
On the Stochastic Constraint Satisfaction Framework

Lucas Bordeaux
Microsoft Research

Cambridge, UK

lucasb@microsoft.com

Horst Samulowitz
University of Toronto, Dpt of Computer Science

Toronto, Canada

horst@cs.toronto.edu

ABSTRACT
Stochastic constraint satisfaction is a framework that allows
to make decisions taking into account possible futures. We
study two challenging aspects of this framework: (1) vari-
ables in stochastic CSP are ordered sequentially, which is
adequate for the representation of a number of problems,
but is not a natural choice for the modeling of problems in
which the future can follow different branches (2) the frame-
work was designed to allow multi-objective decision-making,
yet this issue has been treated only superficially in the lit-
erature. We bring a number of clarifications to these two
aspects. In particular, we show how minor modifications
allow the framework to deal with non-sequential forms, we
identify a number of technicalities related to the use of the
sequential ordering of variables and of the use of multiple
objectives, and in addition we propose the first search al-
gorithm that solves multi-objective stochastic problems in
polynomial space.

1. INTRODUCTION AND MOTIVATION

Context: Integrating the Future in Decisions
An important and challenging problem in optimisation is
to make decisions in prediction to a future which, by def-
inition, cannot be forecasted precisely. To make this type
of decisions it is necessary to consider the whole range of
futures that are possible, to estimate the likelihood of each
of these future scenarios, to predict the quality of the deci-
sions w.r.t. each future, and to favour the decisions whose
quality is likely to be high. Examples of contexts involving
this type of prospective reasoning are abundant: a decision
whether to launch a new product will have completely dif-
ferent consequences depending on whether the competitor
is secretly planning to propose a similar offer; when decid-
ing the quantity of goods to produce we aim at satisfying
a future demand which can be estimated only with limited
confidence, but a storage cost will be incurred if there is
some surplus, and the decision has to take into account this

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

risk in addition to the production cost (Book Example, [6]).
The framework we discuss in this paper is more specifi-

cally driven by a class of uncertain decision-making prob-
lems that are best understood by considering a preliminary
example. In this example we want to make a trip from Paris
to Amsterdam. Train and car are the two options, but we
are in a period of strikes, and there is an estimated 40% risk
that the train never leaves, should we consider this option.
In case this happens, the train company would be forced to
provide a replacement (e.g., a bus service). This solution is
however typically slower. Now if we directly choose to take
the car there is also some uncertainty , i.e., the traffic might
be low, medium or high. What should we decide? In gen-
eral the train offers the best compromise between speed and
price, but today if we choose this solution we have a chance
to end-up with an inefficient replacement service (e.g., bus).
The example can be described pictorially as follows:

car

cost = c1(Traffic)
 Traffic duration = d1(Traffic)

Transport

cost=c3(Bus)
duration=d3(Bus)

 Strike

yes

no duration=d2
cost=c2

Bus

train

The diamonds represent decision variables: a decision
variable represents a choice for which we do or will have
to make the decision. On the contrary, the ovals represent
stochastic variables: the values of these variables will not be
decided by us but by some external agent, or by ”the envi-
ronment”. We assume that we can estimate the probability
according to which each value will be chosen. The diagram
specifies that we initially have to choose the value for a vari-
able Transport ranging over {car, train}. If (for instance)
we choose car, then the environment will fix a value for the
variable Traffic ∈ {low,med, high}. The duration and the
cost in this case are both functions of the traffic (in the other
cases in the Figure the costs are simply constants). While
simplistic, this example exhibits features that are represen-
tative of a whole class of applications:

• In evaluating the quality of our decision we have used
several criteria: the duration and the cost. This is
often the most natural way to state preferences, in
which case the problem is called multi-objective.

• We have adopted a ”branching” (tree-shaped) repre-

sentation of the future, as opposed to a ”linear” (se-
quential) one. By this we mean, more specifically, that
some decisions only apply in some branches: for in-
stance variable Strike plays a role only if we choose
train. If on the contrary we choose car then variable
Strike simply does not exist.

• The leaves of the tree essentially specify values for each
of the objective. These values are functions of the
variables accumulated along the corresponding branch
of the tree (e.g., in our simple example the cost and
duration depend on the traffic in the case of choosing
the car in the first place).

