
Hojjat Ghaderi and Fahiem Bacchus, University of Toronto1

CSC384: Intro to Artificial Intelligence

A Brief Introduction to Prolog
Part 2/2 :
 Debugging Prolog programs

 Passing predicates as arguments and constructing

predicates dynamically (on-the-fly).

 Efficient lists processing using accumulators

 Negation as failure (NAF)

 Cut (controlling how Prolog does the search)

 if-then-else

Please read also:
http://cs.union.edu/~striegnk/learn-prolog-now/html/node87.html#lecture10

Debugging Prolog Programs
 Graphical Debugger (gtrace):

 On CDF: run“xpce” instead of “prolog”. Then, to debug:

 ?-gtrace, father(X, john).

 Very easy to use. see “http://www.swi-prolog.org/gtrace.html”

 Text-based debugger:

 You can put or remove a breakpoint on a predicate:
 ?- spy(female).

 ?- nospy(female).

 To start debugging use “trace” before the query:
 ?- trace, male(X).

 While tracing you can do the following:
 creap: step inside the current goal (press c/enter/or space)

 leap: run up to the next spypoint (press l)

 skip: step over the current goal without debugging (press s)

 abort: abort debugging (press a)

 And much more… press h for help

2 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Text Debugger Example
male(albert).

male(edward).

female(alice).

female(victoria).

parent(albert,edward).

parent(victoria,edward).

father(X,Y):- parent(X,Y), male(X).

mother(X,Y):- parent(X,Y), female(X).

 ?-spy(female/1).

yes

 ?-mother(X,Y). %starts debugging!

Call: (9) female(albert) ?

 ?-nospy(female/1).

% Spy point removed from female/1

 trace, father(X,Y). %let’s debug!
Call: (9) father(_G305, _G306) ?

Simple Exercise: debug this program both in the text and graphical debugger.

3 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Passing Predicates as Argument

 We can pass a predicate as an argument to a rule:
test(X) :- X.

?- test(male(john)). %succeeds if male(john) holds.

?- test(parent(carrot,4)). %fails .

 What if we want to pass arguments of the predicate separately?

test(X,Y) :- X(Y). % this is syntax error!
?- test(male, john).

 Unfortunately the above does not work, we cannot write X(Y) !!

 =.. is used to build predicates on the fly:

test(X,Y) :- G =.. [X,Y], G. %builds predicate X(Y) dynamically and calls it

?- test(male, john).

 In general, G =.. [P,X1,X2,…,Xn] creates P(X1,X2,…,Xn). E.g:

?- G =.. [parent, john, X].

G = parent(john, X)

4 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Adding/Deleting Rules/Facts Dynamically

 A program can add or delete facts/rules dynamically:

 assert(term) %adds the given rule or fact

 assert(male(john)).

 assert((animal(X) :- dog(X))).

 retract(term) %deletes the first fact/rule that unifies with the given term
 retract(animal(_)).

 died(X), retract(parent(john,X)).

 retractrtall(term) %deletes ALL facts/rules that unify
 retractall(parent(_,_)).

 There is also assertz(term) that adds the fact/rule to the end rather than beginning

5 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

More Lists Processing in Prolog

 Much of Prolog’s computation is organized around lists.

 Many built-in predicates: member, append ,length, reverse.

 List of lists:

 [[1,2], [a, b, c(d), 4], []]

 Can define a matrix, e.g. 3x2 M=[[1,2], [-1,4], [5,5]]

 Elements can be structures: M2= [[(1.5,a), (3.2,b)], [(0,c), (7.2,d)]] is a 2x2 matrix.

Then if write M2=[H|_], H=[_,(Cost, Name)]. It succeeds and we get Cost=3.2 and Name=b.

 Exercise: write a predicate getElm(M,R,C,E) which holds if element E is at M[R][C]. Assume the
matrix is KxL and I,J>=0 and in range. Note that M[0][0] is the element at 1st row 1st column.

6 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Lists: Extracting Desired Elements

 Extracting all elements satisfying a condition:

e.g. extract(male, [john, alice, 2, sam], Males)

 Generally:
extract(+Cond, +List, ?Newlist)

%Note: +, -, ? are not actual Prolog symbols, just used as convention!

extract(_ ,[], []).

extract(Condname, [X | Others], [X | Rest]):-

Cond =.. [Condname,X], %buildng cond predicate CondName(X)

Cond, %now, calling Cond predicate to see if it holds

extract(Condname, Others, Rest).

extract(Condname, [X | Others], Rest):- Cond =.. [Condname,X],

\+ Cond, extract(Condname, Others, Rest).

 \+ is negation as failure. We can also simplify the above using if-
then-else. We will get back to these in a couple of slides.

7 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Lists: append

 Appending two lists (challenge: no assumption on args):

append(?X, ?Y, ?Z)

Holds iff Z is the result of appending lists X and Y.

Examples:

 append([a,b,c],[1,2,3,4],[a,b,c,1,2,3,4])

 Extracting the third element of L: append([_,_,X],_,L)

 Extracting the last element of L: axppend(_,[X],L)

 Finding two consecutive elements X&Y in L:
append(_,[X,Y|_],L)

8 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Implementing append

definition: append(?X, ?Y, ?Z)

append([],L,L).

append([H|T],L,[H|L2]):-

append(T,L,L2).

 What are all the answers to append(_,[X,Y],[1,2,3,4,5]) ?

 What are all the answers to append(X,[a],Y) ?

