Using SAT in QBF*

Horst Samulowitz and Fahiem Bacchus
Department of Computer Science, University of Toronto, Canada.
[horst|fbacchus] @cs.toronto.edu

May 1, 2006

Abstract

QBEF is the problem of deciding the satis£abil-
ity of quanti£ed boolean formulae in which vari-
ables can be either universally or existentially
quantifed. QBF generalizes SAT and is in prac-
tice much harder to solve than SAT. One of the
sources of added complexity in QBF arises from
the restrictions quantifer nesting places on the
variable orderings that can be utilized during
backtracking search. In this paper we present a
technique for alleviating some of this complexity
by utilizing an order unconstrained SAT solver
during QBF solving. The innovation of our pa-
per lies in the integration of SAT and QBF. We
have developed methods that allow information
obtained from each solver to be used to improve
the performance of the other. Unlike previous at-
tempts to avoid the ordering constraints imposed
by quantifer nesting, our algorithm retains the
polynomial space requirements of standard back-
tracking search. Our empirical results demon-
strate that our techniques allow improvements
over the current state-of-the-art in QBF solvers.

1. Introduction

QBF is the problem of deciding the satistability of a quan-
tifed boolean formula where variables can be either uni-
versally or existentially quantifed. It generalizes SAT in
which all variables are (implicitly) existentially quantifed.
Adding universally quantifed variables yields a consider-
able increase in expressive power, and consequently QBF
and QCSPs can compactly represent a much wider range
of problems than SAT and ordinary CSPs. These include
problems like conditional planning, non-monotonic reason-
ing, problems in electronic design automation, schedul-
ing, model checking and verifcation, see, e.g.,(Egly et al.,
2000). However, this added expressiveness comes with a

*This work also previously appeared in CP 2005

price. Namely QBF is much more diffcult to solve than
SAT. From the point of view of complexity theory QBF is
PSPACE-complete where as SAT is “only” NP-complete
(Stockmeyer & Meyer, 1973). Despite this intrinsically
high complexity the goal of developing practically useful
QBF solvers still seems to be feasible given suf£cient con-
ceptual and technical advances. This paper presents some
new techniques that make progress towards this goal.

Most current QBF solvers, e.g., QUBE (Giunchiglia et al.,
2001), Quafae (Zhang & Malik, 2002) are adaptations of
the classic DPLL backtracking search algorithm originally
developed for solving SAT (Davis et al., 1962). There are
two main properties of QBF that must be accommodated
by the search. First, the search must solve both settings of
every universal variable, and second the variable ordering
followed during search must respect the ordering imposed
by quantifer nesting. Both of these properties make QBF
solving slower than SAT. The £rst property is intrinsic to
QBF, and must be accommodated in some fashion by any
QBF solver. The second property is, however, somewhat
more tractable, and various attempts have been made to
avoid the variable ordering constraint. To date, however,
all techniques for avoiding this constraint require expo-
nential space in general, e.g., the Skolemization/expansion
approach used by the Quantor (Biere, 2004) and Skizzo
(Benedetti, 2004) solvers and the BDD technique used in
(Audemard & Sa’s, 2005).

In this paper we develop an algorithm that makes exten-
sive use of order-free SAT solving in an attempt to alle-
viate (but not completely remove) the variable ordering
constraint. Our algorithm retains the important polyno-
mial space property of backtracking search. It can also use
any extra space that can be provided to improve its per-
formance, but extra space is not required for correctness
(this is a common feature with current SAT and QBF back-
tracking solvers). We utilize a backtracking SAT solver in
a backtracking QBF solver. Because both solvers are do-
ing backtracking search we are able to develop techniques
to integrate them very tightly. For example, both solvers
search the same tree and share all of their datastructures, in-
cluding using the same stack to store the current path. The

key innovation of our method lies in techniques for sharing
information between the two solvers so that information
computed during SAT solving can be used to improve QBF
solving and vice versa. The result is a QBF solver that is
able to improve on current state of the art on a number of
benchmark suites.

2. Background .
A guantifed boolean formula has the form @Q.F, where F’

is a propositional formula expressed in CNF and Q is a se-
quence of quantifed variables (Vz or 3x). We require that
no variable appears twice in @ and that the set of variables
in F and Q is identical. A quantifer block ¢b of @ is
a maximal subsequence of Q where every variable in ¢b
has the same type of quantifer. We order the quantifer
blocks by their sequence of appearance in Q: gb; < gbo
iff ¢b, appears before gb, in @. Each variable z in F ap-
pears in some quantifer block, which we denote as ¢b(z),
and the ordering of the quantifer blocks imposes a partial
order on the variables. For two variables x and y we say
that z <g y iff gb(x) < ¢b(y). Note that the variables
in the same quantifer block are unordered, so we write
x <g y iff ¢b(z) < ¢b(y). We also say that = is uni-
versal (existential) if its quantifer in § is vV (3). A SAT
model Mg of a CNF formula F' is a truth assignment
to the variables of F' that satisfes every clause in F'. We
denote the value of a variable v in 7 by 7(v). In contrast a
QBF model (Q-model) M, of a quantifed formula QF
is a tree of truth assignments in which the root is the empty
truth assignment, and every node n assigns a truth value to
a variable of F' not yet assigned by one of n’s ancestors.
The tree M, is subject to the following conditions. (1)
For every node n in Mg, if n assigns a truth value to a
universal variable x then n has exactly one sibling that as-
signs the opposite truth value to x, and if n assigns a truth
value to an existential variable then n has no siblings. For
every sequence of truth assignments 7 from the root to a
leaf of M we have: (2) = must assign the variables in an
order that respects <. That is if n assigns = and one of
n’s ancestors assigns y then we must have that y <, x.
And (3) 7 is a SAT model of F'. A Q-model has a path for
every possible setting of the universal variables of Q, and
thus has size exponential in the number of universals con-
tained in @ We say that a QBF Q.F is QSAT if it has a
Q-model. The QBF problem is to determine whether or not
Q.F is QSAT.