Goal of the Paper
Our goal in this paper is to propose a framework that will
allow us to conveniently model problems such as the one
described above, i.e., problems in which we make decisions
against the future, in which the future involves alternating
decision and stochastic variables, and in which we adopt a
branching viewpoint on the future. We also investigate the
employment of multi-objectives and reveal several technical-
ities caused by its usage.

We think that the ability to model branching time is im-
portant as this branching will typically arise whenever the
environment is allowed to make a discrete choice that causes
the remaining possibilities for the next steps to be com-
pletely different. For instance, suppose that a construction
company is making decisions related to its interaction with
a particular client. The future is modelled as follows:

”if the customer accepts the current offer then
we will start the construction; otherwise we will
propose him an alternative”.

The answer of the customer is clearly a stochastic variable,
and at the time of the decision the only information we can
have on this variable is the probability of the yes/no answers.
Depending on this answer, we will have to make decisions on
which team of builders should start working or we will have
to schedule another round of negotiation with a member of
the business team. Clearly these two tasks take place in
completely different contexts and therefore do not involve
the same decision variables.

Summary of the Contributions
The framework we start off with is stochastic constraint sat-
isfaction as introduced by Walsh [6]. This appears like a
natural choice, as the distinction between deterministic and
stochastic variables is central to this framework. However
we make the following observations:

1. In the stochastic constraint satisfaction framework, the
objectives that are most typically considered represent
the satisfaction of constraints. Instead we shall allow
arbitrary objectives. This is a minor and natural gen-
eralisation that was suggested in [6], but no search
algorithm was proposed to deal with it.

2. The original stochastic CSP framework is sequential,
and does not allow any branching. At first this could
be considered as a minor drawback: a stochastic CSP
can be thought of as a formula in prenex form, while
branching time would require a non-prenex form. If

known results in the closely related field of quantified
constraints were also applicable to stochastic CSP, we
could always express branching time using a sequential
framework. We show that this is in general not the
case. In our newly introduced framework we are able
to clearly define the non-prenex form and to deal with
it in a proper fashion.

3. The original formulation of stochastic CSP allows to
model different objectives (each of which is assigned a
different threshold in the decision version). But sur-
prisingly, all the poly-space algorithms that have been
proposed for the original framework are restricted to
a single objective1. As an explanation to this fact we
exhibit a technical issue that makes it difficult to solve
the multi-objective framework using search-based ap-
proaches. We show that this issue can be fixed using a
new enumeration mechanism. This algorithm provides
us with the proof that the multi-objective version of
the problem can be solved in polynomial space.

In the next section we present our new stochastic con-
straint satisfaction framework. Then we address the two
main features of our framework (points (2) and (3)) in Sec-
tions 3 and 4, respectively. A brief discussion and a sum-
mary of the results concludes the paper.

2. THE FRAMEWORK

Example
The stochastic constraint satisfaction framework [4, 6] uses
”quantifiers” of the form

E

x and

R

x to introduce decision
and stochastic variables in sequence. We use this idea and
propose to consider a class of non-prenex stochastic CSPs.
In order to model tree-shaped problem structures we em-
ploy the if-then-else construct. For instance the example of
Section 1 will be modelled by the following formula:

E

Trans.

0BBBBBBB� if Trans = car thenR

Traffic.〈c1(Traffic), d1(Traffic)〉
else

R

Strike.

0BB� if Strike=no then
〈c2, d2〉

else E

Bus.〈c3(Bus), d3(Bus)〉

1CCA 1CCCCCCCA
We note that all the branches of this expression end in

a vector of the form 〈a, b〉; this is the notation used to ex-
press the quality of this branch w.r.t. each of the 2 criteria.
For instance the branch 〈c2, d2〉 represents the values that
are expected for the cost and duration in the branch where
we Trans=train and Strike=no. Similarly, the value of each
sub-formula is a vector of the form 〈a, b〉. For instance, the
formula

E

Bus.〈c3(Bus), d3(Bus)〉 will evaluate to a vector
〈a, b〉 capturing the values that are expected for the func-
tions cost and duration in the branch where Trans=train

1Both [6] and [1] initially mention the possibility of using dif-
ferent objectives or ”thresholds”, which represent the satis-
faction level of each constraint. But the algorithms are then
presented for the case where only one objective is present,
and where this objective represents the satisfaction of the
conjunction of constraints. The approach proposed by [5],
on the contrary, is able to deal with multiple objectives, but
it requires exponential space.

and Strike=yes. Because this formula involves a decision
variable, its evaluation depends on the strategy we have cho-
sen to determine the values of these decision variables. This
section defines formally the language and its meaning.

