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Abstract. Sequential algorithm portfolios for satisfiability testing (SAT),
such as SATzilla and 3S, have enjoyed much success in the last decade.
By leveraging the differing strengths of individual SAT solvers, port-
folios employing older solvers have often fared as well or better than
newly designed ones, in several categories of the annual SAT Compe-
titions and Races. We propose two simple yet powerful techniques to
further boost the performance of sequential portfolios, namely, a generic
way of knowledge sharing suitable for sequential SAT solver schedules
which is commonly employed in parallel SAT solvers, and a meta-level
guardian classifier for judging whether to switch the main solver sug-
gested by the portfolio with a recourse action solver. With these addi-
tions, we show that the performance of the sequential portfolio solver
38, which dominated other sequential categories but was ranked 10th in
the application category of the 2011 SAT Competition, can be boosted
significantly, bringing it just one instance short of matching the perfor-
mance of the winning application track solver, while still outperforming
all other solvers submitted to the crafted and random categories.

1 Introduction

Significant advances in solution techniques for propositional satisfiability test-
ing, or SAT, in the past two decades have resulted in wide adoption of the SAT
technology for solving problems from a variety of fields such as design automa-
tion, hardware and software verification, cryptography, electronic commerce, Al
planning, and bioinformatics. This has also resulted in a wide array of challeng-
ing problem instances that continually keep pushing the design of better and
faster SAT solvers to the next level. The annual SAT Competitions and SAT
Races have played a key role in this advancement, posing as a challenge a set of
so-called “application” category (previously known as the “industrial” category)
instances, along with equally but differently challenging “crafted” and “random”
instances.

Given the large diversity in the characteristics of problems as well as spe-
cific instances one would like to solve by translation to SAT, it is no surprise
that different SAT solvers, some of which were designed with a specific set of



application domains in mind, work better on different kinds of instances. Algo-
rithm portfolios [cf. 7] attempt to leverage this diversity by employing several
individual solvers and, at runtime, dynamically selecting what appears to be the
most promising solver — or a schedule of solvers — for the given instance. This
has allowed sequential SAT portfolios such as SATzilla [15, 16] and 3s [8, 10] to
perform very well in the annual SAT Competitions and Races.

Most of the state-of-the-art sequential algorithm portfolios are based on two
main components: (a) a schedule of “short running” solvers to be run first in
sequence for some small amount of time (usual some fixed percentage of the
total available time such as 10%) and (b) a “long running” solver to be executed
for the remainder of the time which is selected by one or the other Machine
Learning technique (e.g., logistic regression, nearest neighbor, or decision forest
[cf. 11]). If one of the short running solvers succeeds in solving the instance, then
the portfolio terminates successfully. However, all work performed by each short
running solver in this execution sequence is completely wasted unless it manages
to fully solve the instance. If none of the short running solvers in the schedule
succeeds, all faith is put in the one long running solver.

Given this typical sequential portfolio setup, it is natural to consider an
extension that attempts to utilize information gained by short running solvers
even if they all fail to solve the instance. Further, one may also consider an
automated way to carefully revisit the choice of the long running solver whose
improper selection may substantially harm the overall portfolio performance. We
propose two relatively simple yet powerful techniques towards this end, namely,
learnt clause forwarding and accuracy prediction.

We remark that one limitation of current algorithm portfolios is that their
performance can never be better than that of the oracle or “virtual best solver”
which, for each given instance, (magically) selects an individual solver that will
perform best on it. By sharing knowledge, we allow portfolio solvers to, in prin-
ciple, go beyond VBS performance. Specifically, a distinguishing strength of our
proposed clause forwarding scheme is that it enables the portfolio solver to po-
tentially succeed in solving an instance that no constituent SAT solver can.

Learnt clause forwarding focuses on avoiding waste of effort by the short
running solvers in the schedule. We propose to share, or “forward,” the knowl-
edge gained by the first k solvers in the form of a selection of short learned
clauses, which are passed on to the k + 15 solver. Conflict-directed clause learn-
ing (CDCL) is a very powerful technique in SAT solving, often regarded as the
single most important element that allows these solvers to tackle real-life prob-
lems with millions of variables and constraints. Forwarding learnt clauses is a
cheap but promising way to share knowledge between solvers and is commonly
employed in parallel SAT solving. We demonstrate that sharing learnt clauses
can improve performance in sequential SAT solver portfolios as well.

Accuracy prediction and recourse aims to use meta-level learning to
correct errors made by the portfolio solver when selecting the “primary” or long
running solver. Typically, effective schedules allocate a fairly large fraction of
the available runtime to one solver, as not doing so would limit the best-case



performance of the portfolio to that of an oracle portfolio with a relatively short
timeout. This, of course, poses a risk, as a substantial amount of time is wasted
if the portfolio selects the “wrong” primary solver. We present a scheme to gen-
erate large amounts of training data from existing solver performance data, in
order to create a machine learning model that aims to predict the accuracy of the
portfolio’s primary solver selector. We call this meta-level classifier as a guardian
classifier. We also use this training data to determine the most promising re-
course action, i.e., which solver should replace the suggested primary solver.

These techniques are general and may be applied to various portfolio algo-
rithms. However, unlike the development of portfolio solvers that do not share
information, experimentation in our setting is much more cumbersome and time
consuming. It involves modifying individual SAT solvers and running the de-
signed portfolio solver on each test instance in real time, rather than simply
reading off performance numbers from a pre-computed runtime matrix.

We here demonstrate the effectiveness of our techniques using one base port-
folio solver, namely 38, which had shown very good performance in SAT Com-
petition 2011 in the crafted and random categories but was ranked 10*" in the
application category. Note also that the instances and solvers participating in
the 2011 Competition were designed with a 5,000 second time limit in mind,
compared to instances and solvers in the 2012 Challenge where the time limit
was only 900 seconds. Our focus is on utilizing algorithm portfolios and our tech-
niques for solving hard instances. Our results, with a time limit roughly equiv-
alent to 5,000 seconds of the competition machines, show that applying these
techniques can boost the performance of 3s on the 2011 competition instances
to a point where it is only one instance short of matching the performance of the
winning solver, Glucose 2.0 [1], on the 300 application track instances. Moreover,
the resulting solver, 38+£p, continues to dominate all other solvers from the 2011
Competition in the crafted and random categories in which 3s had excelled.

We note that our portfolio solver built using these techniques, called ISS
or Industrial SAT Solver, was declared the Best Interacting Multi-Engine SAT
Solver in the 2012 SAT Challenge, a category that specifically compared port-
folios that explore various ways of sharing information among multiple SAT
engines.

2 Background

We briefly review some essential concepts in constraint satisfaction, SAT, and
portfolio research.

Definition 1. Given a Boolean variable X € {true, false}, we call X and ~X

(speak: not X ) literals (over X). Given literals Ly, ..., Ly over Boolean variables
Xi,...,Xpn, we call (\/, Lq) a clause (over variables Xi,...,X,). Given clauses
C1,...,Cy over variables X1,..., Xy, we call \,C, a formula in conjunctive

normal form (CNF).



Definition 2. Given Boolean variables X1,...,X,, a valuation is an assign-
ment of values “true” or “false” to each variable: o : {X1, ..., X,} — {true, false}.
A literal X evaluates to “true” under o iff o(X) = true (otherwise it evaluates
to “false”). A literal X evaluates to “true” under o iff o(X) = false. A clause
C evaluates to true under o iff at least one of its literals evaluates to “true.” A
formula evaluates to “true” under o iff all its clauses evaluate to “true.”

Definition 3. The Boolean Satisfiability or SAT Problem is to determine whether,
for any given formula F in CNF, there exists a valuation o such that F' evaluates
to “true.”

The SAT problem has played a prominent role in theoretical computer science
where it was the first to be proven to be NP-hard [3]. At the same time, it
has driven research in combinatorial problem solving for decades. Moreover, the
SAT problem has great practical relevance in a variety of areas, in particular in
cryptography and in verification.

