
Non-Model-Based Algorithm Portfolios for SAT

Yuri Malitsky1, Ashish Sabharwal2, Horst Samulowitz2, and Meinolf Sellmann2

1 Brown University, Dept. of Computer Science, Providence, RI 02912, USA
ynm@cs.brown.edu

2 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
{ashish.sabharwal,samulowitz,meinolf}@us.ibm.com

When tackling a computationally challenging combinatorial problem, one
often observes that some solution approaches work well on some instances, while
other approaches work better on other instances. This observation has given
rise to the idea of building algorithm portfolios [5]. Leyton-Brown et al. [1],
for instance, proposed to select one of the algorithms in the portfolio based on
some features of the instance to be solved. This approach has been blessed with
tremendous success in the past. Especially in SAT, the SATzilla portfolios [7]
have performed extremely well in past SAT Competitions [6].

We investigate alternate ways of building algorithm portfolios that differ
substantially from the way SATzilla assembles a portfolio. The key idea behind
SATzilla is to train a runtime prediction model for each constituent solver, based
on a number of well-engineered features of SAT instances. Given a new instance,
SATzilla predicts the runtime of each candidate solver based on instance features
and the trained models, and chooses the solver that is predicted to perform the
best. In contrast, we consider non-model-based machine learning techniques such
as simple k-nearest-neighbor (k-NN) classification to determine which solver to
use to tackle a given instance.

Our motivation stems from two observations: (a) accurately predicting the
runtime of sophisticated SAT solvers is a very challenging task; indeed, the
runtime predictor underlying SATzilla can be even orders of magnitude off from
the true runtime; and (b) while fast and accurate runtime prediction is certainly
sufficient for building a solver portfolio, it is by no means necessary. In fact, it
would suffice entirely if we could predict the fastest solver without having any
knowledge of how long it will actually take to solve the given instance. This
idea has found success in fields adjoining SAT, for example in portfolios for the
quantified Boolean formula (QBF) problem [4], for general constraint satisfaction
problems (CSPs) [3], and to some extent even for SAT itself [2].

Our portfolio works as follows. In the learning phase, we are given a pool
T of training instances, a function that provides features for any given problem
instance (we use the 48 core SATzilla features here), a set S of constituent solvers
forming the portfolio, and a timeout t. We compute the runtime (with cutoff t)
for all solvers on all instances as well as normalization parameters so that all
features for all instances in the training set populate the interval [0, 1].

At runtime, given a new instance I, we compute its features, normalize them,
and compute the set TI ⊂ T consisting of k training instances closest to I in
terms of Euclidean distance. Then, for each solver S ∈ S, we compute the
penalized runtime (PAR10 score) of S on TI , and select the solver that has the

Table 1. Performance comparison of pure solvers, portfolios, and virtual best solver

Pure Solvers Portfolios
VBSagw- agw- gnov-

kcnfs march
pico- SAT- SAT-

12-NN
sat0 sat+ elty+ sat enstein zilla

PAR10 6400 6667 6362 5813 6524 7384 7089 4399 3940 3454
Avg Time 678 698 677 659 688 752 722 534 529 480
Solved 268 255 270 298 262 220 234 366 390 413
% Solved 47.0 44.7 47.4 52.3 46.0 38.6 41.1 64.2 68.4 72.5

lowest PAR10 score as our recommended solver to use on I. The choice of k can
have an impact on the performance of the portfolio. We therefore learn a “good”
value of k for the training set T by performing cross-validation with 100 random
sub-samples of base-validation splits in a 70-30 ratio.

Extensive empirical results are omitted due to lack of space. Table 1 shows
one representative sample of our results, comparing against SATzilla2009 R, the
Gold Medal winning solver in the random category of SAT Competition 2009 [6].
We base our portfolio on the same set of solvers as SATzilla2009 R, use the 2,247
random category instances from SAT Competitions 2002-2007 as our training set
and the 570 random category instances from SAT Competition 2009 as the test
set, and a 1,200 second timeout. Experiments were run on Intel dual-core, dual
processor, Dell Poweredge 1855 blade servers with 8GB of memory each.

As Table 1 shows, SATzilla outperforms individual solvers dramatically, solv-
ing 68 more instances (366) than the best performing individual solver, kcnfs.
Our k-NN approach pushes the performance level substantially further, solving
390 instances within 1200 seconds whereby the VBS can solve only 23 more. In
other words, SATzilla closes 55% of the gap between the best individual solver
and the best possible portfolio. Simple k-NN closes 80% of this gap. We conclude
that this easy non-model-based approach marks a significant improvement over
a portfolio approach that has dominated SAT Competitions for half a decade.

References

1. K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham. A
Portfolio Approach to Algorithm Selection. IJCAI, 1542–1543, 2003.

2. M. Nikolić, F. Marić, and P. Janičić. Instance-Based Selection of Policies for SAT
Solvers. SAT, 326–340, 2009.

3. E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan. Using Case-
based Reasoning in an Algorithm Portfolio for Constraint Solving. Irish Conference
on AI and Cognitive Science, 2008.

4. L. Pulina and A. Tacchella. A Multi-Engine Solver for Quantified Boolean Formu-
las. CP, 574–589, 2007.

5. J. R. Rice The algorithm selection problem. Advances in computers, 65–118, 1976.
6. SAT Competition. http://www.satcomptition.org.
7. L. Xu, F. Hutter, H.H. Hoos, K. Leyton-Brown. SATzilla: Portfolio-based Algo-

rithm Selection for SAT. JAIR, 32(1):565–606, 2008.