DPLL works on the principle of assigning variables, sim-
plifying the formula to account for that assignment and then
recursively solving the simplifed formula. The reduction
of a formula §.F by a literal ¢ (denoted by Q.F|,) is the
new formula Q’.F’ where F’ is F with all clauses contain-
ing ¢ marked as being satisEed (implicitly removed) and
—¢ marked as falsifed in all remaining clauses (implicitly
¢ has been removed from these clauses), and Q' is @ with

the variable of £ and its quantifer removed. For example,
(Vaz.3y.(-y, 2, 2) A (-2,y)) |- = Vz.3y(—y, 2), where
(—x, y) has been marked as satis£ed and 2 has been marked
as falsifed in (—y, x, z). An alternative view of conditions
(2) and (3) on a Q-model given above is that the subtree
below every node n must be a Q-model of the formula
Q’.F\ﬂn where ,, is the sequence of literals made true on
the path from the root to (and including) n. From the de£ni-
tion of a Q-model it follows that if F” is logically equivalent
to F' (F has the same SAT models as F') then QF is QSAT
if and only if Q.F’ is QSAT: condition 3 above is invariant
for F' and F’. Thus unit propagation and clause learning
can be performed without changing Q.F’s QSAT status:
both of these transform F to a logically equivalent F’. A
QSAT preserving (but not SAT preserving) transformation
that can additionally be performed on Q.F is universal re-
duction. The universal reduction of a clause c is to remove
all universal variables v from ¢ such that for every other
variable z in ¢ we have z <. v. Such universals are called
tailing. The intuition is as follows. Say that v € cis a
tailing universal, then in any Q-Model, ¢ must be satisted
along any path prior to v being instantiated. (Thus ¢ with
v removed imposes the same constraint on the set of Q-
models as does ¢). If not then since v is universal, any path
that fails to satisfy ¢ prior to instantiating v must have an
extension in which v is set to false: but then that extension
will falsify ¢ and violate condition (3). We call the applica-
tion of unit propagation and universal reduction until clo-
sure Q-propagation, and denote by QProp(Q.F) the new
formula that results from Q-propagation. In Q-propagation
any universal reduction steps are always performed prior to
any unit propagation steps: a unit clause containing only
a universal variable should yield the empty clause rather
than forcing the universal. The algorithm utilized in mod-
ern SAT solvers (e.g., (Moskewicz et al., 2001)) can be
adapted to solve QBF. A recursive version of this algorithm
is shown in Fig. 1.

Modern backtracking QBF solvers employ two non-
chronological backtracking schemes: conzict analysis and
solution analysis. Conzict analysis is a standard SAT tech-
nique that involves learning new clauses via a resolution
process. A failure deadend (line 2) is reached when F' con-
tains a clause in which all literals have been falsifed by
some subset of the literals that reduced F' at the previous
levels (the pre£x). From this falsifed clause a new falsifed
clause ¢ can be learned via a process of resolution and uni-
versal reduction (conmict analysis). DPLL-QBF will then
backtrack to the asserting level of ¢, which is the level
where all but one of the literals in ¢ have been falsifed.
This is the level where ¢ is made unit (line 4). After re-
turning from all levels deeper than BTLevel (line 13-14 or
19-20), the solver arrives at line 12 or line 19, where we
now have that the new clause c is unit and forces ¢. Notice

1: (bool Result, literal forced, int BTLevel) QBF-
DPLL(Q.F, Level)
2: if F' contains a falsifed clause then
3: Compute new clause ¢ by Conrict Analysis
4. forced = deepest literal in ¢ and BTLevel = level ¢ is
made unit
5. return (FAIL, forced, BTLevel)
6: if all clauses of F' are satisEed then
7. Compute Backtrack Level (BTLevel) by Solution
(Cube) Analysis
8: return (SUCCEED, —, BTLevel)
9: Pick v from the £rst quantifer block and let £ = v or
-
10: repeat .
11: Q.F = QProp(Q.F|g)
12: (Result, ¢, BTLevel) = QBF-DPLL (Q.F, Level +1)
13: if BTLevel < Level then
14: return (Result, ¢, BTLevel)
15: until Result == SUCCEED /*v must be universal
for this to happen */
16: let ¢ be v’s opposite value from line 9.
17: repeat .
180 Q.F = QPmp(Q.FV)
19: (Result, ¢, BTLevel) = QBF-DPLL (Q.F, Level +1)
20: if BTLevel < Level then
21: return (Result, ¢, BTLevel)
22: until TRUE /* line 19 will eventually return BTLevel
< Level */

Figure 1. DPLL for QBF

that the solver does not actually undo the original decision
made at this level (the setting of the variable v chosen at
line 9). Rather it simply augments the reduction of Q.F by
the new unit implicant ¢ (line 11 and 18). Thus the solver
might return to this level on failure a number of times: each
time it discovers that another literal is implied at this level.
Eventually, the recursive call at line 12 returns success at
this level or returns to a higher level. (Each failure return
sets another variable, so a failure return to this level at line
12 can only occur a £nite number of times.) Success re-
turns occur as a consequence of solution analysis (line 7).

