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Abstract. Algorithm portfolios aim to increase the robustness of our
ability to solve problems efficiently. While recently proposed algorithm
selection methods come ever closer to identifying the most appropriate
solver given an input instance, they are bound to make wrong and, at
times, costly decisions. Solver scheduling has been proposed to boost the
performance of algorithm selection. Scheduling tries to allocate time slots
to the given solvers in a portfolio so as to maximize, say, the number of
solved instances within a given time limit. We show how to solve the
corresponding optimization problem at a low computational cost using
column generation, resulting in fast and high quality solutions. We inte-
grate this approach with a recently introduced algorithm selector, which
we also extend using other techniques. We propose various static as well
as dynamic scheduling strategies, and demonstrate that in comparison to
pure algorithm selection, our novel combination of scheduling and solver
selection can significantly boost performance.

1 Introduction

The constraint reasoning community has a long tradition of introducing and
refining ideas whose practical impact often goes far beyond the field’s scope.
One such contribution is that of robust solvers based on the idea of algorithm
portfolios (cf. [28, 11, 20, 21, 41, 25]). Motivated by the observation that solvers
have complementary strengths and therefore exhibit incomparable behavior on
different problem instances, algorithm portfolios run multiple solvers in par-
allel or select one solver, based on the features of a given instance. Portfolio
research has led to a wealth of different approaches and an amazing boost in
solver performance in the past decade. One of the biggest success stories is that
of SATzilla [40], which combines existing Boolean Satisfiability (SAT) solvers
and has now dominated various categories of the SAT Competition for about
half a decade [29]. Another example is CP-Hydra [25], a portfolio of Constraint
Programming (CP) solvers which won the CSP 2008 Competition. Instead of
choosing a single solver for an instance, Silverthorn and Miikkulainen [30] pro-
posed a Dirichlet Compound Multinomial distribution to create a schedule of
solvers to be run in sequence. Other approaches (e.g., [17]) dynamically switch



between a portfolio of solvers based on the predicted completion time. Alterna-
tively, ArgoSmart [24] and Hydra [38] focus on not only choosing the best solver
for an instance, but also the best parametrization of that solver. For a further
overview of the state-of-the-art in portfolio generation, see the thorough survey
by Smith-Miles [31].

A recently proposed algorithm selector for SAT based on nearest-neighbor
classification [23] serves as the foundation for our work here. First, we present
two extensions to it involving distance-based weighting and cluster-guided adap-
tive neighborhood sizes, demonstrating moderate but consistent performance
improvements. Then we develop a new hybrid portfolio that combines algorithm
selection and algorithm scheduling, in static and dynamic ways. To this end
we present a heuristic method for computing solver schedules efficiently, which
O’Mahony et al. [25] identified as an open problem. This also enables us to
quantify the impact of various scheduling strategies and to report those findings
accordingly. Finally, we are able to show that a completely new way of solver
scheduling consisting of a combination of static schedules and solver selection is
able to achieve significantly better results than plain algorithm selection.

Using SAT as the testbed, we demonstrate through extensive numerical ex-
periments that our approach is able to handle even highly diverse benchmarks,
in particular a mix of random, crafted, and industrial instance categories, with
a single portfolio. This is in contrast to, for example, SATzilla, which has his-
torically excelled only in different versions that were specifically tuned for each
category. Our approach also works well even when the training set is not fully
representative of the test set that needs to be solved.

2 Nearest-Neighbor-Based Algorithm Selection

Malitsky et al. [23] recently proposed a simple yet highly effective algorithm se-
lector for SAT based on nearest-neighbor classification. We review this approach
here, before proposing two improvements to it in Section 3 and algorithm sched-
ules in Section 4.

Nearest-neighbor classification (k-NN) is a classic machine learning approach.
In essence, we base our decision for a new instance on prior experience with
the k training instances most similar to it. As the similarity measure between
instances, we simply use the Euclidean or L2 distance on 48 core features of SAT
instances that SATzilla is based on [40]. Each feature is (linearly) normalized
to fit the interval [0, 1] across all training instances. As the solver performance
measure, we use the PAR10 score of the solver on these k instances. PAR10
score for a given timelimit T is a hybrid measure, defined as the average of the
runtimes for solved instances and of 10 × T for unsolved instances. It is thus a
combined measure of number of instances solved and average solution time.