2.1 SAT Solvers

While algorithmic approaches for SAT have been developed as early as the be-
ginning of AI research, a boost in SAT solving performance has been achieved
since the mid-nineties. Problems with a couple of hundred Boolean variables
frequently posed a challenge back then. Today, many problems with hundreds
of thousands of variables can be solved as a matter of course. While there exist
very different algorithmic approaches to solving SAT problems, the performance
of most systematic SAT solvers (i.e., those that can prove unsatisfiability) is
frequently attributed to three ingredients:

1. Randomized search decisions and systematically restarting search when it
exceeds some dynamic fail limit,

2. Very fast inference engines which only consider clauses which may actually
allow us to infer a new Boolean variable for a variable, and

3. Conlflict analysis and clause learning.

The last point regards the idea of inferring new clauses during search that are
redundant to the given formula but encode, often in a succinct way, the reason
why a certain partial truth assignment cannot be extended to any solution. These
redundant constraints strengthen our inference algorithm when a different partial
valuation cannot be extended to a full valuation that satisfies the given formula
for a “similar” reason. One of the ideas that we pursue in this paper is to inform
a solver about the clauses learnt by another solver that was invoked previously
to try and solve the same CNF formula. This technique is standard in parallel
SAT solving but, surprisingly, it has not been considered for solver portfolios
before.



2.2 Solver Portfolios

Another important contribution was the inception of algorithm portfolios [4, 9,
15]. Based on the observation that solvers have complementary strengths and
thus exhibit incomparable behavior on different problem instances, the ideas of
running multiple solvers in parallel or to select one solver based on the features
of a given instance were introduced. Portfolio research has led to a wealth of
different approaches and an amazing boost in solver performance in the past
decade [8, 16].

Solver Selection: The challenge when devising a solver portfolio is to develop
a learning algorithm that, for a given set of training instances, builds a dynamic
mechanism that selects a “good” solver for any given SAT instance. To this
end, we need a way to characterize a given SAT instance, which is achieved by
computing so-called “features.” These could be, e.g., the number of clauses or
variables, statistics over the number of negated over positive variables per clause,
or the clause over variable ratio. Features can also include dynamic properties of
the given instance, obtained by running a solver for a very short period of time
as a probe and collecting statistics. As the goal of this paper is to devise tech-
niques to improve existing portfolios, a full understanding of instance features
is unnecessary. We refer the reader to Xu et al. [15] for a comprehensive study
of features suitable for SAT.

Solver Scheduling: Recent versions of SATzilla and 3S no longer just choose
one among the portfolio’s constituent solvers. While still selecting one long run-
ning primary solver, they first schedule a sequence of several other solvers for a
shorter amount of time. In particular, 38, our base solver for experimentation,
employs a semi-static schedule of solvers, given a test instance F' and an total
time limit 7. It runs a static schedule (independent of F', based solely on prior
knowledge from training data) for an internal time limit ¢ (with ¢ ~ 10% of T') in
which several different solvers with different (short) time limits are used. This is
followed by a long running solver, scheduled for time T'—t, based on the features
of F' computed at runtime.

We will refer to these two components of 3s’s scheduling strategy as the
pre-schedule and the primary solver. In this paper, we tackle precisely these two
aspects: How can we improve the interplay between the short-running solvers in
the pre-schedule while also passing knowledge on to the primary solver, and how
can we improve the selection of the long-running primary solver itself.

3 Sharing Knowledge Among Solvers

A motivating factor behind the use of a pre-schedule used in sequential portfo-
lios is diversity. By employing very different search strategies, one increases the
likelihood of covering instances that may be challenging for some solvers and



very easy for others. Diversity has also been an important factor in the design
of parallel SAT solvers, such as ManySAT [6] and Plingeling [2]. When design-
ing these parallel solvers, it has been observed that the overall performance can
be improved by carefully sharing a limited amount of knowledge between the
search efforts led by different threads. This knowledge sharing must be care-
fully done, as it must balance usefulness of the information against the effort of
communicating and incorporating it. One effective strategy has been to share
information in the form of very short learned clauses, often just unit clauses,
i.e., clauses with only one literal (e.g., the winning parallel solver [2] at the 2011
SAT Competition).