Solution analysis is a technique particular to QBF that iden-
tifes a subset of the assignments that are sufEcient to make
the QBF QSAT. This subset of assignments is called a cube.
The solver can then backtrack to the deepest universal in
the cube, skipping other universals not mentioned in the
cube and any existentials irrespective of whether or not
they are in the cube. Thus line 16 (success return) can
be reached only if v is universal. A cube containing one
setting of a universal can be combined with another cube
containing the other setting to obtain a new cube in a cube
resolution process akin to the resolution of clauses. In par-
ticular, if the deepest universal in the cube has already had

its other value solved, the solver will combine these two
cubes and remove the deepest universal. Hence, on success
the solver always backtracks to a universal variable whose
other side is not yet solved (line 12), and thus the recursive
call on line 19 can never return with a successful result.
We can, however, return from the call at line 19 a number
of times with newly implied literals learned from failures
by conzict analysis.

At line 9 we see that QBF-DPLL must always branch on a
variable from the outermost quantifer block. This imposes
a constraint on the possible variable orderings the search
can use. We now turn to a new algorithm S-QBF that tries
to alleviate this constraint on variable ordering imposed by
the quantifer pre£x Q.

3. SQBF

As explained in the introduction there is no escaping the
fact that in QBF we have to ensure that both settings of each
universal variable are solvable. The constraint on variable
ordering imposed by the quantifer sequencing can also be
a signif£cant impediment to performance. In SAT, e.g., it
is provable that an inaexible variable ordering can cause an
exponential explosion in the size of the backtracking search
tree. That is, there exist families of UNSAT problems for
which any DPLL search tree where each branch follows
a £xed variable ordering is exponential in size, whereas a
quasi-polynomially (O(n'°&™)) sized DPLL search tree ex-
ists when a dynamic ordering is used (Buresh-Oppenheim
& Pitassi, 2003; Beame et al., 2004).This observation (also
bolstered by empirical observations of the tremendous im-
pact variable ordering has on DPLL SAT search), is the
underlying motivation for our approach. In particular, con-
sider a QBF formula QF in which the body F' is UNSAT.
If all of quantifer blocks have size 1, QBF-DPLL will be
forced to follow a £xed static variable ordering in prov-
ing Q.F to be UNQSAT. On the other hand an order un-
restricted SAT solver might be able to determine that £ is
UNSAT very quickly, which will immediately tell us that
Q.F is UNQSAT. The idea of testing the body of the for-
mula, F, can be used recursively at every invocation of
QBF-DPLL, just before line 9 prior to recursively solv-
ing the entire formula (body plus quantifer) with the order
constrained QBF search. If the body F' is UNSAT, we can
backtrack immediately. If F' is SAT, then we still do not
know whether or not QF is QSAT, so we have to continue
recursively solving Q. F with our QBF solver.

Furthermore, if F' is SAT our SAT solver will £nd a sat-
isfying truth assignment for £". This truth assignment is a
sensible candidate for the left-most path in a Q-model. So
after we obtain the SAT solution we can follow this solution
in the QBF solver during its £rst (left-most) descent. It can,
however, be the case that the SAT truth assignment is not
in fact a feasible left-most path for the QBF solver. In par-
ticular, this truth assignment might not survive the stronger

1: (bool Result, literal forced, int BTLevel) SQBF(Q.F,
Level,)

2: if F' contains a falsifed clause or if all of its clauses are

satisfed. then
3: Perform non-chronological backtracking using con-
aict or solution analysis as in QBF-DPLL lines 2-8.

4: whiler =={} do /* No current SAT solution */

5. (m, {, BTLevel) = SAT (F, Level)

6: if BTLevel < Levelthen /* SAT can cause S-QBF

to backtrack */

7: return (FAIL, ¢, BTLevel)

Q.F = QProp(Q.Fu)

9: Pick v from the £rst quantifer block and let ¢ = 7 (v)

10: repeat /* Second and subsequent invocations of S-
QBF need to £nd new SAT solution */

11: Q.F= QProp(Q.F|g)

12: (Result, ¢, BTLevel) = SQBF(Q.F, Level + 1,7)

13: if BTLevel < Level then

14: return (Result, ¢, BTLevel)

15 7w={}

16: until Result == SUCCEED

17: let ¢ be v’s opposite value from line 9.

