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This work introduces search combinators, an approach to modeling search in constraint
solvers that enables users and system developers to quickly design complex efficient
search heuristics.

Search heuristics often make all the difference between effectively solving a com-
binatorial problem and utter failure. Heuristic enable a search algorithm to become ef-
ficient for a variety of reasons, e.g., incorporation of domain knowledge, or randomiza-
tion to avoid heavy tailed runtimes. Hence, the ability to swiftly design search strategies
that are tailored towards a problem domain is essential to performance improvement.

While we focus on systematic tree search in the area of Constraint Programming
(CP), we believe that the results can be adapted to other search-driven areas in the
field of Artificial Intelligence (AI) and related areas such as Operations Research (OR)
(e.g., for Mixed Integer Programming (MIP) solvers). In fact, we also believe that our
approach anticipates the challenges that will surface when one needs to control search
in the context of hybrid systems that are composed of a variety of solvers (e.g., a mix
of CP and MIP). In CP, much attention has been devoted to facilitating the modeling
of combinatorial problems. A range of high-level modeling languages, such as Zinc [2]
and OPL [4], enable quick development and exploration of problem models. However,
we see very little support on the side of formulating accompanying search heuristics.
Either the design of search is restricted to a small set of predefined heuristics (e.g.,
MiniZinc [3]), or it is based on a low-level general-purpose programming language
(e.g., Comet [5]). The former is clearly too confining, while the latter leaves much to be
desired in terms of productivity, since implementing a search strategy quickly becomes
a non-negligible effort. This also explains why the set of available heuristics is typically
small: it takes a lot of time for CP system developers to implement heuristics, too — time
they would much rather spend otherwise improving their system.

In this work we show how to resolve this stand-off between solver developers and
users with respect to a high-level search language.

For the user, we provide a compositional approach for expressing complex search
heuristics based on an (extensible) set of primitive combinators. Even if the users are
only provided with a small set of combinators, they can already express a vast range
of combinations. Moreover, programming search in terms of combinators is far more
productive than resorting to a low-level language.

The following heuristic briefly demonstrates the conciseness of our search com-
binators. This search heuristic can be used to solve radiotherapy treatment planning
problems [1]. The heuristic minimizes a variable 0bj using branch-and-bound (bab),



first searching the variables IV, and then verifying the solution by partitioning the prob-
lem along the row, variables, one row at a time. Failure on one row must be caused by
the search on the variables in IV, and consequently search never backtracks into other
rows (exh_once). This is a good example of integrating domain knowledge in search:

bab(obj, and([int_search(N, input_order, bisect_low),
exh_once(int_search(row1, input_order, bisect_low)),

exh_once(int_search(row,,, input_order, bisect_low))]))

Here we assume that a basic search construct like the following is available:

s = int_search(vars, var-select, value-select)
which specifies a systematic search over the variables vars, applying var-select and
value-select as variable- and value-selection strategies respectively. Another primitive
combinator is and, with the obvious meaning. The remainders, bab and exh_once, are
themselves defined in terms of other primitive combinators.

For the system developer, we show how to design and implement modular combinators.
Developers do not have to cater explicitly for all possible combinator combinations.
Small implementation efforts result in providing the user with a lot of expressive power.
Moreover, the cost of adding one more combinator is small, yet the return in terms of
additional expressiveness can be quite large.

In summary, the tough technical challenge we face is to bridge the gap between
conceptually simple specification language (high-level, purely functional and naturally
compositional) and efficient implementation (typically low-level, imperative and highly
non-modular). We overcome this challenge with a systematic approach that disentan-
gles different primitive concepts into separate modular components, search combina-
tors, that interact through a message protocol. This protocol dictates how the combina-
tors should collaborate to process a node in the search tree. Overall search then consists
of a queue of unprocessed nodes that are fed one by one to the combinators, which in
turn may produce new (child) nodes for the queue. The message-based combinator ap-
proach lends itself well to different implementation strategies. We have developed two
diametrically opposed approaches for the Gecode C++ library: dynamic composition
(interpretation) and static composition (compilation). Experimental evaluation shows
that both implementation approaches have competitive performance and match the per-
formance of the native implementation of the same search heuristics in Gecode.
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