It is well-known in machine learning that 1-NN (i.e., k = 1) often does not
generalize well to formerly unseen examples, as it tends to over-fit the training
data. A very large value of k, on the other hand, defeats the purpose of consider-
ing local neighborhoods. To find the “right” value of k, we employ another classic
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Algorithm 1: Algorithm Selection using Nearest-Neighbor Classification

k-NN-Algorithm-Selection Phase1

Input : a problem instance F
Params: nearest neighborhood size k, candidate solvers S, training instances

Ftrain along with feature vectors and solver runtimes
Output : a solver from the set S
begin2

compute normalized features of F3

F ← set of k instances from Ftrain that are closest to F4

return solver in S that has the best PAR10 score on F5

end6

Training Phase7

Input : candidate solvers S, training instances Ftrain, time limit Tmax

Params: neighborhood range [kmin, kmax], number of sub-samples m, split ratio
mb/mv

Output : best performing k, reduced Ftrain along with feature and runtimes
begin8

run each solver S ∈ S for time Tmax on each F ∈ Ftrain; record runtimes9

remove from Ftrain instances solved by no solver, or by all within 1 second10

compute feature vectors for each F ∈ Ftrain11

for k ∈ [kmin, kmax] do12

score[k]← 013

for i ∈ [1..m] do14

(Fbase,Fvalidation)← a random mb/mv split of Ftrain15

add to score[k] performance of k-NN portfolio on Fvalidation using16

training instances Fbase and solver selection based on PAR10

score[k]← score[k]/m; kbest ← argminkscore[k]17

return (kbest, Ftrain, feature vectors, runtimes)18

end19

strategy in machine learning, namely random sub-sampling validation. The idea
is to repeat the following process several times: Randomly split the training data
into a base set and a validation set, train on the base set, and assess how well the
learned approach performs on the validation set. We use a 67/33 base-validation
split and perform random sub-sampling 100 times. We then finally choose the k
that yields the best PAR10 performance averaged across the 100 validation sets.

Algorithm 1 gives a more formal description of the entire algorithm, in terms
of its usage as a portfolio solver (i.e., algorithm selection given a new instance,
as described above) and the random sub-sampling based training phase per-
formed to compute the best value for k to use. The training phase starts out by
computing the runtimes of all solvers on all training instances. It then removes
all instances that cannot be solved by any solver in the portfolio within the
time limit, or are solved by every solver in the portfolio within marginal time
(e.g., 1 second for reasonably challenging benchmarks); learning to distinguish
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Table 1. Comparison of Baseline Solvers, Portfolios, and VBS Performances: PAR10,
average runtime in seconds, and number of instances solved (timeout 1,200 seconds).

Pure Solvers Portfolios
VBSagw- agw- gnov- SAT-

march
pico-

kcnfs
SAT-

k-NN
sat0 sat+ elty+ enstein sat zilla

PAR10 5940 6017 5874 5892 8072 10305 6846 3578 3151 2482
Avg Time 634 636 626 625 872 1078 783 452 442 341
# Solved 290 286 293 292 190 83 250 405 427 457
% Solved 50.9 50.2 51.4 51.2 33.3 14.6 43.9 71.1 74.9 80.2

between solvers based on data from such instances is pointless. Along with the
estimated best k, the training phase passes along this reduced set of training
instances, their runtimes for each solver, and their features to the main solver
selection phase. We emphasize that the training phase does not learn any sophis-
ticated model (e.g., a runtime prediction model); rather, it simply memorizes the
training performances of all solvers and “learns” only the value of k.

Despite the simplicity of this approach – compared, for example, to the de-
scription of SATzilla [40] – it is highly efficient and outperforms SATzilla2009 R,
the Gold Medal winning solver in the random category of SAT Competition 2009.
In Table 1 we compare simple k-NN algorithm selection with SATzilla R, using
the 2,247 random category instances from SAT Competitions 2002-2007 as the
training set and the 570 such instances from SAT Competition 2009 as the test
set. Both portfolios are based on the following local search solvers: Ag2wsat0 [36],
Ag2wsat+ [37], gnovelty+ [26], Kcnfs04 [8], March dl04 [16], Picosat 8.46 [3], and
SATenstein [19], all in the versions that are identical to the ones that were used
when SATzilla09 R [39] entered the 2009 competition. To make the comparison
as fair as possible, k-NN uses only the 48 core instance features that SATzilla is
based on and is trained for Par10-score. For both training and testing, we use
a time limit of 1,200 seconds. Table 1 shows that SATzilla boosts performance
of individual solvers dramatically.3 The pure k-NN approach pushes the perfor-
mance level substantially further. It solves 22 more instances and closes about
one third of the gap between SATzilla R and the virtual best solver (VBS),4

which solves 457 instances.