18: repeat /* First and all subsequent invocations of S-
QBF need to £nd new SAT solution */

19: Q.F = QProp(Q.F|g)

20 (Result, ¢, BTLevel) = SQBF (Q.F, Level + 1, {})

21: if BTLevel < Level then

22: return (Result, ¢, BTLevel)

23: until TRUE /* line 20 will eventually return BTLevel
< Level */

o0

Figure 2. S-QBF
Q-propagation performed by the QBF solver. Putting these
pieces together we obtain the S-QBF algorithm given in
Fig. 2. The algorithm is a modifcation of QBF-DPLL.
S-QBF is £rst invoked with the input formula Q.F, Level
equal to 1, and = = {}. Its £rst task is to £nd a SAT solu-
tion (line 4-8). The SAT solver might discover a number of
literals implied at higher levels. Literals implied at higher
levels cause S-QBF to backtrack, assert those literals, and
then proceed downwards again. The SAT solver might also
discover literals implied at the current level. These literals
are used to reduce the input formula Q.F (line 8) via Q-
propagation: these literals are independent of any choices
made by the SAT solver so their consequences need to be
accounted for by the QBF solver. After Q-propagating
these implied literals the SAT solver is called again to see if
it can £nd a SAT solution in light of these added constraints
on F. Eventually, the SAT solver £nds a SAT solution (7
is returned containing this solution), or causes a backtrack
to a higher level in the QBF solver. If a solution is found,
the QBF solver heuristically tries to follow this solution
(in quanti£er order) by choosing a value for v that agrees
with 7 (line 9). The SAT solution is passed down to the

next recursion where it is followed as far as possible, either
to a failure or a Q-solution at line 2-3. Anycongzicts en-
countered will cause a backtrack which will return to line
20 or 12 of some invocation after which the next invoca-
tion will call the SAT solver again. Thus the SAT solver
is being used to refute UNSAT subtrees, and more impor-
tantly to compute new conzict clauses that can (a) cause
the QBF solver to backtrack and (b) discover that various
literals are implied at previous levels of the search. All of
this information, computed by the SAT solver, is sound for
the QBF solver: UNSAT subtrees are UNQSAT, any new
clause learned by the SAT solver is a valid new clause for
the QBF solver, and if a literal £ is SAT implied at a previ-
ous level of the tree then ¢ is Q-SAT implied at that level as
well. It should be noted that the SAT solver can also make
an S-QBF invocation backtrack from line 20, even though
we know that the other side of the universal branched on in
that invocation has already been successfully solved. This
might seem strange, since at this point we already know
that the current pref£x (above the Level of this invocation)
contains at least one satisfying assignment below it. Thus
one might think that the SAT solver could never then con-
clude that the preEx is contradictory. However, although
the pre£x is not SAT contradictory, it could still be QBF
contradictory. For example, say that the pre£x contains
the literal a, the body F' contains the clauses (—a, —b, ¢, d),
(—a, —b, ¢, ~d), (—a, b, —¢,d), (—a, —b, —c, —d), b is uni-
versal, b <gp ¢, and b <, d. The QBF solver will be able
to solve the setting —b without difEculty, as this setting sat-
isEes all of these clauses. However, when at line 20 the
setting b is made these four clauses become contradictory.
Q-propagation cannot detect the contradiction so the SAT
solver will be invoked in the next recursive S-QBF call.
SAT will be able to learn the new clause (—a, —b), which
after universal reduction becomes (—a). This will cause the
QBF solver to backtrack all the way to the point where a
was added to the pre£x.

3.1. Integration of SAT and QBF.

In our implementation of S-QBF we built our own SAT
solver (utilizing all of the modern techniques like 1-UIP
clause learning, watched literals, etc. (Moskewicz et al.,
2001)). In this way we were able to obtain a much tighter
integration between the SAT solver and the QBF solver,
e.g., sharing of datastructures. Clause learning is the ba-
sic unit of communication between the two solvers. As
pointed out above, learned clauses are not necessary for
correctness, but they are very helpful for efEciency. In par-
ticular, both the QBF solver, via contradictions generated
via Q-propagation, and the SAT solver via contradictions
generated via unit propagation can learn clauses. Universal
reduction is applied to these learned clauses to make them
more powerful. All of these learned clauses arise from se-
quences of Q-resolution steps, thus as shown in (Bining

et al., 1995) they are all logical consequences of the input
QBF. That is, they do not alter the QSAT status of the in-
put. This means that any clause learned by either solver
can be used by both solvers to prune paths from the search
space they explore. This is useful as each solver is able to
learn different kinds of clauses. In particular, since the SAT
solver is order unrestricted it can learn powerful clauses via
its VSIDS heuristic which would never be learned by the
order restricted QBF solver. These clauses can signifcantly
prune the set of paths explored by the QBF solver. On the
other hand the QBF solver is able to employ stronger Q-
propagation and so it also can learn clauses that the SAT
solver could never learn. These clauses allow the SAT
solver to prune paths that are £ne from the point of view
of SAT but which are contradictory with respect to QBF.