Syntax
Formulae are built over a vocabulary R of stochastic vari-
ables, and a vocabulary E of decision variables. Each vari-
able x has a finite domain Dx. If a variable y is stochastic,
then we are given, for each value v ∈ Dy, the probability
py(v) that y takes value v (note that

P
v∈Dy

py(v) = 1). A

stochastic formula (Form) over m objectives is an expression
written according to the following grammar:

Form ::=

E

x. Form (x ∈ E)
|

R

y. Form (y ∈ R)
| if Cond then Form else Form
| 〈Term, ...,Term| {z }〉

m times

Cond ::= Term ⋄ Term (⋄ ∈ {≤, <,=, >,≥})
| Cond ∧ Cond | ¬Cond

Term ::= c · x [+ Term] (c ∈ R, x a variable)

Here the terms are linear functions of the variables, but
the language for terms can vary and be enriched if needed.
A formula is closed if in every atom, every occurrence of
a stochastic or decision variable falls under the scope of a
quantifier. A formula is well-defined if it is closed and if no
variable appears under the scope of two different quantifiers.

Semantics
The semantics is based on the notion of strategy (a.k.a. pol-
icy). A strategy completely specifies the choices made for
the decision variables as functions of the stochastic variables
that are chronologically assigned before it. Because of the
non-prenex form, strategies have to be defined in a slightly
non-standard way, as follows.

The relation ”variable x precedes variable y in formula
Ψ”, noted x ≺Ψ y, is true if y falls under the scope of x.
Formally, if Ψ ≡

E

z.φ or Ψ ≡

R

z.φ, then x ≺Ψ y holds
if x = z and y has an occurrence in φ or if x ≺φ y. If
Ψ ≡ if Cond then A else B then x ≺Ψ y iff x ≺A y or
x ≺B y. Let Pred(x) denote the set of stochastic variables
that precede x in the considered formula. Then a strategy s
defines, for each decision variable x ∈ E, a function sx of sig-
nature (

Q
y∈Pred(x)Dy) → Dx (where

Q
denotes Cartesian

product).
We can determine the vector of expected values of a for-

mula φ with respect to a strategy s. This evaluation func-
tion, evals, takes as parameters the vector 〈e1..ep〉 of values
accumulated for the preceding decision variables during the
exploration of the formula, and similarly the vector 〈r1..rq〉
of values accumulated for the preceding stochastic variables.
The rules are the following:

• evals(〈e1..ep〉, 〈r1..rq〉, ∃x.φ) ≡

evals(〈e1..ep, ep+1〉, 〈r1..rq〉, φ) where ep+1 = s〈r1..rq〉

• evals(〈e1..ep〉, 〈r1..rq〉,

R

y.φ) ≡P
v∈Dy

py(v) · evals(〈e1..ep〉, 〈r1..rq, v〉, φ)

Note that for the case

R

x.φ, the multiplication is between a
real value (probability) and a vector returned by the eval-

uation; this corresponds to a weighted sum on each objec-
tive. In the base case (evaluation of an atom, i.e., vector
of terms), the evaluation simply returns the vector obtained
by computing each term. The conditional is evaluated as
one would expect.

As an example of evaluation, consider the formula [

R

Strike.
if Strike=no then 〈10, 12〉 else

E

Bus.〈c3(Bus), d3(Bus)〉]
where pStrike(yes) = 0.4 and the strategy imposes that we
take the bus (Bus=1) if the strike occurs. The expected
value of this formula is then 0.6 · 〈10, 12〉+0.4 · 〈c3(1), d3(1)〉.

Several computational problems can be considered:

• In the satisfaction problem the user provides a thresh-
old for each of the objectives; the problem is to de-
termine whether a strategy exists whose evaluation on
each vector satisfies the threshold.

• In optimisation problems, we want to find the strat-
egy that maximises the expected value of one objec-
tive under the constraint that the expectation on the
other objectives respects some thresholds, or we want
a strategy whose expected cost is Pareto-optimal, etc.

