
Guiding Combinatorial Optimization with UCT�

Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy

IBM Watson Research Center, Yorktown Heights, NY 10598, USA
{ashish.sabharwal,samulowitz,creddy}@us.ibm.com

Abstract. We propose a new approach for search tree exploration in
the context of combinatorial optimization, specifically Mixed Integer
Programming (MIP), that is based on UCT, an algorithm for the
multi-armed bandit problem designed for balancing exploration and ex-
ploitation in an online fashion. UCT has recently been highly successful
in game tree search. We discuss the differences that arise when UCT is
applied to search trees as opposed to bandits or game trees, and provide
initial results demonstrating that the performance of even a highly opti-
mized state-of-the-art MIP solver such as CPLEX can be boosted using
UCT’s guidance on a range of problem instances.

1 Introduction

The order in which a search tree is explored can have a dramatic impact on the
performance of a solver designed to solve challenging combinatorial search and
optimization problems. Various strategies for search tree traversal have been pro-
posed and shown to exhibit different trade-offs. For instance, extensions of depth-
first traversal work best in the context of propositional satisfiability (SAT), while
best-first, fastest descent, and various heuristic combinations of the above work
better in other contexts such as state space search and mixed-integer program-
ming or MIP optimization [cf. 8, 12]. In these efforts, the goal is to find a way
to balance exploration and exploitation in a manner that is most beneficial to
the solver under consideration.

Upper Confidence bounds for Trees (UCT) [7] is an exciting technique for
balancing exploration and exploitation in search. It has received much attention
during the past few years due to its success in game playing agents, especially
for Go [4, 5] and Kriegspiel [2], as well as for general game playing [3]. UCT is
based on the Upper Confidence Bounds (UCB1) selection strategy introduced
by Auer et al. [1] for the multi-armed bandit problem, which guarantees asymp-
totically optimal regret. In this work, we address the following question: Can
UCT inspired exploration-exploitation techniques help boost the performance of
state-of-the-art combinatorial search and optimization solvers?

� A preliminary version of this paper appeared at the Workshop on Monte-Carlo Tree
Search held in Freiburg, Germany in June 2011. The current implementation relies
on a newer version of the CPLEX solver, capitalizing on additional cuts learned
during search and resulting in significantly improved performance.

N. Beldiceanu, N. Jussien, and É. Pinson (Eds.): CPAIOR 2012, LNCS 7298, pp. 356–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Guiding Combinatorial Optimization with UCT 357

Specifically, we consider optimization in the context of MIP and explore the
impact of UCT as a node-selection heuristic for the CPLEX solver [6]. UCT has
recently been applied to the Boolean Satisfiability (SAT) problem, albeit in a
very basic search setting [9]. We emphasize that CPLEX is a highly optimized
commercial solver for MIP problems, obtaining a consistent improvement upon
which on a variety of instances through general, domain-independent heuristic
strategies is an extremely challenging task. Nevertheless, we pursue this goal
rather than working with a limited set of problem domains or with, e.g., a self-
designed branch-and-bound solver.

This agenda raises several interesting challenges due to the inherent differ-
ences between combinatorial optimization and game tree search. For instance,
while UCT was originally introduced for single-agent tree search, its success and
application have mainly been in the context of two-agent adversarial search.
Further, UCT’s “random playout” based sampling technique for evaluating the
utility of a given state has been an appealing strategy in games such as Go
where known heuristic functions for state evaluation are still quite weak. This is
in stark contrast with tree search in the context of MIP optimization, where not
only does the linear programming (LP) relaxation often serve as a very strong
heuristic, this heuristic value is in fact a guaranteed upper or lower bound on the
true objective value (depending on whether it is a maximization or a minimiza-
tion problem, respectively). Finally, while the UCB1 strategy underlying UCT
is designed to exploit (with some balance) a good “branch” once it discovers
one, in the context of MIP search, one does not gain anything by revisiting and
repeatedly exploiting a “terminal state” even if it always returns the optimal
value. UCT must therefore be carefully adapted when applied to our setting.