4. Empirical Results

We compared an implementation of our approach with two
state of the art search based QBF solvers—Quafwe (Zhang
& Malik, 2002) (version as of Feb. 2005) and Qube (release
1.3) (Giunchiglia et al., 2001). We also ran experiments
with the non search based solver Quantor (Biere, 2004)
(version as of Jan 2004). Like these solvers our implemen-
tation also utilizes techniques for detecting monotone liter-
als, heuristics for guiding cube resolution, and some other
standard improvements over the basic algorithm given in
Fig.2. We used the following benchmark families from
QBFLib: Adder, FlipFlop, VonNeumann, Counter, Toilet
c/g, Robots_D2, Term, Comp, Z4ml, S1169, S1196, S298
and all instances provided by Pan and Rintanen (= 350
instances). In addition, we used a benchmark family in-
troduced in (Remshagen & Truemper, to be published)
called Game (120 instances). We excluded the families
Mutex, Szymanski and Tree since all of them can be triv-
ially solved by simple preprocessing. Further details will
be discussed in a subsequent paper. We also excluded all
of the other families from QBFLib (2004), e.g., Jmc and
Uclid, because only one or two of their instances could be
solved by any of the search based solvers. Due to space
limitations we exclude results on any instance that had one
of the following properties: (1) the difference in solving
time between all search based solvers is small (less than ei-
ther 200 seconds or within 10% of the fastest time); or (2)
no search based solver can solve it in under 5,000 seconds.
The remaining results are shown in Table 2. All experi-
ments were performed on a 2.4 GHz Pentium IV with 3GB
of RAM.

A summary of these results is presented in Table 1. In this
table we show the total time used by each solver for all in-
stances in each benchmark family (among those instances
shown in Table 2). The “Total” column show the sum of
the time over all benchmarks. To obtain a time in the pres-
ence of failures we added a penalty of 5,000 seconds per
failure. (Thus the times should be used only for qualitative

comparisons). In addition, the table shows the percentage
of failed instances for each benchmark family and in total.

Table 1 shows that our new approach improves the current
state of the art in search based solvers, in aggregate solv-
ing the most problems and taking the least time of any of
the solvers. S-QBF is not always the fastest solver, but it
does improve on Quafee and Qube on 21 out of the 68
problems reported on in Table 2. In many of the other
cases it is very competitive, being the worst solver of the
three search based solvers on only 9 of the 68 problems.
As noted above we experimented with many other bench-
marks, but on these the solvers could not be effectively dis-
criminated. To obtain a more accurate assessment of the
beneft provided specifcally by our new techniques for us-
ing SAT (vs. differences in implementation and heuristics),
we built a derivative of S-QBF. This derivative (denoted
S7) used the same code base, the same variable ordering
heuristic, the same cube learning and clause learning tech-
niques, etc. S~ is simply S-QBF without the SAT solver.
This provided us with a much more accurate control against
which to assess our new techniques. The summary perfor-
mance of S—, shown in Table 1, demonstrates that although
our base QBF solver is quite effective, our new techniques
for using SAT yield clear performance advantages. Table 2
shows in more detail the time taken by the different solvers
on individual problems (columns S, S-QBF, Quafae, and
QUBE). It is also useful to examine the effect SAT has on
the size of the QBF search tree. Columns SAT-dec, Q-dec,
S~ Q-dec of Table 2 show the number of decisions made by
the SAT solver, the number of decisions made by the QBF
solver (in S-QBF), and the number of decisions made by
S~ (where SAT is not used). In most cases we see that the
SAT solver is able to signi£cantly reduce the number of de-
cisions the QBF solver needs to make (comparing columns
Q-dec and S~ Q-dec). In fact, in many cases the sum of the
SAT and QBF decisions in S-QBF is less than the num-
ber of QBF decisions used by the pure QBF solver S—.
QBF decisions are more expensive than SAT decisions as
they require extra work (e.g., triggering of cubes, detect-
ing monotone literals, detecting the empty theory). Hence
reducing the number of QBF decisions has a strong impact
on the run-time (e.g, in the Blocks, Game, and Toilet bench-
marks). In our implementation SAT decisions are made 5
to 10 times faster than QBF decisions depending on the
problem instance. This means that using SAT can yield im-
provements even when the sum of decisions in SAT and
QBF is higher than the number of decision made by pure
QBF (in S7) (e.g., the K benchmarks). The SAT solver
can, however, sometimes be a waste of time. For example
the Chain benchmarks contain Q-propagation implication
chains under which a QBF solver will never encounter a
failure. In some cases SAT solving can even be harmful,
as following its solutions can be misleading. For example,

Solver Blocks Chain Comp Game K Robots Term Toilet || Total
S-QBF 0% 66% 25% 0% 37% 0% 0% 0% 22%
2,991s | 10,493s 5,000s 1,345s | 70,848s 959s 2,577s 672s 26h

Qube 20% 0% 75% 57% 25% 0% 66% 50% 31%
10, 305s 3,499s 16,030 | 39,723s | 59,594s | 2,373s | 12,566s | 11,057s 43h

Quafoe 20% 33% 0% 1% 50% 0% 0% 25% 13%
5,709s 9,978s 69s | 50,217s | 96,251s 410s 299s 6,057s 47h

S™ 0% 66% 50% 57% 43% 0% 0% 25% 40%
4,932s | 10,439s | 10,000s | 42,548s | 84,279s | 2,400s 3,246s 9,486s 45h

Table 1. Summary of results reported in Table 2. Shown are the percentage of failed runs and the CPU time used.

on k_d4_p-6 S-QBF makes many more QBF decisions than
when SAT is not used (S™). But in the vast majority of the
cases SAT is more informative than misleading.