3.1 Knowledge Sharing Among Clause-Learning Systematic Solvers

In contrast, current sequential portfolios, while also relying on diversity through
the use of a pre-schedule, do not exploit any kind of knowledge sharing. If the
first k solvers in the pre-schedule fail to solve the instance, the time they spent is
wasted. We propose to avoid this waste by employing the same technique that is
used in parallel SAT, namely by forwarding a subset of the clauses learned by one
solver in the pre-schedule to all solvers that follow it. In our implementation,
clause forwarding is parameterized by two positive integer parameters, L and
M. Each clause forwarding solver outputs all learned clauses containing up to
L literals. Out of this list, the M shortest ones (or fewer, if not enough such
clauses are generated) are forwarded to the next solver in the schedule, which
then treats these clauses as part of the input formula. While we solely base our
choice on what clauses to forward on their lengths, one could also consider more
sophisticated measures (e.g., [1]). Note that, unlike clause sharing in today’s
parallel SAT solvers, in the sequential case clause forwarding incurs a relatively
low communication overhead. Nonetheless, it needs to be balanced out with the
potential benefits. We implemented clause forwarding in three conflict directed
clause learning (CDCL) solvers, henceforth referred to as the clause forwarding
solvers.

3.2 Impact of Knowledge Sharing on Other Solvers

In addition to CDCL solvers, pre-schedules typically also employ two other
kinds of solvers: incomplete local search solvers and “lookahead” based com-
plete solvers. The former usually perform very well on random and some crafted
instances, and the latter usually excel in the crafted category and sometimes on
unsatisfiable random instances. Since these solvers are not designed to generate
or use conflict directed learned clauses, it is not clear a priori whether such
clauses — which are redundant with respect to the underlying SAT theory —
would help these two kinds of solvers as well. In our experiments, we found it
best to run these solvers before our clause forwarding solvers are used.

The exceptions to this rule were two solvers: march hi and mxc-sat09, which
showed a mixed impact of incorporating forwarded learned clauses. We thus
chose to run them both before the forwarding solvers, as in the base portfolio 38,



Table 1. Gap closed to the virtual best solver (VBS) by using clause forwarding.

2009 2010 2011 Average
% closed over 3S / VBS gap 12.5 | 16.67 5.41 11.53

and also after forwarding. Our overall pre-schedule was composed of the origi-
nal one used by 3s in the 2011 SAT Competition, scaled appropriately to take
the difference in machine speeds into account, enhanced with clause forwarding
solvers, and reordered to have non-forwarding CDCL solvers appear after the
forwarding ones. We note that changing the pre-schedule itself did not signifi-
cantly alter the performance of 33. E.g., in the application category, as we will
later see in Table 3, the performances of 3S with the original and the updated
pre-schedules were very similar.

3.3 Formula Simplification

One other consideration that has a significant impact in practice is, whether to
simplify the CNF formula before handing it to the next solver in the schedule,
after (up to) M forwarded clauses have been added to it. With some exper-
imentation, we found that minimal simplification of the formula after adding
forwarded clauses, performed using SatElite [13] in our case, was the most re-
warding. We thus used this clause forwarding setup for the experiments reported
in this paper.

3.4 Practical Impact of Clause Forwarding

We will demonstrate in the experiments section that clause forwarding allows 38
to close a significant part of the gap in performance when compared to the best
solvers for application instances of the 2011 Competition, along with more in-
formation on the choice of training/test splits we consider and the experimental
setup we use. We here provide an additional preview of the impact of clause for-
warding when using the latest SAT solver available prior to the 2012 Challenge.
For this evaluation we consider three train/test splits of instances: the first split
uses the 2009 competition instances as test instances and every instance avail-
able before 2009 for training; the second and third split are defined similarly but
for the 2010 race and 2011 competition, respectively.

Results are presented in Table 1. Here, we consider the gap in performance be-
tween the portfolio without clause forwarding and the best possible no-knowledge-
sharing portfolio, VBS, which uses an oracle to invoke the fastest solver for each
given instance. In the table, we show how much of that gap is closed by using
clause forwarding. Of course, the portfolio that uses knowledge sharing between
solvers is no longer limited in performance by the oracle portfolio, as remarked
earlier. However, using the oracle portfolio gives us a good baseline to compare
with. As we see, clause forwarding significantly helps on all three competition



splits clause. On average, using this technique we are able to close over 10% of
the gap between the pure portfolio and the oracle portfolio.