3 Improving Nearest-Neighbor-Based Solver Selection

We now discuss two mutually orthogonal techniques to further improve the per-
formance of the algorithm selector outlined in Section 2.

3 The exact runtimes in Table 1 are lower than the ones reported in [23] due to faster
machines: dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors with 24
GB of DDR-3 memory. The relative drop in the performance of kcnfs, we believe, is
also due to this hardware difference.

4 VBS refers to the “oracle” that always selects the solver that is fastest on the given
instance. Its performance is the best one can hope to achieve with algorithm selection.
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Distance-Based Weighting. A natural extension of k-NN is to scale the scores of
the k neighbors of an instance based on the Euclidean distance to it. Intuitively
speaking, inspired by O’Mahony et al. [25], we assign larger weights to instances
that are closer to the test instance assuming that closer instances more accurately
reflect the properties of the instance at hand. Hence, in Lines 5 and 16 of Algo-
rithm 1, when computing the PAR10 score for solver selection for an instance
F , we scale a solver S’s penalized runtime (i.e., actual runtime or 10×Tmax) on
a neighbor F ′ by

(
1− dist(F,F ′)

totalDist

)
, where totalDist corresponds to the sum of all

distances from F to instances in the neighborhood under consideration.

Clustering-Based Adaptive Neighborhood Size. Rather than learning a single
value for k, we adapt the size of the neighborhood based on the properties
of the given test instance. To this end, we partition the instance feature space
by clustering the training instances using g-means clustering [13]. An instance
is considered to belong to the cluster it is nearest to (breaking ties arbitrarily).
Algorithm 1 can be easily adapted to learn one k for each cluster. Given a test
instance, we first determine the cluster to which it belongs and then use the
value of k learned for this cluster during training. We note that our clustering is
used to select only the size of the neighborhood based on instance features, not
to limit the neighborhood itself; neighboring instances from other clusters can
still be used when determining the best solver based on PAR10 score.

3.1 Experimental Setup and Evaluation

We now describe the benchmark used for portfolio evaluation in the rest of
this paper. Note that such a benchmark involves not only training and testing
instances but also the base solvers used for building portfolios. The challenging
benchmark setting we consider mixes incomplete and complete SAT solvers, as
well as industrial, crafted, and random instances. After describing these, we will
assess the impact of weighting, clustering, and their combination, on pure k-NN.
Note that the reported runtimes include all overhead incurred by our portfolios.

Benchmark Solvers. We consider the following 21 state-of-the-art complete
and incomplete SAT solvers: 1. Clasp[9], 2. CryptoMiniSat [32], 3. Glucose [1],
4. Lineling [5], 5. LySat i [12], 6. LySat c [12], 7. March-hi [14], 8. March-nn [15],
9. MiniSAT 2.2.0 [33], 10. MXC [6], 11. PrecoSAT [4], 12. Adaptg2wsat2009 [22],
13. Adaptg2wsat2009++ [22], 14. Gnovelty+2 [27], 15. Gnovelty+2-H [27],
16. HybridGM3 [2], 17. Kcnfs04SAT07 [8], 18. Picosat [3], 19. Saps [18],
20. TNM [35], and 21. SATenstein [19]. We in fact use six different parametriza-
tions of SATenstein, resulting in a total of 26 base solvers. In addition, we prepro-
cess all industrial and crafted instances with SatElite (version 1.0, with default
option ‘+pre’) and let the following solvers run on both original and preprocessed
version of each instance:5 1. Clasp, 2. CryptoMiniSat, 3. Glucose, 4. Lineling,
5. LySat c, 6. LySat i, 7. March-hi, 8. March-nn, 9. MiniSat, 10. MXC, and 11.
Precosat. Our portfolio is thus composed of 37 solvers.
5 Preprocessing usually does not improve performance on random instances.
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Table 2. Average Performance Comparison of Basic k-NN, Weighting, Clustering,
and the combination of both using the k-NN Portfolio. Numbers in braces show in
how many of the 10 training-test splits does incorporating weighting and clustering
outperform basic k-NN (column 2).