Quantor is another state of the art QBF solver, but it is not
based on backtracking search. Instead Quantor utilizes a
variable elimination scheme based on the original resolu-
tion procedure of Davis-Putnam (Davis & Putnam, 1960)
and an additional scheme of universal expansion. It falls
into the class of worst case space exponential algorithms.
Quantor’s approach often superior on these benchmarks.
However, its failure rate is 24% which is slightly higher
than that achieved by S-QBF. Furthermore, while we ex-
pect a few more problems could be solved by S-QBF given
more time, Quantor is exhausting addressable memory on
most of its failures. Overall, space exponential algorithms
have the disadvantage that space is a much less zexible re-
source than time. The question of whether space intensive
algorithms like Quantor, Skizzo (Benedetti, 2004), or QM-
RES (Pan & Vardi, 2004) will eventually be the best way to
solve QBF remains open. However, we are more optimistic
about search based methods. In particular, the wide vari-
ance in the times achieved by search based solvers shows
that there is a lot of room for improvements in heuristics.

5. Conclusions _ _
We have presented an approach for integrating order un-

constrained SAT solving within an order constrained QBF
solver. By utilizing clause learning techniques, and the fact
that a SAT learned clause is valid for QBF, we have been
able to achieve a tight integration between the SAT solver
and the QBF solver so that information computed in each
part can be used to improve the performance of the other
part.

References

Audemard, G., & Sa’s, L. (2005). A symbolic search based ap-
proach for quantifed boolean formulas.

Beame, P., Kautz, H., & Sabharwal, A. (2004). Towards under-
standing and harnessing the potential of clause learning. Jour-
nal of Artifcial Intelligence Research, 22, 319-351.

Benedetti, M. (2004). skizzo: a gbf decision procedure based on
propositional skolemization and symbolic reasoning. Techni-
cal Report TR04-11-03.

Biere, A. (2004). Resolve and expand. Seventh International

Conference on Theory and Applications of Satis£ability Testing
(SAT) (pp. 238-246).

Bining, H. K., Karpinski, M., & Fliigel, A. (1995). Resolution
for quantifed boolean formulas. Inf. Comput., 117, 12-18.

Buresh-Oppenheim, J., & Pitassi, T. (2003). The complexity of
resolution reEnements. |EEE Symposium on Logic in Com-
puter Science (pp. 138-147).

Cadoli, M., Giovanardi, A., & Schaerf, M. (1998). An algorithm
to evaluate quantifed boolean formulae. Proceedings of the
AAAI National Conference (AAAI) (pp. 262-267).

Davis, M., Logemann, G., & Loveland, D. (1962). A machine
program for theorem-proving. Communications of the ACM, 4,
394-397.

Davis, M., & Putnam, H. (1960). A computing procedure for
quanti£cation theory. Journal of the ACM, 7, 201-215.

Egly, U., Eiter, T., Tompits, H., & Woltran, S. (2000). Solving
advanced reasoning tasks using quantifed boolean formulas.
AAAI/IAAI (pp. 417-422).

Gent, 1., Hoos, H., Rowley, A., & Smyth, K. (2003). Us-
ing stochastic local search to solve quantifed boolean formu-
lae. Principles and Practice of Constraint Programming —
CP’2003 (pp. 348-362).

Giunchiglia, E., Narizzano, M., & Tacchella, A. (2001). QUBE:
A system for deciding quantifed boolean formulas satis£abil-
ity. International Joint Conference on Automated Reasoning
(IJCAR) (pp. 364-369).

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S.
(2001). Chaff: Engineering an ef£cient sat solver. Proc. of the
Design Automation Conference (DAC).

Pan, G., & Vardi, M. Y. (2004). Symbolic decision procedures for
gbf. Principles and Practice of Constraint Programming (pp.
453-467). Springer-Verlag, New York.

Remshagen, A., & Truemper, K. (to be published). An effective
algorithm for the futile questioning problem. Journal of Auto-
mated Reasoning.

Rowley, A. (2005). Forthcoming. Doctoral dissertation, Univer-
sity of St. Andrews.

Stockmeyer, L., & Meyer, A. (1973). Word problems requiring
exponential time. Journal of the ACM, 1-9.

Zhang, L., & Malik, S. (2002). Towards symmetric treatment
of congicts and satisfaction in quantifed boolean satis£ability
solver. Principles and Practice of Constraint Programming
(CP2002) (pp. 185-199).

6. Appendix

6.1. Relation to Previous work

A number of other approaches have been proposed for escaping
from the ordering constraints imposed by the quantifer pre£x.
Quantor (Biere, 2004), and Skizzo (Benedetti, 2004) both employ
the device of removing universal variables by adding multiple
copies of their scoped existentials. (A process akin to Skolemiza-
tion in £rst-order logic). Once all universals have been removed
the transformed theory becomes an order unconstrained SAT the-
ory. As our empirical results demonstrate this technique can be
very effective, but in general it requires exponential space. Our
empirical results also demonstrate that it is not difEcult to £nd
problems solvable by QBF-DPLL that are unsolvable by Quantor
(Skizzo was not yet available for experimentation).