4 Accuracy Prediction and Recourse

Studying the results of the SAT Competition 2011 one can observe that the best
sequential portfolio, 3s only solved 200 out of 300 instances in the application
category. However, when analyzing the performance of the solvers the 3 portfolio
is composed of, one can also see that the virtual best solver (VBS) based on
those solvers can actually solve more than 220 application instances. Hence,
the suggestions made by the portfolio are clearly wrong in more than 10% of
all cases. The objective of this section is to lower this performance gap. In the
following we first try to determine when the suggestion of a portfolio results in
a loss in performance, and second what to do when we believe the portfolio’s
choice is wrong.

4.1 Accuracy Prediction

One way to potentially improve performance would be to improve the portfolio
selector itself (e.g., by multi-class learning). Nonetheless, most classifiers often
cannot represent exactly the concept class they are used for. One standard way
out in machine learning is to conduct classification in multiple stages, which is
what we considere here. Basic classifiers providing a confidence or trust value can
function as their own guardian. In Ensemble Learning, more complex recourse
classifiers are considered. Our goal here is to design such an approach in the
specific context of machine learning methods for SAT solver selection.

We propose a two-stage approach where we augment the existing SAT port-
folio classifier by accompanying it with a “guardian” classifier, which aims to
predict when the first classifier errs, and a second “selector” classifier that se-
lects an alternative solver whenever the guardian finds that the first selector is
probably not right.

To train a guardian and a replacement selector classifier, we first need to
capture some characteristics that correlate with the quality of the decision of
the portfolio. To that end we propose to create a set of features and label the
portfolio’s suggestion as “good” or “bad” (L = {good, bad}). A key question is,
how should these two labels be defined. Inspired by the SAT competition context,
a “good” decision will be defined as one where an instance can be solved within
the given time limit and a “bad” one is when it cannot be.?

3 We also tried labels that identify top performer (e.g., not more than 2% slower than
the best solver, for various z), but obtained much worse results. The issue here is
that it is more ambitious than necessary to predict which solver is best or close
to best. Instead, we need to be able to distinguish solvers that are good enough
from those that fail. That is, rather than aiming for speed, we optimize for solver
robustness.



The definition of a feature vector f to use for a guardian classifier is unfor-
tunately far less straightforward. We, of course, first tried the original features
used by 3s but that did not result in an overall improvement in performance.
As is typically done in machine learning, we experimented with a few additions
and variations, and settled on the following:

List of employed features
F1 Distance to closest cluster center
F2 k used for test instance
F3-F7 |Min/Max/Average/Median/Variance of distance to closest cluster center
F8 Solver ID selected by k-NN

F9 Solver type: incomplete or complete

F10 Average Distance to solved instances by top-2 solvers
F11 VBS time on k-neighborhood of test instance

F12 Number of instances solved by top-5 ranked solvers

F13-F23|PAR10 score/instances solved by top-5 ranked solvers
F24-F34/10 test instance features

Table 2. Description of features used by guardian classifier. Solver rank is based on
average PAR10 score on neighborhood.

We selected 34 features composed of: the first 10 features of the test instance,
the Euclidean based distance measures of training instances in the neighborhood
to the test instance, and runtime measures of the five best solvers on a restricted
neighborhood (see Table 4.1 for details). These features are inspired by the k-
nearest-neighbor classifier that 38 employs. For other approaches like the voting
mechanism in [16] one can also craft features (e.g., number of votes for a solver).

Consequently, for the guardian we need to learn a classifier function: f — L.
To this end we require training data. The 3S portfolio is based on data T' that
is composed of features of and runtimes on 5,467 SAT instances appearing in
earlier competitions. We can split T into a training set Ti,q;n and test set Tieg;.
Now, we can run the portfolio restricting its knowledge base to Tiqin and test
its performance on Tj.s. For each test instance i € Ty.s; we can compute the
corresponding feature vector f; and obtain the label £y. Hence, the number of
training instances we obtain for the classifier is ¢. Obviously, one can split T
differently over and over by random subsampling, and each time one creates
new training data to train the “guardian” classifier.

The question arises whether different splits will not merely regenerate exist-
ing knowledge. This depends on the features chosen, but here the feature vector
will actually have a high probability to be different for each single split since in
each split the neighborhood of a test instance will be different. A thought exper-
iment that makes this more apparent is the following: Assume that, for a single
instance i, we sort all other instances according to the distance to ¢ (neighbor-
hood of i). Assume further we select training instances from the neighborhood of
i with probability 1/k until we have selected k instances (where k is the desired



neighborhood size). When k > 10 it is obviously very unlikely for an instance to
have exactly the same neighbors.

In order to determine an appropriate amount of training data we first ran-
domly split the data set T" in a training split T}qins and test split Ties¢r, before
generating the data for the classifier. We then perform the aforementioned split-
ting to generate training data for the classifier on T.qs,s and test it on the data
generated by running k-nn with data Ti.qi, on the test set Tieser. We use 10
different random splits of type Ty qins and Tiesyr and try to determine the best
number of splits for generating training data for the classifier.

While normally one could essentially look at the plain accuracy of the clas-
sifier and select the number of splits that result in the highest accuracy, we
propose to employ another measure based on the following reasoning. The clas-
sifier’s “confusion matrix” looks in our context like this (denoting the solver that
was selected by the portfolio on instance I with S):

(a) S solves I and classifier predicts that it can

(b) S solves I , but classifier predicts that it cannot

(c) S can’t solve I, but classifier predicts that it can
(d) S can’t solve I, and classifier predicts that it cannot

Instances that fall in category (a) reflect a “good” choice by the portfolio
(our original selector) and, while correctly detected, there is also nothing for us
to gain. In case (c) we cannot exploit the wrong choice of the portfolio since
the guardian classifier does not detect it. However, we will also not degenerate
the performance of the portfolio. Case (b) and (d) are the interesting cases. In
(b) we collect the false-positives where the classifier predicts that the portfolio’s
choice was wrong while it was not. Consequently it could be the case that we
degrade the performance of the original portfolio selector by altering its decision.
All instances falling in category (d) represent the correctly labeled decisions of
the primary selector that should be overturned. In (d) lies the potential of our
method: all instances that fall in this category cannot be solved by solver S that
the porimary selector chose, and the guardian classifier correctly detected it.
Since cases (a) and (c) are somewhat irrelevant to any potential recourse action,
we focus on keeping the ratio % as small as possible in order to favorably
balance potential losses and wins. Based on this quality measure we determined
that roughly 100 splits achieve the most favorable trade off on our data.

4.2 Recourse

When the guardian classifier triggers, we need to select an alternative solver. For
this purpose we need to devise a second “recourse” classifier. While we clearly
do not want to select the same solver that was suggested by the original portfolio
selector, the choices for possible recourse actions is vast and their benefits hardly
apparent. We introduce the following recourse strategy:

Since we want to replace the suggested solver S, we assume S is not suit-
able for the given test instance I. Based on this conditional probability we can

10



also infer that the instances solved by S in the neighborhood of size k of I
can be removed from its neighborhood. Now, it can be the case that the entire
neighborhood of I can be solved by S and therefore we extend the size of the
neighborhood by 30%. If on this extended neighborhood S cannot solve all in-
stances, we choose the solver with the lowest PAR10-score on the instances in
the extended neighborhood not solved by S. Otherwise, we choose the solver
with the second best ranking by the original portfolio selector. In the context of
38 this is the solver that has the second lowest PAR10-score on the neighborhood
of the test instance.

Designing a good recourse strategy poses a challenge. As we will see later in
Section 5.3, our proposed recourse strategy resulted in solving 209 instances on
the 2011 SAT Competition application benchmark, compared to the 204 that
3 solved. We tried a few other simpler strategies as well, which did not fare
as well. We briefly mention them here: First, we used the solver that has the
second best ranking in terms of the original classifier. For 3s this means choosing
the solver with the second lowest PAR10-score on the neighborhood of the test
instance. This showed only a marginal improvement, solving 206 instances. We
then tried to leverage diversity by mixing-and-matching the two recourse strate-
gies mentioned above, giving each exactly half the remaining time. This resulted
in overall performance to drop below 38 without accuracy prediction. Finally,
we computed offline a static replacement map that, for each solver S, specifies
one fixed solver f(S) that works the best across all training data whenever S
is selected by the original classifier but does not solve the instance. This static,
feature-independent strategy also resulted in degrading performance. For the
rest of this paper, we will not consider these alternative replacement strategies.

