
Hojjat Ghaderi and Fahiem Bacchus, University of Toronto1

CSC384: Intro to Artificial Intelligence

Brief Introduction to Prolog

Part 1/2: Basic material

Part 2/2 : More advanced material

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto2

CSC384: Intro to Artificial Intelligence

 Resources

 Check the course website for several online
tutorials and examples.

 There is also a comprehensive textbook:

Prolog Programming for Artificial Intelligence
by Ivan Bratko.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto3

What‟s Prolog?

 Prolog is a language that is useful for doing
symbolic and logic-based computation.

 It‟s declarative: very different from imperative
style programming like Java, C++, Python,…

 A program is partly like a database but much
more powerful since we can also have general
rules to infer new facts!

 A Prolog interpreter can follow these facts/rules
and answer queries by sophisticated search.

 Ready for a quick ride? Buckle up!

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto4

What‟s Prolog? Let‟s do a test drive!

male(albert). %a fact stating albert is a male

male(edward).

female(alice). %a fact stating alice is a female

female(victoria).

parent(albert,edward). %a fact: albert is parent of edward

parent(victoria,edward).

father(X,Y) :- %a rule: X is father of Y if X if a male parent of Y

parent(X,Y), male(X). %body of above rule, can be on same line.

mother(X,Y) :- parent(X,Y), female(X). %a similar rule for X being mother of Y

Here is a simple Prolog program saved in a file named family.pl

 A fact/rule (statement) ends with “.” and white space ignored

 read :- after rule head as “if”. Read comma in body as “and”

 Comment a line with % or use /* */ for multi-line comments

 Ok, how do we run this program? What does it do?

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto5

Running Prolog

skywolf:~% prolog
Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.6.58)

Copyright (c) 1990-2008 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- this is the prompt. You can load you program and ask queries.

?- consult(family). %loading our file. We can use full-name with quotation ‘family.pl’

% family compiled 0.00 sec, 2,552 bytes %this is the result of loading
true. %true means loading file was successful

% alternatively, we could have used [‘family.pl’]. to load our file.

?- halt. %exiting SWI!

skywolf:~%

 There are many Prolog interpreters.

 SWI is the one we use on CDF. Type prolog in command line:

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto6

But what can we do with our program?

male(albert). %this is our family.pl program

male(edward).

female(alice).

female(victoria).

parent(albert,edward).

parent(victoria,edward).

father(X,Y):- parent(X,Y), male(X).

mother(X,Y):- parent(X,Y), female(X).

?-male(albert).

Yes. %the above was true

?-male(victoria).

No. %the above was false

?-male(mycat).

No.

?-male(X). %X is a variable, we are asking “who is male?”

X=albert; %right! now type semicolon to ask for more answers.

X=edward;

No %no more answers

?-father(F,C). %F & C are variables, we are asking “who is father of whom”

F=albert, C=edward; %this is awesome! How did Prolog get this?

No

We can ask queries after loading our program:

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto7

What to learn?

 Your first impression? It‟s very different from Java, Python,
and C!

 We first need to learn the Prolog Syntax, similar to learning
any other language!

 To learn how to write programs and ask queries, we also
need to understand how a Prolog interpreter operates to
find answers to our queries.

 Finally, you will need to learn how to write more efficient
programs, how to use Negation as Failure, and how to
control the Prolog search mechanism using cut.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto8

Syntax of Prolog

 Terms

 Predicates

 Facts and Rules

 Programs

 Queries

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto9

Syntax of Prolog: Terms

 Constants:
 Identifiers

 sequences of letters, digits, or underscore “_” that start with
lower case letters.

 mary, anna, x25, x_25, alpha_beta

 Numbers
 1.001, 2, 3.03

 Strings enclosed in single quotes
 „Mary‟, „1.01‟, „string‟
 Note can start with upper case letter, or can be a number

now treated as a string.

 Variables
 Sequence of letters digits or underscore that start with an

upper case letter or the underscore.
 _x, Anna, Successor_State,

 Undescore by itself is the special “anonymous” variable.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto10

Syntax of Prolog: Terms

 Constants:

 Variables

 Structures (like function applications)

 <identifier>(Term1, ..., Termk)

 date(1, may, 1983)

 point(X, Y, Z)

 Note that the definition is recursive. So each term
can itself be a structure

 date(+(0,1), may, +(1900,-(183,100)))

 Structures can be represented as a tree

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto11

Syntax of Prolog: Terms

 Structures as trees

 date(+(0,1), may, +(1900,-(183,100)))

date

+ may
+

0 1 1900 +

0 1

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto12

Syntax of Prolog: Terms

 Structures

 Rather than represent the arithmetic term
+(1900,-(183,100))

in this format (prefix form) Prolog will represent it in
more standard infix form

1900 + (183 – 100)

 Note that since Prolog is a symbolic language it will

treat this arithmetic expression as a symbol. That is, it
will not evaluate this expression to 1983.

