
Search Combinators
Tom Schrijvers

with Guido Tack, Pieter Wuille, Horst Samulowitz, Peter Stuckey

Search heuristics
are crucial.

Support for Search?
General Purpose

Programming Language

“everthing is possible,
nothing is easy”

Solver-Provided
Options

“everything is easy,
nothing is possible”

Can we do better?

✓Lots of expressivity and flexibility

✓Lots of productivity through high-level
specifications

Yes: Search
Combinators

“Everything is possible and easy”

High-level building blocks

Combinators
prune
let(v,e,s)
assign(v,e)
post(c,s)
if(c,s1,s2)
and([s1, s2,..., sn])
or([s1, s2,..., sn])
portfolio([s1, s2,..., sn])
restart(c,s)

Reusable Abstractions
limit(c,s) ≡ if(c,s,prune)

for(v,l,u,s) ≡ ...

lds(s) ≡
 for(n,0,∞,
 limit(discrepancy ≤ n,s)
)

More Examples

bab(obj,s)
restart_bab(obj,s)
dicho(obj,s,lb,ub)
id(s)
hot_start(c,s1,s2)
...
radiotherapy

see paper

Syntax

vs.

Semantics

Syntax

vs.

Semantics
Modular

Modular Mixin Design
combinator

1

combinator
2

combinator
n-1

combinator
n

successfailure

enter(n)

more

for every child c

push(c)

next(n',n)

Fig. 2: The modular message protocol

The solver-independence of our approach is reflected in the minimal interface that
solvers must implement. This interface consists of an abstract type State which repre-
sents a state of the solver (e.g., the variable domains and accumulated constraint prop-
agators) which supports copying. Truly no more is needed for the approach or all of
the primitive combinators in Fig. 1, except for base_search and post which require
CP-aware operations for querying variable domains, the solver status and posting con-
straints. Note that there need not be a 1-to-1 correspondence between an implementation
of the abstract State type and the solver’s actual state representation; e.g., for solvers
based on trailing, techniques such as [10] can be used. We have implementations of the
interface based on both copying and trailing.

In the following we explain how modularity of design is obtained. We show how
to isolate the behavior (Sect. 3.1) and state (Sect. 3.2) of each combinator in a separate
module, and how to compose these modules to obtain the combined effect.

3.1 The Message Protocol

To obtain a modular design of search combinators we step away from the idea that the
behavior of a search combinator, like the and combinator, forms an indivisible whole;
this leaves no room for interaction. The key insight here is that we must identify finer-
grained steps, defining how different combinators interact at each node in the search
tree. Interleaving these finer-grained steps of different combinators in an appropriate
manner yields the composite behavior of the overall search heuristic.

Considering the diversity of combinators and the fact that not all units of behavior
are explicitly present in all of them, designing this protocol of interaction is non-trivial.
It requires studying the intended behavior and interaction of combinators to isolate the
fine-grained units of behavior and the manner of interaction. The contribution of this
section is an elegant and conceptually uniform design that is powerful enough to express
all the combinators presented in this paper.

8

Details:
see paper

Implementations

Compacte Lus

DSL Haskell C++ Scala

Compact Loop

Implementations

Zoekheuristiek Compacte Lus

DSL Haskell C++ Scala

Compact LoopSearch Spec

Implementations

Zoekheuristiek

Objectcompositie

Compacte Lus

DSL Haskell C++ Scala

Compact LoopSearch Spec

Objects

Interpreted

Implementations

Zoekheuristiek

Objectcompositie

Compacte LusCodegenerators

DSL Haskell C++ Scala

Compact LoopSearch Spec

Objects

Code Generators

Interpreted

Compiled

Combinator Overhead?

portfolio

prune

base search
without

propagation

n

Worst-case Scenario

100,00%

150,00%

200,00%

250,00%

300,00%

1 2 5 10 20

ru
n
ti
m
e

#combinators

compiled interpreted

80,00%

100,00%

120,00%

140,00%

160,00%

180,00%

Golo
m

b 10

Golo
m

b 11

Golo
m

b 12

Rad
io

th
er

ap
y 1

Rad
io

th
er

ap
y 2

Rad
io

th
er

ap
y 3

Rad
io

th
er

ap
y 4

Rad
io

th
er

ap
y 5

Jo
b-s

hop G
2

Jo
b-s

hop H
5

Jo
b-s

hop H
3

Jo
b-s

hop A
BZ1-

5

Jo
b-s

hop m
t1

0

In Practice
propagation dwarfs combinator overhead

Gecode Interpreted Compiled

Summary

high-level modeling of search

low-level modular implementation

competitive performance compared to
hand-coded algorithm

Future Work

• Combinators for parallel search

• Other solving technology (e.g., LP)

! Combinators for hybrid search

Thank You!
Full Paper Available

http://users.ugent.be/~tschrijv/

http://users.ugent.be/~tschrijv
http://users.ugent.be/~tschrijv