Basic k-NN Weighting Clustering Weight.+Clust.

# Solved 1609 1611 1615 1617 (9/10)
# Unsolved 114 112 108 106 (9/10)
% Solved 93.5 93.6 93.8 93.9 (9/10)

Avg Runtime 588 584 584 577 (7/10)
PAR10 Score 3518 3459 3369 3314 (8/10)

Benchmark Instances. We selected 5, 464 instances from all SAT Competitions
and Races during 2002 and 2010 [29], whereby we discarded all instances that
cannot be solved by any of the aforementioned solvers within the competition
time limit of 5,000 seconds (i.e., the VBS can solve 100% of all instances).

Now, we need to partition these instances into disjoint sets of training and
testing instances. In research papers, we often find that only one training-test
split of the instances is considered. Moreover, commonly this split is computed
at random, thereby increasing the likelihood that the training set is quite repre-
sentative of the test set. We propose to adopt some best practices from machine
learning and to consider multiple splits as well as a more challenging partitioning
into training and test sets. Our objective for the latter is to generate splits where
entire benchmark families are completely missing in the training set, while for
other families some instances are present in both the training and in the test
partition. To asses which instances are related, we use the the first three charac-
ters in the prefix of an instance name and assume that instances starting with
the same three characters belong to the same benchmark family. We select, at
random, about 5% of benchmark families and include them fully in the test
partition; this typically resulted in roughly 15% of all instances being in the test
partition. Next, we randomly add more instances to the test partition until it
has about 30% of all instances, resulting in a 70-30 split. The 10 such partitions
used in our experimentation are available online for future reference.6

Results. Table 2 summarizes the performance gain from using weighting, cluster-
ing, and the combination of the two. We show the average performance (across
the 10 training-test splits mentioned above) in terms of number of instances
solved/not solved, average runtime, and PAR10 score. Depending on the perfor-
mance measure, the combination of weighting and clustering is able to improve
performance of basic k-NN on anywhere from 7 to 9 out of the 10 splits (shown
in braces in the rightmost column). The gain is modest but serves as a good
incremental step for the rest of this paper.

For completeness, we remark that these modest gains also translate to the
benchmark discussed in Table 1, where the combination of weighting and clus-

6 http://www.cs.toronto.edu/˜horst/CP2011-Training-Test-Splits.zip
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tering solves 7 more instances than basic k-NN and 29 more than SATzilla R.
We will return to this benchmark towards the end of this paper.

4 Building Solver Schedules

To further increase the robustness of our approach we consider computing sched-
ules that define a sequence of solvers to try, along with individual time limits,
given an instance. The general idea was previously introduced by Streeter [34]
and in CP-Hydra [25]. In fact, Streeter [34] uses the idea of scheduling to gener-
ate algorithm portfolios. While he suggested using schedules that can suspend
solvers and let them continue later on in exactly the same state they were sus-
pended in, we will focus on solver schedules without preemption, i.e., each solver
will appear in the schedule at most once. This setting was also used in CP-Hydra,
which computes a schedule of CP solvers based on k nearest neighbors.

We note that a solver schedule can never outperform the VBS. In fact, a
schedule is no better than the VBS with a reduced captime of the longest run-
ning solver in the schedule. Therefore, trivial schedules that split the available
time evenly between all solvers have inherently limited performance. The reason
why we may be interested in solver schedules nevertheless is to hedge our bets:
We often observe that instances that cannot be solved by one solver even in a
very long time can in fact be solved by another very quickly. Consequently, by
allocating a reasonably small amount of time to other solvers we can provide a
safety net in case our solver selection happens to be unfortunate.

4.1 Static Schedules

The simplest approach is to compute a static schedule of solvers. For example,
we could compute a schedule that solves the most training instances within the
allowed time (cf. [25]). We propose to do slightly more, namely to compute a
schedule that, first, solves most training instances and that, second, requires the
lowest amount of time among all schedules that are able to solve the same amount
of training instances. We can formulate this problem as an integer program (IP),
more precisely as a resource constrained set covering problem (RCSCP), where
the goal is to select a number of solver-runtime pairs that together “cover” (i.e.,
solve) as many training instances as possible:

Solver Scheduling IP:

min (C + 1)
X

i

yi +
X
S,t

txS,t (1)

s.t. yi +
X

(S,t) | i∈VS,t

xS,t ≥ 1 ∀i (2)