 To force the evaluation we use “is”
X is 1900 + (183 – 100).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto13

Syntax of Prolog: Lists as special terms

 Lists are a very useful data structure in Prolog.

 Lists are structured terms represented in a special way.

 [a,b,c,d]
 This is actually the structured term

[a | [c | [b | [d | []]]]]

 Where [] is a special constant the empty list.

 Each list is thus of the form [<head> | <rest_of_list>]

 <head> an element of the list (not necessarily a list itself).

 <rest_of_list> is a list (a sub-list).

 also, [a,b,c,d]=[a|[b,c,d]] =[a,b|[c,d]] = [a,b,c|[d]]

 List elements can be any term! For example the list
[a, f(a), 2, 3+5, point(X,1.5,Z)] contains 5 elements.

 As we will see, this structure has important implications
when it comes to matching variables against lists!

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto14

Syntax of Prolog: Predicates

 Predicates are syntactically identical to

structured terms

<identifier>(Term1, ..., Termk)

 elephant(mary)

 taller_than(john, fred)

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto15

Syntax of Prolog: Facts and Rules

 A prolog program consists of a collection of facts
and rules.

 A fact is a predicate terminated by a period “.”

<identifier>(Term1, ..., Termk).

 Facts make assertions:
 elephant(mary). Mary is an elephant.

 taller_than(john, fred). John is taller than Fred.

 parent(X). Everyone is a parent!

 Note that X is a variable. X can take on any term as its value
so this fact asserts that for every value of X, “parent” is true.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto16

Syntax of Prolog: Facts and Rules

 Rules
predicateH :- predicate1, ..., predicatek.

 First predicate is RULE HEAD. Terminated by a period.

 Rules encode ways of deriving or computing a new fact.
 animal(X) :- elephant(X).

 We can show that X is an animal if we can show that it is an
elephant.

 taller_than(X,Y) :- height(X,H1), height(Y,H2), H1 > H2.
 We can show that X is taller than Y if we can show that H1 is the

height of X, and H2 is the height of Y, and H1 is greater than H2.

 taller_than(X,Jane) :- height(X,H1), H1 > 165
 We can show that X is taller than Jane if we can show that H1 is the

height of X and that H1 is greater than 165

 father(X,Y) :- parent(X,Y), male(X).
 We can show that X is a father of Y if we can show that X is a parent

of Y and that X is male.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto17

Operation Of Prolog

 A query is a sequence of predicates

 predicate1, predicate2, ..., predicatek

 Prolog tries to prove that this sequence of

predicates is true using the facts and rules in the

Prolog Program.

 In proving the sequence it performs the

computation you want.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto18

Example

elephant(fred).

elephant(mary).

elephant(joe).

animal(fred) :- elephant(fred).

animal(mary) :- elephant(mary).

animal(joe) :- elephant(joe).

QUERY

animal(fred), animal(mary), animal(joe)

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto19

Operation
Starting with the first predicate P1 of the query
Prolog examines the program from TOP to BOTTOM.
It finds the first RULE HEAD or FACT that matches P1
Then it replaces P1 with the RULE BODY.
If P1 matched a FACT, we can think of FACTs as having

empty bodies (so P1 is simply removed).
The result is a new query.

E.g.
P1 :- Q1, Q2, Q3

QUERY = P1, P2, P3

P1 matches with rule
New QUERY = Q1, Q2, Q3, P2, P3

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto20

Example
elephant(fred).

elephant(mary).

elephant(joe).

animal(fred) :- elephant(fred).

animal(mary) :- elephant(mary).

animal(joe) :- elephant(joe).

QUERY

animal(fred), animal(mary), animal(joe)

1. elephant(fred), animal(mary), animal(joe)

2. animal(mary),animal(joe)

3. elephant(mary), animal(joe)

4. animal(joe)

5. elephant(joe)

6. EMPTY QUERY

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto21

Operation

 If this process reduces the query to the empty

query, Prolog returns “yes”.

 However, during this process each predicate in

the query might match more than one fact or

rule head.