A more recent order unconstrained approach is based on a BDD
representation of a Q-model (Audemard & Sa’s, 2005). The idea
here is to generate arbitrary SAT solutions with a SAT solver,
adding those solutions to the BDD. The BDD will eventually col-
lapses to TRUE if the set of added SAT solutions suffce to form
all paths in a Q-model. However, the BDD can grow to an expo-
nential size prior to collapsing. Furthermore, the SAT solver can
generate SAT solutions that form paths in disjoint Q-models—
thus the BDD might be even larger as it has to represent multiple
distinct Q-models before one collapses to a solution. The empir-
ical results reported in (Audemard & Sa’s, 2005) do not improve
on the state of the art.

The idea of utilizing a SAT solver within QBF was £rst presented
in (Cadoli et al., 1998). SAT solving was employed to determine
trivial truth (satistability after removing all universals from every
clause) and trivial falsity (unsatis£ability of the subset of clauses
that contain only existentials) at every recursive call. Trivial truth
is a very strong condition: the remaining theory can easily be
QSAT even though it is not trivially true. Furthermore, because
a different clause set is being used, the satis£ability testing em-
ployed in trivial truth cannot be used to learn clauses for the re-
maining QBF search. Trivial falsity on the other hand is strictly
weaker than the SAT testing we employ. Trivial falsity tests SAT
on a subset of the clauses, hence whenever it reports UNSAT our
SAT testing will also report UNSAT. Furthermore, our SAT test-
ing can report UNSAT even on formulas that are not trivially false.

In more closely related work an incomplete SAT solver was used
(Gentetal., 2003). If a SAT solution was found it could be heuris-
tically followed in an attempt to reach a successful leaf in the QBF
search. This is quite different from our motivation which is to re-
fute UNSAT subtree. This requires a complete SAT solver as well
as a tighter integration between the SAT and QBF solvers. Empir-
ically the WalkQSat solver reported in (Gent et al., 2003) did not
display good performance. Independently to our work (Rowley,
2005) utilized a complete SAT solver (ZChaff (Moskewicz et al.,
2001)). It allows the pruning of UNSAT subtrees and the com-
puted reason for this congict is used in the QBF solver to apply
backtracking. However, the integration of the two solvers is not
as tight as it is in our approach. For instance, the solvers operate
on two distinct representations of the formula so that except for
backtracking no exchange of learned clauses takes place between
the SAT and QBF solvers. Furthermore, operations like the prop-
agation of variable (un)assignments has to be performed twice.

6.2. Formal Results.

Theorem 1 S-QBF is sound and complete.

A sketch of the proof is as follows. First by relating the opera-
tions performed by QBF-DPLL on failure return to Q-resolution
steps (Buning et al., 1995) it can be shown that QBF-DPLL will
backtrack from the root of the search tree with FAIL only if its
input is Q-UNSAT. Similarly it can be show that any recursive
invocation of QBF-DPLL backtracks with SUCCESS only if its
input is QSAT. Thus QBF-DPLL is sound. That it is also com-
plete follows from the fact that no recursive call has exactly the
same pre£x of assignments as another call (after a failure a new
literal is added to the pre£x, and after a success the pre£x has a
different value for one of the universal variables). Since there are
only a £nite number of sets of assignments, there can only be a
£nite number of recursive calls, and the root QBF-DPLL invoca-
tion must eventually return (with the correct answer).

SAT in S-QBF only allows S-QBF to backtrack on failure, it does
not affect success backtracking. Thus, SUCCESS returns continue
to correctly prove QSAT. Furthermore, all operations performed
by SAT during failure backtracking are sound Q-resolution steps,
so S-QBF also preserves the property that it backtracks from the
root with FAIL only if its input is Q-UNSAT. That is, S-QBF re-
tains QBF-DPLL’s soundness property.

Observation 1 S-QBF is systematic. That is, it never revisits the
same set of assignments.

The previous argument still holds so S-QBF retains the systematic
property of QBF-DPLL. This also means that S-QBF is complete.