X
S,t

txS,t ≤ C (3)

yi, xS,t ∈ {0, 1} ∀i, S, t (4)
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Binary variables xS,t correspond to sets of instances that can be solved by
solver S within a time t. These sets have cost t and a resource consumption
coefficient t. To make it possible that all training instances can be covered even
when they remain unsolved, we introduce additional binary variables yi. These
correspond to the set that contains only item i, they have cost C + 1 and time
resource consumption coefficient 0. The constraints (2) in this model enforce that
we cover all training instances, the additional resource constraint (3) that we do
not exceed the overall captime C. The objective is to minimize the total cost.
Due to the high costs for variables yi (which will be 1 if and only if instance
i cannot be solved by the schedule), schedules that solve most instances are
favored, and among those the fastest schedule is chosen (as the cost of xS,t is t).

4.2 A Column Generation Approach

The main problem with the above formulation is the sheer number of variables.
For our most up-to-date benchmark with 37 solvers and more than 5,000 training
instances, solving the above problem is impractical, even when we choose the
timeouts t smartly such that from timeout t1 to the next timeout t2 at least
one more instance can be solved by the respective solver (VS,t1 ( VS,t2). In our
experiments we found that the actual time to solve these IPs may at times still
be tolerable, but the memory consumption was often prohibitively high.

We therefore propose to solve the above problem approximately, using col-
umn generation (aka Dantzig-Wolfe decomposition) – a well-known technique
for handling linear programs (LPs) with a lot of variables [7, 10]. We discuss it
briefly in the general setting. Consider the LP:

min cTx s.t. A x ≥ b, x ≥ 0 (5)

In the presence of too many variables, it is often not practical to solve the
large system (5) directly. The core observation underlying column generation is
that only a few variables (i.e., “columns”) will be non-zero in any optimal LP
solution (at most as many as there are constraints). Therefore, if we knew which
variables are important, we could consider a much smaller system A′ x′ = b
where A′ contains only a few columns of A. When we choose only some columns
in the beginning, LP duality theory tells us which columns that we have left out
so far are of interest for the optimization of the global LP. Namely, only columns
with negative reduced costs (which are defined based on the optimal duals of the
system A′ x′ = b) can help the objective to decrease further.

Column generation proceeds by considering, in turn, a master problem (the
reduced system A′ x′ = b) and a subproblem where we select a new column to
be added to the master based on its current optimal dual solution. This process
is iterated until there is no more column with a negative reduced cost. At this
point, we know that an optimal solution to (5) has been found – even though
most columns have never been added to the master problem!

When using standard LP solvers to solve the master problem and obtain its
optimal duals, all that is left is solving the subproblem. To develop a subproblem
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Algorithm 2: Subproblem: Column Generation
begin

minRedCosts ←∞
forall Solvers S do

T ← 0
forall i do

j ← π(i); T ← T + λj ; t̂← Time(S, j)
redCosts ← t̂(1− µ)− T
if redCosts < minRedCosts then

Solver ← S
timeout ← t̂
minRedCosts ← redCost

if minRedCosts < 0 then return xSolver,timeout

else return None
end

generator, we need to understand how exactly the reduced costs are computed.
Assume we have a dual value λi ≥ 0 for each constraint in A′. Then, the reduced
cost of a column α := (α1, . . . , αz)T is defined as c̄α = cα−

∑
i λiαi, where cα is

the cost of column α.
Equipped with this knowledge, we can apply column generation to solve the

continuous relaxation of the Solver Scheduling IP. To this end, we begin the
process by adding, at the start, all columns corresponding to variables y to our
reduced system A′. Next, we repeatedly generate and solve a subproblem whose
goal is to suggest a solver-runtime pair that is likely to increase the objective
value of the (continuous) master problem the most. Hence, each column we add
regards an xS,t variable, specifically the one with minimal reduced cost.