We show that a UCT-inspired node selection strategy, appropriately modified
to take the above mentioned differences into account, can have a positive im-
pact even on sophisticated MIP solvers such as CPLEX. Given the additional
overhead of maintaining our own “shadow” search tree for UCT computations,
we find that the most benefit is achieved when UCT is used to provide guidance
mostly near the top of the tree (we use it to select the first 128 nodes). Overall,
UCT still reduced the runtime by 3.6%, the number of search tree nodes by
11.5%, and the number of simplex iterations by 7.4% (geometric mean over the
test set). We also find that the overhead of “log” and “square root” computations
in the UCB1 formula underlying UCT can be substantial, and that a simpler
ε-greedy version also introduced by Auer et al. [1] works just as well in this
setting. One of our key modifications to UCT is the use of a max-style update
rule (the “backup operator”) rather than the usual additive update rule when a
new node is added to the UCT tree. While previous work in the context of game
tree search has found max-style update rules to be too brittle, max-style update
has clear benefits in our setting because the heuristic value used, namely the
LP relaxation objective value, is a guaranteed upper or lower bound on the true
value of the node. For completeness, we also compare against best-first search
(based on LP relaxation values) and breadth-first search.



358 A. Sabharwal, H. Samulowitz, and C. Reddy

UCT is generally thought of as being tied to stochastic sampling of the space
via random playouts. Nonetheless, when a good heuristic function is available,
it can in fact work better for UCT. For example, Ramanujan et al. [10] demon-
strated this in the game of Chess where, unlike Go, very strong heuristic func-
tions are available. More recently, Ramanujan and Selman [11] evaluated such
trade-offs for the game of Mancala. We observe the same trend for CPLEX.

2 MIP Search, Node Selection, and UCT

We begin with a brief discussion of the basic mechanisms underlying search tree
exploration by a MIP solver, specifically, CPLEX 12.3. The search starts with
an empty root node, marked as open. It proceeds in general by selecting an open
node N for expansion using a node selection heuristic H. At this point, the
solver tests the sub-problem associated with N for being infeasible, being worse
than current best solution (the incumbent), or resulting in a new incumbent;
it processes these cases appropriately and marks N as closed. If the test fails,
assuming binary branching (e.g., bisection domain splitting), node N is split into
two open nodes Nleft and Nright by branching on some variable x and restricting
its value to a subset of its domain, using a branching heuristic; N is marked as
closed and Nleft and Nright are marked as open. The search now continues by
selecting another open node using H. While the solver usually maintains only
the list of open nodes, there is clearly an underlying search tree T that is being
explored, with all internal nodes and some leaves marked as closed.

In this work, we explore the use of UCT operating on the underlying search
tree T as the node selection heuristic H. There are several natural candidates for
H besides UCT. For example, Best-first search would always greedily expand the
node with the highest “quality” value (e.g., objective value of the LP relaxation)
while breadth-first or depth-first would always expand an open node at the
shallowest or deepest level, respectively. Combinations of these basic approaches,
such as best-first mixed with depth-first “diving”, often work well for MIP. On
its own, best-first guides the search towards a solution and proof of optimality
in the minimum possible number of explored nodes, but its greedy nature often
results in an overhead due to rapid context switches for the solver. Furthermore,
for solvers that support learning new information during search (e.g., additional
cuts through conflict analysis), best-first search is not guaranteed to minimize the
number of nodes. Breadth-first search, on the other hand, is purely exploratory
and ignores node quality information. Here we consider UCT as a promising
candidate for balancing such exploration and exploitation.

Briefly, at a high level, the UCT algorithm works as follows on an underlying
tree T . It alternates between a node selection phase and a tree update phase.
Node selection phase: Traverse T from the root to a leaf by following, at each
node N , the child N ′ whose UCT score is higher (breaking ties arbitrarily).
The UCT score of a node N with parent P is defined by the UCB1 formula:
estimate(N)+Γ ·√log visits(P )/visits(N), where Γ is a fixed constant balancing
exploration and exploitation, visits(N) indicates the number of times N has been



Guiding Combinatorial Optimization with UCT 359

visited by UCT so far (similarly for visits(P )), and estimate(N) is an estimate
of the “quality” of N if N is currently a leaf node of T and is otherwise the
value resulting from previous tree update phases. Tree update phase: Once node
selection reaches a leaf L of T , the estimate for L is computed and propagated
upwards in T towards the root so that each node N now on the path from L
to the root has a value that equals the average value seen in the entire subtree
rooted at N , and visits is incremented by 1; this is known as the backup operator
for UCT. L is now further expanded by branching, if possible. For further details,
we refer the reader to Kocsis and Szepesvári [7].

3 Guiding MIP Optimization with UCT

In order to perform UCT-based node selection within CPLEX, additional infras-
tructure must be put in place. We maintain a “shadow” search tree T ′ whose
open leaves coincide with the open nodes list maintained internally by CPLEX.1

Each node maintains a counter for the number of UCT visits to it so far, and a
measure of quality or “estimate” — which for a newly created node is taken to
be its LP objective value normalized by the root LP value.2

For simplicity, let’s assume we have a maximization problem. In contrast to the
common averaging backup operator used in UCT, we propagate the maximum
of the current estimates of the two children when updating the UCT tree. This
is motivated by the fact that we do not perform sampling to estimate a node’s
quality, but instead use a guaranteed LP bound. Hence, averaging would simply
blur the knowledge that one has at a given (internal or leaf) node in T ′. Further,
for computational efficiency, we replace the UCB1 selection criteria (involving
log and square root computations) with the following simpler version for a node

N with parent P : score(N) = estimate(N) + Γ · visits(P )/100
visits(N) .

As mentioned above, estimate(N) is initialized as the normalized LP objective
value when N is a leaf node; it is then updated using the maximum backup rule.
The parameter Γ was tuned with some small experimentation in our MIP setting
to the value 0.7. The UCT score aims at balancing exploration and exploitation.
While nodes with very promising objective values are pursued because of the
high “estimate” term in the expression, sub-optimal nodes begin to get priority
if they have been visited much less compared to their siblings.

Nodes that fail or are pruned by CPLEX are removed from T ′ (without any
objective estimate “penalty” propagated upwards) and never visited again by
UCT. For nodes that do yield a feasible solution, we do not treat their result-
ing objective value in any special fashion when back propagating and we remove

1 Maintaining a search tree that properly mimics CPLEX’s open nodes is somewhat
more complex than one might expect because of issues related to capturing every
event that may cause CPLEX to close nodes in-between node- and branch-callbacks.

2 We also experimented with more refined measures combining the LP objective value
with the number of integer infeasibilities as a “confidence” guide or with pseudo-
costs, but did not observe a clear improvement in performance.



360 A. Sabharwal, H. Samulowitz, and C. Reddy

Table 1. Performance of node selection strategies (170 instances, geometric mean)

UCT default CPLEX best-first breadth-first

runtime (sec) 54.43 56.44 56.63 64.08
search nodes 6,930.62 7,828.78 7,338.17 7,979.91

simplex iterations 267,185.24 288,644.04 282,247.80 323,370.20

them from further consideration in T ′ because, unlike the usual multi-armed ban-
dit setting, the optimization process doesn’t gain anything by revisiting them.

4 Experimental Evaluation

We compare the performance of our UCT based node selection strategy with
CPLEX’s default heuristic as well as alternative approaches. The experiments
were conducted on Intel Xeon CPU E5410 machines, 2.33GHz with 8 cores and
32GB of memory, running Ubuntu. We use CPLEX 12.3 [6] with node and
branch “callbacks” turned on (using empty callbacks) as our baseline (“default
CPLEX”).3 Starting with a wide selection of publicly available benchmarks com-
prising 1028 instances, we kept the 170 (see Appendix), spanning a variety of
problem domains, on which default CPLEX took between 10 and 900 seconds.

We use each custom node selection strategy for the first 128 nodes, and then
revert back to CPLEX’s default node selection heuristic. This is motivated by our
belief that the most important decisions are made near the top of the search tree
and by the fact that our current implementation has an overhead of maintaining
a “shadow tree”. Following CPLEX’s node choice after the first thousand or so
nodes turned out to be simply efficient.

The results, with a 600 second timeout, are summarized in Table 1. We com-
pare default CPLEX with our UCT based node selection strategy, and with
best-first as well as breadth-first node selection (for the first 128 nodes). The
numbers reported are geometric means across the 170 instances.

We see that UCT based node selection improves upon CPLEX’s default
heuristic in all measures considered. It reduces the geometric mean of the runtime
by 3.6% despite the overhead, the number of nodes in the search tree by 11.5%,
and the number of iterations performed by dual simplex by 7.4%. Breadth-first
search (i.e., pure exploration), on the other hand, is significantly worse. Best-
first search (i.e., pure exploitation) shows merit but is not very different from
default CPLEX in performance. Note that due to the cuts added during search,
best-first search is not necessarily the best at minimizing the number of nodes.

In conclusion, these results suggest that the UCT method for balancing explo-
ration and exploitation, used typically in adversarial game trees and stochastic
settings, holds promise also in combinatorial optimization, specifically as a node
selection strategy for MIP solvers.

3 Callbacks cause some features of CPLEX to be turned off (e.g., dynamic search) but
are the only way to enhance CPLEX with a custom node selection strategy without
access to the internals of CPLEX.



Guiding Combinatorial Optimization with UCT 361

References

[1] Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47(2-3), 235–256 (2002)

[2] Ciancarini, P., Favini, G.P.: Monte Carlo tree search techniques in the game of
Kriegspiel. In: 21st IJCAI, Pasadena, CA, pp. 474–479 (July 2009)

[3] Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing.
In: 23rd AAAI, Chicago, IL, pp. 259–264 (July 2008)

[4] Gelly, S., Silver, D.: Combining online and offline knowledge in UCT. In: 24th
ICML, Corvallis, OR, pp. 273–280 (June 2007)

[5] Gelly, S., Silver, D.: Achieving master level play in 9 × 9 computer Go. In: 23rd
AAAI, Chicago, IL, pp. 1537–1540 (July 2008)

[6] IBM ILOG. IBM CPLEX Optimization Studio 12.3 (2011)
[7] Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning. In: Fürnkranz,

J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006)

[8] Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-
Interscience (1999)

[9] Previti, A., Ramanujan, R., Schaerf, M., Selman, B.: Applying UCT to Boolean
Satisfiability. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp.
373–374. Springer, Heidelberg (2011)

[10] Ramanujan, R., Sabharwal, A., Selman, B.: Understanding sampling style adver-
sarial search methods. In: 26th UAI, Catalina Island, CA (July 2010)

[11] Ramanujan, R., Selman, B.: Trade-offs in sampling-based adversarial planning.
In: 21st ICAPS, Freiburg, Germany (June 2011)

[12] Wolsey, L.A.: Integer Programming. Wiley-Interscience (1998)

Appendix: Benchmark Set Used in Experiments

10teams ab51.40.100 ab71.20.100 acc-tight3 acc-tight4 acc-tight5 acc-tight6 air04
air05 aligninq arki001 atlanta-UUM bc1 berlin bienst1 binkar10 1 bley xl1 bley xs2
brasil dano3 3 dano3 4 dano3 5 dfn-gwin-DBE dfn-gwin-DBM dfn-gwin-UUE di-
yuan-DBE eil33.2 eilB101 exp.1.1000.20.2 exp.1.500.20.1 exp.1.500.20.5 exp.1.500.50.2
exp.1.500.50.4 exp.1.500.50.5 exp.1.5000.5.2 exp.1.5000.5.3 fc.60.20.2 fc.60.20.6 france-
DBM france-UUM g200x740 g200x740b g55x188 harp2 ic97 tension k20x380 l451x885b
markshare 4 0 mas76 mik.250-20-75.1 mik.250-20-75.2 mik.250-20-75.3 mik.250-20-75.4
mik.250-20-75.5 misc07 mkc1 mod011 mzzv11 mzzv42z n12-3 n5-3 n7-3 neos-1109824
neos-1112782 neos-1112787 neos-1171737 neos-1200887 neos-1211578 neos-1215259
neos-1228986neos-1337489neos-1440225neos-1440447neos-1445738neos-1445743 neos-
1445755 neos-1445765 neos-1480121 neos-1582420 neos-1597104 neos-1620807 neos-
430149 neos-476283 neos-480878 neos-503737 neos-504674 neos-504815 neos-512201
neos-522351neos-530627neos-538867neos-547911 neos-555424neos-570431neos-584851
neos-585192neos-593853neos-595925neos-686190 neos-785899neos-801834neos-803219
neos-803220neos-806323neos-807639neos-807705 neos-808072neos-810326neos-820879
neos-825075neos-827015neos-829552neos-839859 neos-860300neos-862348neos-906865
neos-912023neos-916173neos-935627neos-935769 neos-936660neos-937446neos-937511
neos-941313 neos-941698 neos-960392 neos1 neos11 neos12 neos14 neos17 neos18
neos20 neos21 neos22 neos23 neos6 neos7 nexp.50.20.4.1 nexp.50.20.4.3 nexp.50.20.8.2
nexp.50.20.8.3 ns4-pr4 ns60-pr9 nu25-pr4 nu60-pr4 p50x288b p80x400 pdh-DBE pdh-
DBM pdh-UUE pdh-UUM pk1 prod1 r20x200 r50x360 ran10x26 ran12x21 ran13x13
ran16x16 rout seymour1 sp98ir stein45 swath1 swath2 ta1-DBE ta1-DBM ta2-UUE ta2-
UUM


	Guiding Combinatorial Optimization with UCT
	Introduction
	MIP Search, Node Selection, and UCT
	Guiding MIP Optimization with UCT
	Experimental Evaluation
	References