In summary the two key features of the framework are
that it allows to express non-prenex formulas, and to deal
with multiple thresholds. Prenex formulae are essentially
equivalent to the classical (sequential) stochastic CSP frame-
work; the special case of formulae involving only one objec-
tive function will also be of special interest, as we will show
that is it better-behaved in some aspects. We call this spe-
cial case single-objective, as opposed to the general SCSP
framework defined by Walsh which is multi-objective.

3. DEALING WITH BRANCHING TIME
To allow to naturally encode the tree-shaped structure

of applications such as the example of Section 1, we have
proposed to use a prenex form. The only construct in our
syntax that allows the nesting of quantified formulae is the
if-then-else. The reason why we did not allow quantified
formula within other constructs like ∧ is that this would not
be type-correct in the stochastic framework: a formula likeR

x.φ evaluates to a vector of numerical values, therefore it
simply does not make sense to use it within a Boolean com-
bination like

R

x.φ ∧ ψ. This is why stochastic frameworks
like stochastic SAT [3] and CSP [6] which do not include the
if-then-else are intrinsically prenex, and sequential.

Prenex Form
A legitimate question is whether systematic means exist
to put an arbitrary formula into an equivalent formula in
prenex form. Non-prenex formulae are of the form:

if cond then

E

x.A else B

And similarly with a quantifier

R

(and symmetrically with
quantified formulae appearing in the else branch). Putting
a formula in prenex form means that we extract the quan-
tifiers that appear as sub-terms of the formula and bring
them outside of the formula. In other words the question is
whether the following rewritings are correct:

if cond then

E

x.A else B ≡

E

x. if cond then A else B
if cond then

R

x.A else B ≡

R

x. if cond then A else B

As it turns out, the answer is dependent on whether we
consider a single-objective or a multi-objective framework.

The Single-Objective Case
In case we have a single-objective problem, we can benefit
from an important simplification: because the quantity to
optimise (say, minimise) is a unique value instead of a vector,
we will always obtain the best chance to obtain a winning
strategy if we take the Min of all possible values whenever
we meet a decision variable. For this reason it is easy to see
that the equalities justifying the transition to prenex form
are correct, e.g., the minimum value of a formula of the
form:

if cond then

E

x.A else B

will be Minv∈Dx
eval(A[x := v]) if cond is true and eval(B)

otherwise. In both cases we have the same value for:

E

x. if cond then A else B

(The other case is similar.)

The Multi-Objective Case
The multi-objective case is unfortunately much more com-
plex, and indeed the transformation into prenex form has
unpredictable effects. To see this, consider the formula:

R

x.

0BB� if x = 0 thenE

a. 〈a, 1− a〉
else R

y. 〈0.5, 0.5〉

1CCA
where all variables have domain {0, 1}, and the probabilities
are px(0) = px(1) = py(0) = py(1) = 1/2. This formula has
two objectives. The constraint is to find a strategy that
would assign an expected value of at least 1/2 to each of the
components.

We first observe that the formula in its original form does
not have a strategy that satisfies the given thresholds. A
strategy for this formula is a function deciding the value
assigned to a depending on x. Due to the condition, the
evaluation of a is only applied under the setting x = 0, and
under this fixed setting of x there is only one choice for a.
Consequently, we will always average the vector 〈0.5, 0.5〉
(else branch) with either 〈0, 1〉 or 〈1, 0〉 which in both cases
obviously violates the given thresholds.

Now by putting the formula into one possible prenex form,
we can obtain the following:

R

x.

R

y.

E

a.
�

if x = 0 then 〈a, 1− a〉 else 〈0.5, 0.5〉
�

It is easy to see that this formula has a number of satisfying
strategies. For instance, with a strategy that systematically
applies the value of y to a, we obtain the required expected
values 〈0.5, 0.5〉. This shows that we cannot perform a con-
version to prenex form: applying the rewriting rules does
not in general produce an equivalent formula.

Conclusion
If we consider a unique objective function, then we may be
satisfied with a stochastic framework that imposes a prenex
form, since there is a way to transform the tree of quanti-
fiers into an equivalent sequence. We nevertheless believe
that the non-prenex form is more natural and that it makes
the structure apparent and therefore easy to exploit. If we
have multiple objectives, then we have seen that the prenex
formula are simply not able to represent branching futures:
depending on the order in which we extract the quantifiers
we will completely change the meaning of the formula.