5 Empirical Evaluation

In order to evaluate the impact of our two proposed techniques on an existing
portfolio solver, we applied them to 3s [8], the best performing sequential port-
folio solver at the 2011 SAT Competition.* We refer to the resulting enhanced
portfolio solver as 38+f when clause forwarding is used, as 3S+p when accuracy
prediction and recourse classifiers are used, and as 3S+fp when both new tech-
niques are applied. We compare their performance to the original 3s, which was
the winner in the crafted and random categories of the main sequential track of
the 2011 SAT Competition.

As remarked earlier, our techniques are by no means limited to 38 and may
be applied to more recent portfolios. However, these techniques are likely to pay
off more on harder instances and thus we focus here on the 2011 Competition in
which both instance selection and solver design was done with a 5,000 seconds
time limit in mind.

For evaluation, we use the 2011 competition split, i.e., we use the same ap-
plication (300), crafted (300), and random (600) category instances as the ones

4 The source code of 3S can be obtained from http://www.satcompetition.org/
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used in the main phase of the Competition. The enhanced variants of 3s rely
only on the pre-2011 training data that comes with the original 3s. We note that
we did conduct experiments using random splits after mixing all instances, but
there the performance of the original k-NN classifier of 3S is typically almost
perfect, leaving little to no room for improvement. Competition splits exhibit a
completely different and perhaps arguably more realistic behavior, as the sub-
optimal performance of 3s in the application category shows. We thus focused
on splits that were neither random nor hand-crafted by us and experimented on
competition splits to evaluate the techniques.

All experiments were conducted on 2.3 GHz AMD Opteron 6134 machines
with 8 4-core CPUs and 64 GB memory, running Scientific Linux release 6.1.
We used a time limit of 6,500 sec, which roughly matched the 5,000 sec timeout
that was used on the 2011 Competition machines. As performance measures we
consider the number of instances solved, average runtime, and PAR10 score.
PARI0 stands for penalized average runtime, where instances that time out are
penalized with 10 times the timeout.

5.1 Implementation Details on Clause Forwarding

We implemented learned clause forwarding in three CDCL SAT solvers that
were used by 3s in the 2011 Competition: CryptoMiniSat 2.9.0 [12], Glucose
1.0 [1], and MiniSat 2.2.0 [14]. The pre-schedule was modified to prolong the
time these three clause-learning solvers are run, as discussed earlier. With clause
forwarding disabled, 38 with this modified pre-schedule resulted in roughly the
same performance on our testbed as 3S with the original pre-schedule used in the
Competition (henceforth referred to as 3s-C). In other words, any performance
differences we observe can be attributed to clause forwarding and accuracy pre-
diction and recourse, not to the change in the pre-schedule itself.

For clause forwarding, we used parameter values L = 10 and M = 10, 000,
i.e., each of the three solvers may share up to 10,000 clauses of size up to 10 for
the next solver to be run. The maximum amount of clauses shared is therefore
30,000. We note that these parameters are by no means optimized. Amongst
other variations, we tried sharing an unlimited number of (small) clauses, but
this un-surprisingly degraded performance. We expect that these parameters
can be tuned better and that the selection of what clauses to forward can be
improved (e.g., based on the LBD measure introduced in [1]). Nevertheless, the
above choices worked well enough to demonstrate the benefits of clause sharing,
which is the main purpose of this experimentation.

5.2 Implementation Details on Accuracy Prediction

To predict how good the primary solver suggested by 3S is likely to be, we
experimented with several classifiers available in the Weka 3.7.5 data mining and
machine learning Java library [5].> The results presented here are for the REP-
Tree classifier, which is a fast decision tree learner that uses information gain and

® http://www.cs.waikato.ac.nz/ml/weka/
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variance reduction for building the tree, and applies reduced-error pruning. Using
training data based on splitting 5,464 pre-2011 instances (the ones 3S is based on)
100 times, as described earlier, we trained a REP-Tree and obtained the following
confusion matrix for instances® of the 2011 SAT Competition application test
data:

Hence, the best possible outcome for a recourse action would be to solve the
previously unsolved 14 instances (= 5% of all the 2011 application instances)
under (c) and to still be able to solve the 7 instances (= 2%) under (b). While in
the best case we could gain 14 instances and lose none, it is obviously not clear
whether one would achieve any gain at all, or even solve at least the 7 instances
that originally used to be solved. Fortunately, with our recourse strategy, we
witness a significant gain in overall performance. We integrated the classifier in
35S in the following way: When 3S suggests the primary solver, if indicated by
our guardian REP-Tree model, we intercept its decision and alter it as proposed
by our recourse strategy.