Problem Instance QSAT? SAT-dec Q-dec S~ Q-dec S~ S-QBF Quafoe QuBE Quantor
blocks3i.5.3 0 37779 50482 439625 32.05 4.53 158.25 453.98 0.36
blocks3i.5.4 1 47300 62403 298121 11.85 3.12 11.08 4626.19 0.38
blocks4i.6.4 0 7367 6438 19931487 3116.49 0.95 fail 203.99 0.31
blocks4ii.6.3 0 6087 5685 6409879 1042.46 1.1 208.19 21.02 22.63
blocks4ii.7.2 0 1804960 1444039 2860315 729.34 2981.66 312.28 fail 43.23
chainl6v.17 1 65519 131582 131582 439.97 493.32 129.3 71.14 0.04
chain19v.20 1 - - - fail fail 4849.32 1123.53 0.07
chain20v.21 1 - - - fail fail fail 2304.390 0.08
comp-1_1.0.0_0 0 3401 755 - fail 0.12 1.92 fail 0.02
comp-1-1.0-10 1 0 34 34 0 0 0 1030.88 0.04
comp-1.0.2.1.0 1 0 58 58 0.01 0.01 0 fail 0.03
comp-1.0.2.0_0 0 - - - fail fail 67.63 fail 0.05
game20-20_40_2 1 3855587 4425993 2754583 260.23 440.94 fail 98.26 0.08
game20.25_25_1 1 4517800 2213579 - fail 309.46 fail 369.5 fail
game20.25_25_2 1 2109107 1168113 - fail 125.29 fail 2874.96 fail
game20.25_25_3 1 920314 413170 2027831 326.64 40.06 fail 1150.51 fail
game20.25_25_4 1 3298510 1680483 - fail 222.13 fail 1651.43 fail
game20-25.50_1 1 3298510 1680483 - fail 221.74 fail 1657.63 fail
game50.2525_1 1 2452664 954186 12368548 477.79 64.22 fail 1869.7 fail
game50-25_25_3 1 188743 66888 6182150 220.99 4.13 fail fail fail
game50.25_25_4 1 72203 34183 - fail 1.63 fail 51.48 fail
game100.25_25_2 1 36165 24291 - fail 0.73 fail fail 9.26
game100-25.25_3 1 32923 16184 - fail 0.63 4.06 fail 0.04
game150.25.25_1 0 0 21 21 0 0 0 fail 0.01
gamel50.25.25_2 1 208546 175239 - fail 4.22 4.34 fail 0.01
gamel50.25_25_4 1 14604 13567 | 41798186 1262.76 0.3 208.79 fail 0.01
k_branch_p-5 1 - - - fail fail fail 3854.78 fail
k-d4_p-6 0 5542611 55260801 2005 0.42 1689.13 fail 837.45 1.43
k_dum_n-6 1 1876929 1639193 1692680 221.21 122.79 fail 117.42 0.02
k-dum_n-8 1 - - - fail fail fail 2916.89 0.06
k_dum_p-11 0 - - - fail fail 871.44 1014.83 5.32
k-grz_n-9 1 366963 294974 736851 117.68 22.32 | 3534.32 67.06 3.86
k_grz.n-12 1 1231288 1106900 2884937 3093.12 285.7 fail 250.53 10.3
k_grz.n-13 1 1420342 1277434 3339392 4046.65 353.39 fail 253.01 11.29
k_grz.n-16 1 5110635 4232820 - fail 711.97 fail 1253.97 32.15
k-grz.n-17 1 6310863 5229135 - fail 1396.91 fail 1321.97 20.7
k-grz_p-10 0 - - - fail fail fail 164.81 6.78
k-grz_p-14 0 - - - fail fail fail 1270.28 17.19
k_grz_p-16 0 - - - fail fail 2481.57 1694.67 27.73
k_grz_p-17 0 - - - fail fail 3107.51 1922.98 21.37
klin_n-7 1 1836874 900248 174011 404.32 194.34 169.26 49.75 454.34
k-lin_n-14 1 4503632 2422960 - fail 4030.32 | 2525.31 1353.86 fail
k_lin_n-15 1 - - fail fail 3008.53 2108.53 fail
k_path_n-5 1 3814468 3658630 3037899 473.3 493.5 fail 158.02 0
k_path_n-6 1 - - - fail fail fail 1514.29 0.01
k_path_p-6 0 2895489 2490412 823834 101.87 406.71 270.42 30.26 0.01
k_ph_n-15 1 - - 4072609 3731.09 fail 283.51 158.02 2962.78
k_poly_n-3 1 4702368 2945933 5078474 1445.27 426.24 fail 151.16 0
k_poly_n-4 1 - - - fail fail fail 1651.2 0
k_poly_p-7 0 0 83 83 0 0 0 fail 0.01
k_poly_p-8 0 0 99 99 0 0 0 fail 0.02
k_poly_p-10 0 0 123 123 0 0 0 fail 0.04
k_poly_p-11 0 0 131 131 0.01 0.01 0 fail 0.03
k_poly_p-12 0 0 147 147 0.01 0.01 0 fail 0.03
k_poly_p-14 0 0 171 171 0.01 0.01 0 fail 0.03
k_poly_p-17 0 0 203 203 0.01 0.01 0 fail 0.03
k_t4p_n-2 1 2400994 2228055 1410656 645.73 709.56 fail 84.11 0.02
k_t4p_p-4 0 - - - fail fail fail 194.57 0.1
robots1.5.2.72.7 1 21720 3002426 313292 44.14 221.7 19.64 1385.68 fail
robots1.5_2.42.7 0 29395 7713081 4458791 1519.08 672.14 288.06 565.01 fail
robots1.5_2_61.6 0 17992 4529115 4619291 836.47 268.29 99.34 424.87 fail
term1.1.0.2.0.i 0 2708395 2655162 2906302 3238.12 | 2555.78 296.52 fail fail
term1.1.1.0.1 0 1 129 88 722 0.03 0.02 0.06 2566.76 0.07
term1.1.1.0.0.0 0 36105 6769 7276 7.86 18.65 3.11 fail 1.57
toilet6.1.11 0 54468 44831 108215 48.5 22.47 9.21 307.92 0.09
toilet7.1.13 0 347166 273852 1225940 3570.54 617.92 39.76 fail 1.14
toilet7.1.14 1 888 1097 712183 867.72 0.32 45.65 749.85 0.02
toilet10.1.20 1 57 264 - fail 0.1 fail fail fail

Table 2. Benchmark Results