To find such an xS,t, first, for all solvers S, we compute a permutation π of
the instances such that the time that S needs to solve instance πS(i) is less than
or equal that the solver needs to solve instance πS(i+1) (for appropriate i). See
Algorithm 2. Obviously, we only need to do this once for each solver and not
each time we want to generate a new column. Now, let us denote with λi ≥ 0 the
optimal dual value for the restriction to cover instance i (2). Moreover, denote
with µ ≤ 0 the dual value of the resource constraint (3) (since that constraint
enforces a lower-or-equal restriction µ is guaranteed to be non-positive). Finally,
for each solver S we iterate over i and compute the term T ←

∑
k≤i λπS(k)

(which in each iteration we can obviously derive from the previous value for
T ). Let t̂ denote the time that solver S needs to solve instance π(i). Then, the
reduced costs of the column that corresponds to variable xS,t are t̂− t̂µ−T . We
choose the column with the most negative reduced costs and add it to the master
problem. If there is no more column with negative reduced costs, we stop.

We would like to point out two things. First, note that what we have actually
done is to pretend that all columns were present in the matrix and computed the
reduced costs for all of them. This is not usually the case in column generation
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approaches where most columns are usually found to have larger reduced costs
implicitly rather than explicitly. Second, note that the solution returned from
this process will in general not be integer but contain fractional values. Therefore,
the solution obtained cannot be interpreted as a solver schedule directly.

This situation can be overcome in two ways. The first is to start branching
and to generate more columns – which may still be needed by the optimal integer
solution even though they were superfluous for the optimal fractional solution.
This process is known in the literature as branch-and-price.

What we propose, and that is in fact the reason why we solved the original
problem by means of column generation in the first place, is to stick to the
columns that were added during the column generation process and to solve the
remaining system as an IP. Obviously, this is just a heuristic that may return
sub-optimal schedules for the training set. However, we found that this process is
very fast and nevertheless provides high quality solutions (see empirical results in
Section 4.4). Even when the performance on the training set is at times slightly
worse than optimal, the performance on the test set often turned out as good or
sometimes even better than that of the optimal training schedule – a case where
the optimal schedule overfits the training data.

The last aspect that we need to address is the case where the final sched-
ule does not utilize the entire available time. Recall that we even deliberately
minimize the time needed to solve as many instances as possible. Obviously, at
runtime it would be a waste of resources not to utilize the entire time that is at
our disposal. In this case, we scale each solver’s time in the schedule equally so
that the total time of the resulting schedule will be exactly the captime C.

4.3 Dynamic Schedules

O’Mahony et al. [25] found that static schedules work only moderately well.
Therefore, they introduced the idea of computing dynamic schedules: At run-
time, for a given instance, CP-Hydra considers the ten nearest neighbors (in
case of ties, up to fifty) and computes a schedule that solves as many of these
instances as possible in the given time limit. Accordingly, the constraints in the
Solver Scheduling IP are limited to the few instances in the neighborhood, which
allows CP-Hydra to use a brute-force approach to compute dynamic schedules
at runtime. This is reported to work well thanks to the small neighborhood size
and the fact that CP-Hydra only has three constituent solvers.

Our column generation approach, yielding potentially sub-optimal but usu-
ally high quality solutions, works fast enough to handle even 37 solvers and over
5,000 instances within seconds. This allows us to embed the idea of dynamic
schedules in the previously developed nearest-neighbor approach which selects
optimal neighborhood sizes by random subsampling validation – which requires
us to solve hundreds of thousands of these IPs.

Both cluster-guided adaptive neighborhood size and weighting discussed ear-
lier can be incorporated into solver schedules as well. For the latter, we suggest a
slightly different approach than CP-Hydra. Specifically, when given an instance
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Table 3. Average performance of semi-static schedules compared with no schedules
and with static schedules based only on the available solvers. Numbers in braces show
in how many of the 10 training-test splits does semi-static scheduling with weighting
and clustering outperform the same approach without scheduling (column 2).

No Sched. Static Sched. Semi-Static Schedules
Wtg+Clu Wtg+Clu Basic k-NN Weighting Clustering Wtg+Clu

# Solved 1617 1572 1628 1635 1633 1636 (7/10)
# Unsolved 106 151 95 88 90 87 (7/10)
% solved 93.9 91.2 94.6 94.9 94.8 95.0 (7/10)

Avg Runtime 577 562 448 451 446 449 (10/10)
PAR10 score 3314 4522 2896 2728 2789 2716 (8/10)

F , we adapt the objective function in the Solver Scheduling IP by multiplying
the costs for the variables yi, which were originally C + 1, with 2 − dist(F,Fi)

totalDist .
This favors schedules that solve more training instances that are closer to F .

