
Hojjat Ghaderi and Fahiem Bacchus, University of Toronto1

CSC384: Intro to Artificial Intelligence

A Brief Introduction to Prolog 
Part 2/2 :
 Debugging Prolog programs

 Passing predicates as arguments and constructing 

predicates dynamically (on-the-fly).

 Efficient lists processing using accumulators

 Negation as failure (NAF)

 Cut  (controlling how Prolog does the search)

 if-then-else 

Please read also:
http://cs.union.edu/~striegnk/learn-prolog-now/html/node87.html#lecture10



Debugging Prolog Programs 
 Graphical Debugger (gtrace):

 On CDF: run“xpce” instead of “prolog”.  Then, to debug: 

 ?-gtrace, father(X, john).

 Very easy to use.  see “http://www.swi-prolog.org/gtrace.html”

 Text-based debugger:

 You can put or remove a breakpoint on a predicate:
 ?- spy(female).

 ?- nospy(female).

 To start debugging use “trace” before the query:
 ?- trace, male(X).

 While tracing you can do the following:
 creap:   step inside the current goal (press c/enter/or space)

 leap: run up to the next spypoint (press l )

 skip: step over the current goal without debugging (press s)

 abort: abort debugging (press a)

 And much more… press h for help

2 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Text Debugger Example
male(albert).

male(edward). 

female(alice).

female(victoria). 

parent(albert,edward).                  

parent(victoria,edward). 

father(X,Y):- parent(X,Y), male(X).

mother(X,Y):- parent(X,Y), female(X).

 ?-spy(female/1). 

yes

 ?-mother(X,Y).  %starts debugging!

Call: (9) female(albert) ?

 ?-nospy(female/1).

% Spy point removed from female/1

 trace, father(X,Y).  %let’s debug!
Call: (9) father(_G305, _G306) ? 

Simple Exercise: debug this program both in the text and graphical debugger.

3 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Passing Predicates as Argument

 We can pass a predicate as an argument to a rule:
test(X) :- X.

?- test(male(john)). %succeeds if male(john) holds.

?- test(parent(carrot,4)). %fails .

 What if we want to pass arguments of the predicate separately? 

test(X,Y) :- X(Y).    % this is syntax error!
?- test(male, john).

 Unfortunately the above does not work, we cannot write X(Y) !!

 =..  is used to build predicates on the fly:

test(X,Y) :- G =.. [X,Y], G.  %builds  predicate X(Y) dynamically and calls it

?- test(male, john).  

 In general, G =.. [P,X1,X2,…,Xn] creates P(X1,X2,…,Xn). E.g:

?- G =.. [parent, john, X].

G = parent(john, X)

4 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Adding/Deleting Rules/Facts Dynamically

 A program can add or delete facts/rules dynamically:

 assert(term)   %adds the given rule or fact 

 assert(male(john)).

 assert((animal(X) :- dog(X))).

 retract(term)  %deletes the first fact/rule that unifies with the given term
 retract(animal(_)).

 died(X), retract(parent(john,X)).

 retractrtall(term) %deletes ALL facts/rules that unify
 retractall(parent(_,_)).

 There is also assertz(term) that adds the fact/rule to the end rather than beginning

5 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



More Lists Processing in Prolog

 Much of Prolog’s computation is organized around lists. 

 Many built-in predicates: member, append ,length, reverse.

 List of lists:

 [[1,2], [a, b, c(d), 4], [] ]

 Can define a matrix, e.g. 3x2   M=[[1,2], [-1,4], [5,5]]

 Elements can be structures:   M2= [[(1.5,a), (3.2,b)], [(0,c), (7.2,d)]] is a 2x2 matrix. 

Then if write M2=[H|_], H=[_,(Cost, Name)]. It succeeds and we get Cost=3.2 and Name=b.

 Exercise: write a predicate getElm(M,R,C,E) which holds if element E is at M[R][C]. Assume the 
matrix is KxL and I,J>=0 and in range. Note that M[0][0] is the element at 1st row 1st column.

6 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Lists: Extracting Desired Elements

 Extracting all elements satisfying a condition: 

e.g. extract(male, [john, alice, 2, sam], Males)

 Generally:
extract(+Cond, +List, ?Newlist) 

%Note: +, -, ?  are not actual Prolog symbols, just used as convention!

extract(_ ,[ ], [ ]).

extract(Condname, [X | Others], [ X | Rest]):-

Cond =.. [Condname,X], %buildng cond predicate CondName(X)

Cond,         %now, calling Cond predicate  to see if it holds

extract(Condname, Others, Rest).

extract(Condname, [X | Others], Rest):- Cond =.. [Condname,X],  

\+ Cond, extract(Condname, Others, Rest).

 \+ is negation as failure. We can also simplify the above using if-
then-else. We will get back to these  in a couple of slides.

7 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Lists: append

 Appending two lists (challenge: no assumption on args):

append(?X, ?Y, ?Z)

Holds iff Z is the result of appending lists X and Y.

Examples:

 append([a,b,c],[1,2,3,4],[a,b,c,1,2,3,4])

 Extracting the third element of L: append([_,_,X],_,L)

 Extracting the last element of L:   axppend(_,[X],L)

 Finding two consecutive elements X&Y in L: 
append(_,[X,Y|_],L)

8 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Implementing append

definition:  append(?X, ?Y, ?Z)

append([ ],L,L).

append([H|T],L,[H|L2]):-

append(T,L,L2).

 What are all the answers to append(_,[X,Y],[1,2,3,4,5]) ?