4. DEALING WITH MULTI-OBJECTIVES

The Problem
Solving a stochastic constraint satisfaction problem involv-
ing a unique objective can be done using a tree-search al-
gorithm involving a number of technicalities that we shall
not explain due to space limitations (we refer the reader to
[6, 1]). With multiple objectives, an additional issue is that
each leaf of the search tree is ranked by a vector of values,
one value for each component of the objective.

To see whether existing search algorithms can be adapted
to this context we consider an instance of the form

R

x.

E

y. φ,
also represented in the figure below. Each of the variables x
and y have two values, say 0 and 1 (left and right branches).
The probability of each branch of the stochastic variable x is
0.5. For the sake of simplicity we do not specify φ, which in
the figure is abstracted by triangles. We have two objectives:
a, on which we impose a threshold of 0.7, and b, on which
we have a threshold of 0.8. Note that the evaluation of φ in
the end of each branch gives us a pair of values for a and b.
In general, this pair would not necessarily be unique: each
subtree may very well have a number of strategies whose
value vectors are incomparable, like 〈0.7, 0.6〉 and 〈0.6, 0.7〉.
But for simplicity in the example let us assume that each
subtree does have a unique vector of costs, e.g., 〈0.85, 0.85〉
for the leftmost subtree.

b = 0.8
a = 0.5 a = 0.8

b = 0.6

y

b = 0.85

x

a = 0.85
b = 0.85

a = 0.9

Essentially and ignoring the technicalities and optimisa-
tions not directly relevant to our current discussion, the
search algorithms that have been proposed for the single-
objective case [6, 1] recursively explore the search tree and
do the following: once we have explored all branches of a
stochastic node we return the weighted sum of the values of
these nodes; once we have explored all branches of a decision
node we return the value of one of the satisfactory nodes, in
fact we can typically choose the one with the best value.

Now with multiple objectives we return vectors of values
instead of values. Importantly, there exists no notion of
”best vector of values” in general as some vectors may be
incomparable. All we can do is therefore check whether one
of the branches is satisfactory and return its vector of values.
Now following the execution of the algorithm we will see
that it becomes non-trivial to adapt the search algorithm to
vectors of values. In our example the algorithm explores all
branches of the variable x, starting (say) by the left. Then
it explores a branch of y (e.g., the left branch). This branch
looks completely satisfactory (i.e., 〈0.85, 0.85〉) - yet when
the algorithm goes ahead and explores the two possibilities
for the right branch of x, none of these possibilities allows
us to satisfy the thresholds for a and b (i.e., 0.7 and 0.8) at
the same time. In one case the expected value of a will be
(0.85 + 0.5)/2 < 0.7, in the other case the expected value
of b will be (0.85 + 0.6)/2 < 0.8. As it turns out, we should
have considered the leaf with values 〈a = 0.9, b = 0.8〉 when
exploring the first value of x, as this leaf, together with
the leaf 〈a = 0.5, b = 0.85〉 for the branch on x, satisfies

the thresholds. But how could we guess this before having
explored the right branch of x?

The Solution
To fix the previous problem the idea is that when we in-
spect a stochastic node, we have to make sure to consider
all the vectors of values that can be obtained for each subtree.
To ensure that, we enumerate all the possible combinations
of vectors of thresholds for each branch. In fact, it is only
necessary to enumerate the combinations of vectors whose
weighted sum yields a vector satisfying the thresholds im-
posed at the current level. Once the combinations are fixed,
we can recursively ask to each sub-branch whether a subtree
can be found that satisfies the vector of thresholds we have
fixed for this branch. Note that we shall potentially explore
each of the branches multiple times2.

1: ALGORITHM solve(Ψ, 〈θ1 . . . θm〉):
2:
3: if Ψ is of the form

E

x.φ then

4: for all v ∈ Dx do

5: if solve(φ[x := v], 〈θ1 . . . θm〉) then

6: return true
7: return false
8: else if Ψ is of the form

R

x.φ then

9: let Dx = {d1 . . . dn}
10: for all 〈λ1

d1
..λm

d1
〉, . . . , 〈λ1

dn
..λm

dn
〉

s.t.
V

j(
P

i λ
j
i · px(i) ≥ θj) do

11: ok ← true
12: for all v ∈ Dx do

13: if ¬ solve (φ[x := v], 〈λ1
v..λ

n
v 〉) then

14: ok ← false
15: if ok then return true

16: return false

17: else

18: return the vector of values for each objective

The θs represent the thresholds imposed on each of the m
objectives. The algorithm verifies if these given thresholds
can be satisfied or not. The matrix 〈λ1

d1
..λm

d1
〉, . . . , 〈λ1

dn
..λm

dn
〉

represents all combinations of thresholds; the sum checks
that the currently tested combination is valid (averaging to
the θs). The notation φ[x := v] indicates that we instantiate
variable x by v in φ.

A careful investigation of the previous algorithm shows
that there is room for many optimisations that we do not
detail as our goal is to keep its presentation minimal. Never-
theless, the cost of dealing with multiple objectives seems to
be high: the algorithm is extremely redundant and explores
some branches multiple times that would be explored only
once if we use a single objective.

Conclusion
We note that our algorithm provides a proof that stochastic
constraint satisfaction with multiple chance constraints can
be solved in polynomial space, and is therefore PSPACE-
complete (the hardness part is trivial). The result was in-
deed stated in [5]: this paper considers a stochastic con-
straint satisfaction framework that allows to define multiple

2A minor technicality regards the precision of the enumer-
ation. The only real values that need to be considered are
determined by the probabilities involved in the problem, but
we will not discuss this in detail.

chance constraints, each of which has a different threshold
(which is essentially equivalent to what we have considered).
While the result announced is correct, the proof of ”mem-
bership in PSPACE follows from the existence of a naive
algorithm [... which] recurses through the variables in or-
der, making an and branch for a stochastic variable and an
or branch for a decision variable”. This clearly does not
work for multiple objectives, as we have seen, and indeed
the search algorithm has to explore the same branches po-
tentially an exponential number of times, asking every time
for a different vector of values.

5. SUMMARY OF THE CONTRIBUTIONS
In this paper we have proposed a number of modifications

to the stochastic CSP framework which keep the essence of
the original definition but enable the framework to model
optimisation problems with branching time. The paper in-
volves a number of new technical results: (1) we have shown
that the search algorithms proposed in the literature cannot
directly be used to solve multi-objective stochastic prob-
lems; (2) we have proposed the first search algorithm for
these problems; while naive this algorithm provides the first
proof of membership in PSPACE of multi-objective sto-
chastic CSP; (3) we have shown that non-prenex stochastic
CSP cannot, in general, be put in prenex form.

A number of conclusions and guidelines naturally follow.
In particular, whenever possible we advise to prefer an ap-
proach in which multiple objectives are aggregated into a
unique objective; this avoids having to deal with consider-
ably more complex algorithms.

Uncertainty is a topic of increasing importance in con-
straint satisfaction [2]. We believe stochastic constraint sat-
isfaction to be an appealing framework in which a particu-
lar type of problems with uncertainty can be formalised and
solved. These problems are those in which the uncertainty
arises from a forecast on future decisions, with an alterna-
tion between decision and stochastic variables. Our hope is
that the results presented in this paper will help developing
the applications of the framework.

Acknowledgements. Useful comments from Youssef
Hamadi and Claude-Guy Quimper are gratefully acknowl-
edged.

6. REFERENCES
[1] T. Balafoutis and K. Stergiou. Algorithms for

stochastic CSP. In Proc. of Int. Conf. on Principles
and Practice of Constraint Programming (CP), pages
44–58. Springer, 2006.

[2] K. M. Brown and I. Miguel. Uncertainty and change. In
F. Rossi, P. Van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 21. Elsevier, 2006.

[3] M. L. Littman, S. M. Majercik, and T. Pitassi.
Stochastic boolean satisfiability. J. of Automated
Reasoning, 27(3):251–296, 2001.

[4] C. Papadimitriou. Games against nature. J. of
Computer and System Sciences, 31(2):288–301, 1985.

[5] A. Tarim, S. Manandhar, and T. Walsh. Stochastic
constraint programming: A scenario-based approach.
Constraints, 11(1):53–80, 2006.

[6] T. Walsh. Stochastic constraint programming. In Proc.
of Euro. Conf. on Artificial Intelligence (ECAI), pages
111–115. John Wiley and Sons, 2002.