We thus obtain four variations of dynamic schedules. We also used a setting
inspired by the CP-Hydra approach: size 10 neighborhood size and weighting
scheme as in [25]. We refer to this approach as SAT-Hydra. In our experiments
with dynamic schedules as well as SAT-Hydra, we found the gain over and above
k-NN solver selection with weights and clustering (the rightmost column in Ta-
ble 2) was marginal. SAT-Hydra and dynamic schedule without weights and
clustering, for example, each solved only 4 more instances. Due to limited space,
we omit detailed experimental numbers and instead move on to scheduling strate-
gies that turned out to be more effective.

4.4 Semi-Static Solver Schedules

Observe that the four algorithm selection portfolios that we developed in Sec-
tion 2 can themselves be considered solvers. We can add the portfolio itself to
our set of constituent solvers and compute a “static” schedule for this augmented
collection of solvers. We quote “static” here because the resulting schedule is of
course still instance-specific. After all, the algorithm selector portfolio chooses
one of the constituent solvers based on the test instance’s features. We refer to
the result of this process as semi-static solver schedules.

Depending on which of our four portfolios from Section 2 we use, we obtain
four semi-static schedules. We report their performance Table 3. We observe
that semi-static scheduling improves the overall performance in anywhere from
7 to 10 of the 10 training-test splits considered, depending on the performance
measure used (compare with column 2 in the table for the best results without
scheduling). All semi-static schedules here solve at least 20 more instances within
the time limit. Again, the combination of weighting and clustering achieves the
best performance and it narrows the gap to VBS in percentage of instances
solved to nearly 5%. For further comparison, in the column 3 we show the per-
formance of a static schedule that was trained on the entire training set and is
the same for all test instances. We can confirm the earlier finding [25] that static
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Table 4. Comparison of Column Generation and the Solution to the Optimal IP.

Schedule by # Solved # Unsolved % Solved Avg Runtime (s) PAR10 score

Optimal IP 1635.8 87.1 95.0 442.5 2708.4
Column Generation 1635.7 87.2 95.0 448.9 2716.2

solver schedules are indeed inferior to dynamic schedules, and find that they are
considerably outperformed by semi-static solver schedules.

Quality of results generated by Column Generation. Table 4 illustrates the per-
formance of our Column Generation approach. We show a comparison of the
resulting performance achieved by the optimal schedule. In order to compute the
optimal solution to the IP we used Cplex on a machine with sufficient memory
and a 15 second resolution to fit the problem into the available memory. As we
can observe the column generation is able to determine a high quality schedule
that results in a performance that nearly matches the one of the (coarse-grained)
optimal schedule according to displayed measures.

4.5 Fixed-Split Selection Schedules

Based on this success, we consider a parametrized way of computing solver sched-
ules. As discussed earlier, the motivation for using solver schedules is to increase
robustness and hedge against an unfortunate selection of a long-running solver.
At the same time, the best achievable performance of a portfolio is that of the
VBS with a captime of the longest individual run. In both dynamic and semi-
static schedules, the runtime of the longest running solver(s) was determined
by the column generation approach working solely on training instances. This
procedure inherently runs the risk of overfitting the training set.

Consequently, we consider splitting the time between an algorithm selection
portfolio and the constituent solvers based on a parameter. For example, we
could allocate 90% of the available time for the solver selected by the portfolio.
For the remaining 10% of the time, we run a static solver schedule. We refer to
these schedules as 90/10-selection schedules. Note that choosing a fixed amount
of time for the schedule of constituent solvers is likely to be suboptimal for the
training set but offers the possibility of improving test performance.

Table 5 captures the corresponding results. We observe that using this re-
stricted application of scheduling is able to outperform our best approach so far
(semi-static scheduling, shown again in the first column, which is outperformed
consistently in 9 out of 10 training-test splits). We are able to solve nearly 1642
instances on average which is 6 more than we were able to solve before and
the gap to the virtual best solver is narrowed down to 4.69%. Recall that we
consider a highly diverse set of benchmark instances from the Random, Crafted,
and Industrial categories. Moreover, we do not work with plain random splits,
but splits where complete families of instances in the test set are not represented
in the training set at all.
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Table 5. Average performance comparison of basic k-NN, weighting, clustering, and
the combination of both using the k-NN Portfolio with a 90/10 fixed-split static sched-
ule. Numbers in braces show in how many of the 10 training-test splits does fixed-split
scheduling with weighting and clustering outperform the same approach with semi-
static scheduling (column 2).

Semi-Static Fixed-Split Schedules
Wtg+Clu Basic k-NN Weighting Clustering Wtg+Clu

# Solved 1636 1637 1641 1638 1642 (9/10)
# Unsolved 87 86 82 85 81 (9/10)
% solved 95.0 95.0 95.3 95.1 95.3 (9/10)

Avg Runtime 449 455 446 452 445 (9/10)
PAR10 score 2716 2683 2567 2652 2551 (9/10)

Compared to the plain k-NN approach of Malitsky et al. [23] that we started
with (column 2 of Table 2), the fixed-split selection schedules close roughly one
third of the gap to the VBS. The performance gain, as measured by Welch’s T-
test, is significant in most of the training-test splits. For example, the p-value for
the T-test of an instance being solved or not by the two approaches has a median
value of 0.05. Similarly, the median p-value across the 10 splits for the penalized
runtime is 0.04, indicating the improvements are statistically significant.

5 Summary and Discussion

We considered the problem of algorithm selection and scheduling so as to maxi-
mize performance when given a hard time limit within which we need to provide
a solution. We considered two improvements for simple nearest-neighbor solver
selection, weighting and adaptive neighborhood sizes based on clustering. Then,
we developed a light-weight optimization algorithm to compute near-optimal
schedules for a given set of training instances. This allowed us to provide an ex-
tensive comparison of pure algorithm selection, static solver schedules, dynamic
solver schedules, and semi-static solver schedules which are essentially static
schedules combined with an algorithm selector.

While quantifying the performance of the various scheduling strategies we
found out that dynamic schedules are only able to achieve rather minor im-
provements and that semi-static schedules work the best among these options.
Finally, we compared two alternatives: use the optimization component or use a
fixed percentage of the allotted time when deciding how much time to allocate
to the solver suggested by the algorithm selector. In either case, we used a static
schedule for the remaining time. This latter parametrization allowed us to avoid
overfitting the training data and overall resulted in the best performance.

We tested this approach on a highly diverse benchmark set with random,
crafted, and industrial SAT instances where we even deliberately removed entire
families of instances from the training set. 90/10 fixed-split selection schedules
demonstrated a convincing performance and solved, on average, over 95% of the
instances that the virtual best solver is able to solve.
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Fig. 1. Frequency of solver selection by 90-10 fixed-split schedule.

As an insight into the selection strategy of our fixed-split selection schedule,
Figure 1 shows the fraction of test instances across all training-test splits on
which any given solver was chosen and resulted in a successful run. The special
bar labeled ‘unsolved’ shows how often the portfolio made a choice that resulted
in failing to solve an instance (which here equals the gap to the VBS). Note that
out of the 37 possible choices, our portfolio chose only 18 solvers in successful
runs. Further, the black portion of the bars indicates how often was the selected
solver nearly the best possible choice, defined as the solver taking within 10%
of VBS time or solving the instance within 5 seconds. The predominant black
regions, with the exception of Clasp, indicate that our portfolio often selected
solvers with performance close to that of the VBS.

Table 6. Comparison of Major Portfolios for the SAT-Rand Benchmark (570 test
instances, timeout 1,200 seconds). Values in braces denote p-value of Welch’s T-test
for the considered solver improving upon SATzilla R as the baseline.

SATzilla R SAT-Hydra k-NN 90-10 VBS

# Solved 405 419 427 (0.071) 435 (0.022) 457
# Unsolved 165 151 143 — 135 — 113
% solved 71.5 73.5 74.9 — 76.3 — 80.2

Avg Runtime 452 489 442 (0.367) 400 (0.042) 341
PAR10 score 3578 3349 3151 (0.085) 2958 (0.022) 2482

As a final remark, in Table 6, we close the loop and consider again the first
benchmark set from Section 2 which compared portfolios for SAT Competition’s
random category instances, based on the same solvers as the gold-medal winning
SATzilla R. Overall, we go up from 405 (88.6% of VBS) for SATzilla R to 435
(95.1% of VBS) instances solved for our fixed-split solver schedules. In other
words, fixed-split selection schedule closes over 50% of the performance gap
between SATzilla R and the VBS. The p-values of Welch’s T-test being below
0.05 (shown within braces) indicate that the performance achieved by our fixed-
split selection schedule is statistically significantly better than SATzilla R.
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