5.3 Results on 2011 SAT Competition Data

Since our base portfolio solver, 38, already works best on random on crafted
instances considered, the objective is to close the large gap between the best
sequential portfolios and the best individual solvers in the application track,
while not degrading the performance of the portfolio on crafted and random
categories.

To this end, let us first note that adding the methods proposed in this paper
have no significant impact on 3S performance on random and crafted instances.
On random instances, knowledge sharing hardly takes place since CDCL based
complete solvers are barely able to learn any short clauses on these instances.

For crafted instances, a limited amount of clause forwarding does happen,
but much less so than in application instances. In Figure 1 we show how many
instances in out test set share how many clauses. On the left we see that, on
crafted instances, we mostly share a modest amount of clauses between solvers,
if any. The plot on the right shows the situation for application instances. Here
it is usually the case that the solvers share the fully allowed 30,000 clauses.

Interestingly, the clause sharing in crafted instance causes a slight decrease
in performance, but this is outweighed by the positive impact of our prediction
and recourse classifiers which actually improve the performance of the solver
presented here over 3S on crafted instances. In summary, the solver presented
here works as well as 3S on random instances, and insignificantly better than 33
on crafted instances.

5 Note that the numbers do not add up to 300 since, with the classifier, we only
consider instances that have not been solved yet by the pre-scheduler and can be
solved by at least one of the solvers in our portfolio.
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Fig. 1. Histogram showing how often N clauses are forwarded. Left: Crafted instances.
Right: Application instances.

Table 3. Performance Comparison of 3S-C from the competition and its four new
variants: 38, 3S+f, 3S+p, and 3S+fp on application.

| Application [ 35-C 3S 3S+f 3S+p 3S+fp|
# Solved 205 204 213 209 214
# Unsolved 95 96 87 91 86
% Solved 68.3 68.0 71.0 69.7 71.3
Avg Runtime| 2,764 2,744 2537 2,707 2,524
PAR10 Score 22,676 22,311 20,693 21,437 20,485

It remains to test if the methods proposed here can boost 38 performance to
a point where it is competitive on application instances as well.

The first column of Table 3 shows the performance of 3s in the version avail-
able from the competition website (35-C). The number of solved instances for
3s-C differs slightly from the competition results, due to hardware and experi-
mental differences. Comparing 3S-C with 3s (where we changed the pre-schedule
to allow more clauses to be learned), we observe that the difference is very
small. 3S-C solves just 1 instance more than 3S, letting us conclude that the
subsequently reported performance gains are not due to differences in the pre-
schedule itself.

Both 3s+f (3s with clause forwarding) and 3S+p (38 with prediction and
recourse) are able to improve on 3S in a significant fashion: 3S+£ is able to solve
9 more instances, and 3S+p solves 5 more. Note that in the application category it
is usually the case that the winning solver only solves a couple of more instances
than the second-ranked solver. Indeed, the difference between the 10-th ranked
3S in the competition and the winner was only 15 instances. That is to say,
prediction and recourse closes 33% of the gap to the winning solver, and clause
forwarding even over 60%.

The combination of clause forwarding and prediction and recourse in 3S+fp
is able to solve 214 instances. This is just one instance shy of the best sequen-
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tial solver Glucose 2.0 at the 2011 SAT Competition which we re-ran on our
hardware using the same experimental settings. Note that 3S uses only pre-2011
solvers. Furthermore, we found that the average runtime of 3S+fp is close to
Glucose 2.0 as well, which also indicates that in contexts where objectives other
than the number of solved instances are of interest, 3s+fp is very competitive.

6 Conclusion

We presented two novel generic techniques for boosting the performance of SAT
portfolios. The first approach shares the knowledge discovered by SAT solvers
that run in sequence, while the second improves solver selection accuracy by
detecting when a selection is likely to be inferior and proposing a more promis-
ing recourse selection. Applying these generic techniques to the SAT portfolio
38 resulted in significantly better performance on application instances while
not reducing performance on crafted and random categories, making the result-
ing solver, 38+fp excel on all categories in our evaluation using the 2011 SAT
Competition data and solvers.
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