 What is the answer to append(X,Y,Z)? How many answers?

9 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Lists: reversing

 Reversing a list: [1,2,[a,b],3] -> [3,[a,b],2,1]

reverse(?L,?RevL)

reverse([], []).

reverse([H|T],RevL):-

reverse(T,RevT), append(RevT,[H],RevL).

 This is not efficient! Why? O(N2)

10 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Efficiency issues: Fibonacci

 Fibonacci numbers:

 Consider the following implementation:

fib(0,0).

fib(1,1)

fib(N,F):- N>1,

N1 is N-1, fib(N1,F1), N2 is N-2, fib(N2, F2),

F is F1+F2.

 This is very inefficient (exponential time)! Why?

 Solution: use accumulator!

1)2()1(

1 1

0 0

)(

nnfibnfib

n

n

nfib

11 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Fibonacci using accumulators

Definition: fibacc(+N,+Counter,+FibNminus1,+FibNminus2,-F)

We start at counter=2, and continue to reach N. FibNminus1 and FibNminus2 are

accumulators and will be update in each recursive call accordingly.

fibacc(N,N,F1,F2,F):- %basecase: the counter reached N, we are done!

F is F1+F2.

fibacc(N,I,F1,F2,F):- I<N, %the counter < N, so updating F1&F2

Ipls1 is I +1, F1New is F1+F2, F2New is F1,

fibacc(N,Ipls1,F1New,F2New,F).

 This is O(N).

 Now we define fib(N,F) for N>1 to be fibacc(N,2,1,0,F).

12 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Accumulators: reverse

 Efficient List reversal using accumulators: O(n)

reverse(L,RevL):-

revAcc(L,[], RevL).

revAcc([],RevSoFar, RevSoFar).

revAcc([H|T],RevSoFar, RevL):-

revAcc(T,[H|RevSoFar], RevL).

13 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Negation As Failure

 Prolog cannot assert something is false.

 Anything that cannot be proved from rules and

facts is considered to be false (hence the name

Negation as Failure)

 Note that this is different than logical negation!

 In SWI it is represented by symbols \+

 \+ member(X,L) %this holds if it cannot prove X is a member of L

 \+(A<B) %this holds if it cannot prove A is less than B

 X \= Y is shorthand for \+ (X=Y)

14 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

NAF examples

Defining disjoint sets:

overlap(S1,S2):- %S1 &S2 overlap if they share an element.

member(X,S1),member(X,S2).

disjoint(S1,S2):- \+ overlap(S1,S2).

?- disjoint([a,b,c],[2,c,4]).

no

?- disjoint([a,b],[1,2,3,4]).

yes

?- disjoint([a,c],X).

No this is not what we wanted it to mean!

15 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Proper use of NAF

 \+ G works properly only in the following two cases:

 When G is fully instantiated at the time of processing
\+. In this case, the meaning is straightforward.

 When there are uninstantiated variables in G but

they do not appear elsewhere in the same clause. In

this case, it mean there are no instantiations for

those variable that makes the goal true. e.g. \+G(X)

means there is no X such that G(X) succeeds.

16 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

If-then-else

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto17

 Let’s implement max(X,Y,Z) which holds if Z is maximum

of X and Y. using NAF:

max(X,Y,Z) :- X =< Y , Z = Y.

max(X,Y,Z) :- \+(X =< Y) , Z = X.

 This is a simple example. But shows a general pattern: we

want the second rule be used only if the condition of the 1st

rule fails.: it’s basically an if-then-else:

p :- A, B.

p:- \+ A , C.

 SWI has a built-in structure that simplifies this and is much

more efficient: ->

If-then-else

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto18

 In Prolog, “if A then B else C” is written as (A -> B ; C).

 To Prolog this means:

 try A. If you can prove it, go on to prove B and

ignore C. If A fails, however, go on to prove C

ignoring B.

 Let’s write max using -> :

max(X,Y,Z) :-

(X =< Y -> Z = Y ;

Z = X

).

 Note that you may need to add parenthesis around A, B, or C

themselves if they are not simple predicates.

Guiding the Search Using Cut !
 The goal “!”, pronounced cut, always succeeds immediately but just once

(cannot backtrack over it).

 It has an important side-effect: once it is satisfied, it disallows (just for the
current call to predicate containing the cut):

 backtracking before the cut in that clause

 Using next rules of this predicate

 So, below, before reaching cut, there might be backtracking on b1 and
b2 and even trying other rules for p if b1&b2 cannot be satisfied.

p:- b1,b2,!,a1,a2,a3. %however, after reaching !, no backtracking on b1&b2

p:- r1,…,rn. %also this rule won’t be searched

p:- morerules. %this one too!

 See the following link for more details and examples:
http://cs.union.edu/~striegnk/learn-prolog-now/html/node88.html#sec.l10.cut

19 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

Implementing \+ and -> using cut
 fail is a special symbol that will immediately fail when Prolog encounters it.

 We can implement NAF using cut and fail as follows:

neg(Goal) :- Goal, !, fail.

neg(Goal).

 neg will act similarly to \+. Why?

 We can implement “p :- A -> B ; C” using cut:

p :- A,!,B.

p :- C.

 If A can be proved, we reach the cut and the 2nd rule will not be tried.

 If A cannot be proved we don’t reach cut and the 2nd rule is tried.

20 Hojjat Ghaderi and Fahiem Bacchus, University of Toronto