 What are all the answers to append(X,[a],Y) ?

 What is the answer to append(X,Y,Z)? How many answers?

9 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Lists: reversing

 Reversing a list:    [1,2,[a,b],3] -> [3,[a,b],2,1]

reverse(?L,?RevL)

reverse([ ], [ ]).

reverse([H|T],RevL):-

reverse(T,RevT), append(RevT,[H],RevL).

 This is not efficient! Why?  O(N2)

10 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Efficiency issues: Fibonacci

 Fibonacci numbers:

 Consider the following implementation:

fib(0,0).

fib(1,1)

fib(N,F):- N>1,

N1 is N-1, fib(N1,F1), N2 is N-2, fib(N2, F2),  

F is F1+F2.

 This is very inefficient (exponential time)! Why?

 Solution: use accumulator!

1      )2()1(

1                                      1

0                                     0

)(

nnfibnfib

n

n

nfib

11 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Fibonacci using accumulators

Definition: fibacc(+N,+Counter,+FibNminus1,+FibNminus2,-F)

We start at counter=2, and continue to reach N. FibNminus1 and FibNminus2 are 

accumulators and will be update in each recursive call accordingly.

fibacc(N,N,F1,F2,F):- %basecase: the counter reached N, we are done!

F is F1+F2.

fibacc(N,I,F1,F2,F):- I<N, %the counter < N, so updating F1&F2

Ipls1 is I +1, F1New is F1+F2, F2New is F1,

fibacc(N,Ipls1,F1New,F2New,F).

 This is O(N).

 Now we define fib(N,F) for N>1 to be fibacc(N,2,1,0,F).

12 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Accumulators: reverse

 Efficient List reversal using accumulators:  O(n)

reverse(L,RevL):-

revAcc(L,[ ], RevL).

revAcc([ ],RevSoFar, RevSoFar).

revAcc([H|T],RevSoFar, RevL):-

revAcc(T,[H|RevSoFar], RevL).

13 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Negation As Failure

 Prolog cannot assert something is false.

 Anything that cannot be proved from rules and 

facts is considered to be false (hence the name 

Negation as Failure)

 Note that this is different than logical negation!

 In SWI it is represented by symbols \+

 \+ member(X,L)  %this holds if it cannot prove X is a member of L

 \+(A<B)       %this holds if it cannot prove  A is less than B

 X \= Y is shorthand for  \+ (X=Y)

14 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



NAF examples

Defining disjoint sets:

overlap(S1,S2):- %S1 &S2 overlap if they share an element.

member(X,S1),member(X,S2).

disjoint(S1,S2):- \+ overlap(S1,S2).

?- disjoint([a,b,c],[2,c,4]).

no

?- disjoint([a,b],[1,2,3,4]).

yes

?- disjoint([a,c],X).

No        this is not what we wanted it to mean!

15 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Proper use of NAF

 \+ G works properly only in the following two cases:

 When G is fully instantiated at the time of processing 
\+. In this case, the meaning is straightforward.

 When there are uninstantiated variables in G but 

they do not appear elsewhere in the same clause. In 

this case, it mean there are no instantiations for 

those variable that makes the goal true. e.g. \+G(X) 

means there is no X such that G(X) succeeds.

16 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



If-then-else

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto17

 Let’s implement max(X,Y,Z) which holds if Z is maximum 

of X and Y. using NAF:

max(X,Y,Z) :- X =< Y , Z = Y.

max(X,Y,Z) :- \+(X =< Y) , Z = X.

 This is a simple example. But shows a general pattern: we 

want the second rule be used only if the condition of the 1st

rule fails.: it’s basically an if-then-else:

p :- A, B.

p:- \+ A , C.

 SWI has a built-in structure that simplifies this and is much 

more efficient:  ->



If-then-else

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto18

 In Prolog, “if A then B else C” is written as (A -> B ; C). 

 To Prolog this means: 

 try A. If you can prove it, go on to prove B and 

ignore C. If A fails, however, go on to prove C 

ignoring B. 

 Let’s write max using -> :

max(X,Y,Z) :-

(X =< Y  -> Z = Y ;

Z = X  

).

 Note that you may need to add parenthesis around A, B, or C 

themselves if they are not simple predicates.



Guiding the Search Using Cut !
 The goal “!”, pronounced cut, always succeeds immediately but just once 

(cannot backtrack over it).

 It has an important side-effect: once it is satisfied, it disallows (just for the 
current call to predicate containing the cut):

 backtracking  before the cut in that clause

 Using next rules of this predicate

 So, below, before reaching cut, there might be backtracking on b1 and 
b2 and even trying other rules for p if b1&b2 cannot be satisfied.

p:- b1,b2,!,a1,a2,a3. %however, after reaching !, no backtracking on b1&b2

p:- r1,…,rn.             %also this rule won’t be searched

p:- morerules.          %this one too!

 See the following link for more details and examples:
http://cs.union.edu/~striegnk/learn-prolog-now/html/node88.html#sec.l10.cut

19 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto



Implementing \+ and -> using cut
 fail is a special symbol that will immediately fail when Prolog encounters it.

 We can implement NAF using cut and fail as follows:

neg(Goal) :- Goal, !, fail.

neg(Goal).

 neg will act similarly to \+. Why?

 We can implement  “p :- A -> B ; C” using cut:

p :- A,!,B.

p :- C.

 If A can be proved, we reach the cut and the 2nd rule will not be tried.

 If A cannot be proved we don’t reach cut and the 2nd rule is tried.

20 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto


