep neural net-
work is regularized using the Total Variation (TV) norm and
a graph-based regularizer to guarantee the coherence of the
result. Our approach provides encouraging results, thereby
showing that the hallucinations of a pre-trained neural net-
work can be very beneficial in the solution of inverse prob-
lems.

We note that specialized deep neural networks have pre-
viously been trained to solve inverse problems, such as de-
noising and blind inpainting [12]. Our approach is however
fundamentally different from these works, as we consider in-
stead a simpler approach, where we use a discriminatively
pre-trained neural network to guide the image reconstruction.
In other words, while previous works have trained networks
to specifically solve inverse problem tasks, our work treats
the deep network as a system containing significant infor-
mation on the statistics of natural images. Hallucinations of
deep neural networks (i.e., searching for an image that maxi-
mizes the score of a given neuron) have previously been stud-
ied in the goal of understanding neural nets and generating
“Dream”-like scenes [8, 9]. However, this line of work is dif-
ferent from ours, as our objective here is image inpainting.
Finally, in the very recent work [2], features from deep neural
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networks are used for image super-resolution. While features
from intermediate layers are used, we instead follow a sim-
pler approach here and use directly the last layer of the deep
network in the image inpainting problem.

2. IMAGE INPAINTING BY HALLUCINATION

2.1. Pre-trained networks for image inpainting

We propose an approach where a pre-trained deep neural net-
work is used to guide the reconstruction of missing pixels. Let
N denote a neural network that is trained in a supervised fash-
ion to classify images from a large number of categories. For-
mally,N is a mapping from the space of images RW×H×C to
the space RL, where L denotes the number of labels (or cate-
gories) that the neural network can classify. For a given image
I ∈ RW×H×C , the network N outputs a vector N (I) ∈ RL,
where the l-th entry (denotedNl(I)) represents the score that
image I is classified as label l. Our approach makes use of
recent advances in deep networks to tackle the seemingly un-
related problem of image inpainting.

Denote by I an image with missing or deteriorated parts,
and let I∗ be the unknown image to recover. We assume that
I∗ has an associated label l that describes the main content of
the objects in I∗ (see Fig. 1 for an example image associated
to label “Granny smith”). Throughout the paper, the label of
an image will be estimated from the corrupt image I by tak-
ing the most likely class (that is, we set l = argmaxlNl(I).).
Hence, in this paper, the knowledge of l does not represent
any additional burden or cost, as the label-estimation proce-
dure is automatic and can be derived from the corrupt image
and network. We denote by Ω the subset of R2 that contains
the known part of the image. Our goal is to recover the pixels
in the complement of Ω (denoted by Ωc). We consider the
following maximization problem:

max
Î
Nl(Î) subject to ÎΩ = IΩ. (1)

The above problem reconstructs the missing part Ωc using
the prior knowledge of the classifier, which has potentially
seen millions of images during the training phase. This prior
knowledge, incorporated in the network N , makes it possi-
ble to hallucinate the missing pixels in order to maximize the
probability of the image to be classified as l. Note however
that the problem in Eq. (1) has an important caveat: the max-
imization of the classifier score does not necessarily result in
“natural” completions of the corrupted image I . In fact, with-
out further constraints on the reconstruction of the missing
part of the image, the maximization of Nl(Î) will result in
“overfitting” the label l in the scene to maximize the prob-
ability of image classification as l. These unrealistic hallu-
cinations can result in non-natural images, which maximize
the number of objects labeled as l in the unknown part, but
does not take into account the global structure of the image

(a) (b)

Fig. 1. Without regularization, an automatic completion of
the missing part based on the neural network can result in
“unrealistic hallucinations”. The image on the right is found
by maximizing the probability that it is classified as “Granny
smith” according to Eq. (1).

(see Fig. 1). The information provided by the neural net-
work is therefore important to have a sketch of the shape of
the missing part, but it does not necessarily result in natural
completions that respect the coherence of the global image,
and one should impose this constraint explicitly.

2.2. Regularization strategy

We consider two regularization strategies in order to impose
a natural-looking filling of the unknown part Ωc. We first
consider the Total Variation (TV) norm with the goal of re-
moving undesirable details, while still preserving important
details such as edges. Formally, the TV norm of an image is
computed as follows:

fTV (I) =
∑
i,j

√
(Ii+1,j − Ii,j)2 + (Ii,j+1 − Ii,j)2.

The TV norm has been extensively used as a regularizer in
several inverse problems, such as denoising [4] and super-
resolution [1] due to its edge-preserving properties.

Besides the smoothness of the image imposed with the
TV norm, we also introduce a regularizer that leverages our
knowledge of the known part Ω. Specifically, we consider
a graph G = (V,E) where vertices represent pixels of the
image, and edges represent some similarity measure between
pixels in the known part (i.e., Ω) and the unknown part
(i.e., Ωc). Assuming that (i, j) and (i′, j′) represent respec-
tively elements of Ω and Ωc, we consider the following edge
weights:

e(i,j)→(i′,j′) = exp

(
−
‖I∗B(i,j)

− I∗B(i′,j′)
‖22

σ2

)
, (2)

where B(i,j) is a small patch (of fixed size) around (i, j), and
σ is a tunable parameter. A schematic representation of the
graph is shown in Fig. 2. This notion of similarity has been
extensively used for solving inverse problems with non lo-
cal means for example [3]. It should be noted that the cur-
rent definition of the edges e is ideal in the sense that it uses
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Fig. 2. Schematic representation of the graph used for the
regularization.

the unknown image I∗. In practice, we instead opt for an it-
erative procedure where the graph is built from an estimate
Î obtained from the previous iteration (see Algorithm 1 for
more details). This results in replacing I∗ in Eq. (2) with the
pre-computed estimate Î .

Having defined this graph, we define a smoothness prior
on this graph through the following regularizer:

fgraph(I) = R(I)TLR(I),

where L denotes the Laplacian matrix of the graph G, and R
is the column-reshaped image. In words, the above smooth-
ness assumption on the graph (together with our definition of
similarity) encourages pixels in Ωc to have similar pixel val-
ues to those in Ω when the neighbourhoods around the pixels
are approximately similar.

2.3. Inpainting algorithm

Our final optimization problem, which involves the optimiza-
tion of the hallucination term together with the graph and TV
regularizers, is defined as follows:

max
Î
Nl(Î)− λfTV (Î)− γfgraph(Î) (3)

subject to ÎΩ = IΩ.

We solve this problem using the algorithm summarized in
Algorithm 1. The algorithm specifically alternates between
the construction of the graph G, and solving the optimization
problem in Eq. (3). All inner optimization problems are han-
dled using a simple projected (sub)gradient descent procedure
with a fixed step size. More complex algorithms are likely to
lead to better results, but we have opted for a gradient descent
procedure in this work for the sake of simplicity.

3. EXPERIMENTAL RESULTS

3.1. Implementation details

In all experiments, we have used the celebrated VGG-19 deep
convolutional neural network trained on the ILSVRC dataset
[10]. This very deep network achieves close to state-of-the-art
results on the challenging ImageNet challenge. To accelerate

Algorithm 1 Inpainting algorithm
Input: corrupted image I ,
Output: recovered image Î .
Compute label l using the corrupted image

l← argmaxlNl(I)

Estimate Î1 by solving the optimization problem

Î1 ← max
Î
Nl(Î)− λfTV (Î) s.t. ÎΩ = IΩ.

for all i ∈ {1, . . . ,K} do
Construct the graph G based on the estimation Îi.
Solve the optimization problem

Îi+1 ←max
Î
Nl(Î)− γfgraph(Î)− λfTV (Î) s.t. ÎΩ = IΩ.

end for
Return Î ← ÎK+1.

convergence (especially in the textureless region), we first ini-
tialize Î through a simple isotropic diffusion process.

In what follows, the proposed approach is compared
to the well-known approach for image inpainting in [5],
as well as an isotropic diffusion approach to fill the pixels
in Ωc. For the approach in [5], we used the freely avail-
able MATLAB code available at https://github.com/
ikuwow/inpainting_criminisi2004.

3.2. Results

We illustrate results on example images in Fig. 3. It can be
observed that the diffusion process results in losing the edges,
and the approach in [5] does not properly manage to recon-
struct the features of the corrupted objects, as the masked re-
gions are quite large. Note for example that the round shape
of the apple, or the backwheel of the kart are particularly
challenging shapes, and hence not correctly reconstructed by
the technique in [5]. On the other hand, the proposed ap-
proach in many cases correctly completes the shape of the
images by leveraging the concepts (e.g., of apples, karts, ...)
learned by the deep network. We believe that, without this
prior knowledge, it is extremely difficult for an algorithm to
recover the correct shape. In that sense, the deep network can
be very beneficial when the masks are large, and hallucination
is therefore needed. To emphasize this point, we show in Fig.
4 a zoom on the backwheel of the kart by solving the problem
in Eq. (3) with and without the presence of the hallucina-
tion term Nl. Without the hallucination term Nl, the proce-
dure does not succeed in generating the correct round-shaped
wheel, thereby showing that the neural-network term Nl is
crucial in the global optimization. We stress however that
relying only on the deep network hallucination term without
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Fig. 3. Inpainting results on sample images.

further regularization, we obtain poor inpainting results (e.g.,
compare the inpainting result in Fig. 3 with regularization to
Fig. 1 without regularization). Finally, for completeness, we
also report the Root Mean Squared Errors (RMSE) between
the original and recovered images in Fig. 3 obtained using the
different approaches; note however that such a metric favors
smooth solutions and is therefore only mildly indicative of the
quality of the inpainting solution. Nevertheless, the quantita-
tive measures confirm the visual observations showing that
the proposed method compares favorably to the reference in-
painting method in [5].

4. CONCLUSIONS

In this paper, we have proposed a novel approach for image
inpainting through hallucinations of neural networks. To con-
trol the quality of the hallucination, we have considered sim-
ple regularizers that are key to guarantee the global smooth-
ness and consistency of the image. However, other regular-

(a) (b)

Fig. 4. Reconstructed wheel with (left) and without (right)
the hallucination term Nl. Notice the wheel is correctly re-
constructed in the former case, but not in the latter.

izers might provide results with better quality. We believe
nevertheless that the main idea of this paper, which consists
in using the knowledge of a pre-trained network to guide the
reconstruction task, can be very beneficial in a broad number
of image processing tasks. We hope this paper will lead to an
exploration of this simple idea in challenging imaging tasks.
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