 Prolog always choose the first match it finds. Then if

the resulting query reduction did not succeed (i.e.,

we hit a predicate in the query that does not match

any rule head of fact), Prolog backtracks and tries a

new match.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto22

Example

ant_eater(fred).

animal(fred) :- elephant(fred).

animal(fred) :- ant_eater(fred).

QUERY

animal(fred)

1. elephant(fred).

2. FAIL BACKTRACK.

3. ant_eater(fred).

4. EMPTY QUERY

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto23

Operation

 Backtracking can occur at every stage as the

query is processed.

 p(1) :- a(1).

p(1) :- b(1).

a(1) :- c(1).

c(1) :- d(1).

c(1) :- d(2).

b(1) :- e(1).

e(1).

d(3).

 Query: p(1)

p(1)

a(1)

c(1)

d(1) d(2)

b(1)

e(1) d(3)

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto24

Operation

 With backtracking we can get more answers by

using “;”

 p(1) :- a(1).

p(1) :- b(1).

a(1) :- c(1).

c(1) :- d(1).

c(1) :- d(2).

b(1) :- e(1).

b(1) :- d(3).

e(1).

d(3).

 Query: p(1)

p(1)

a(1)

c(1)

d(1) d(2)

b(1)

e(1) d(3)

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto25

Variables and Matching

 Variables allow us to
 Compute more than yes/no answers

 Compress the program.

 elephant(fred).
elephant(mary).
elephant(joe).
animal(fred) :- elephant(fred).
animal(mary) :- elephant(mary).
animal(joe) :- elephant(joe).

 The three rules can be replaced by the single rule
animal(X) :- elephant(X).

 When matching queries against rule heads (of facts)
variables allow many additional matches.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto26

Example
elephant(fred).
elephant(mary).
elephant(joe).
animal(X) :- elephant(X).

QUERY
animal(fred), animal(mary), animal(joe)

1. X=fred, elephant(X), animal(mary), animal(joe)
2. animal(mary),animal(joe)
3. X = mary, elephant(X), animal(joe)
4. animal(joe)
5. X= joe, elephant(X)
6. EMPTY QUERY

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto27

Operation with Variables

 Queries are processed as before (via rule and
fact matching and backtracking), but now we
can use variables to help us match rule heads or
facts.

 A query predicate matches a rule head or fact
(either one with variables) if
 The predicate name much match. So elephant(X)

can match elephant(fred), but can never match
ant_eater(fred).

 Once the predicates names the arity of the
predicates much match (number of terms). So
foo(X,Y) can match foo(ann,mary), but cannot
match foo(ann) or foo(ann,mary,fred).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto28

Operation

 A query predicate matches a rule head or fact

(either one with variables) if

 If the predicate names and arities match then each

of the k-terms much match. So for foo(t1, t2, t3) to

match foo(s1, s2, s3) we must have that t1 matches
s1, t2 matches s2, and t3 matches t3.

 During this matching process we might have to
“bind” some of the variables to make the terms

match.

 These bindings are then passed on into the new

query (consisting of the rule body and the left over

query predicates).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto29

Variable Matching (Unification)

 Two terms (with variables match if):

 If both are constants (identifiers, numbers, or strings)
and are identical.

 If one or both are bound variables then they match

if what the variables are bound to match.

 X and mary where X is bound to the value mary will match.

 X and Y where X is bound to mary and Y is bound to mary

will match,

 X and ann where X is bound to mary will not match.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto30

Variable Matching (Unification)

 If one of the terms is an unbound variable then

they match AND we bind the variable to the

term.

 X and mary where X is unbound match and make X

bound to mary.

 X and Y where X is unbound and Y is bound to mary

match and make X bound to mary.

 X and Y where both X and Y are unbound match

and make X bound to Y (or vice versa).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto31

Variable Matching (Unification)
 If the two terms are structures

t = f(t1, t2, ..., tk)
s = g(s1, s2, ..., sn)

 Then these two terms match if
 the identifiers “f” and “g” are identical.

 They both have identical arity (k=n)

 Each of the terms ti, si match (recursively).

 E.g.
 date(X, may, 1900) and date(3, may, Y) match and make X bound

to 3 and Y bound to 1900.

 equal(2 + 2, 3 + 1) and equal(X + Y, Z) match and make X bound to
1, Y bound to 2, and Z bound to “3+1”.
 Note that to then evaluate Z by using “is”.

 date(f(X,a), may, g(a,b)) and date(Z, may, g(Y,Q)) match and
make Z bound to “f(X,a)”, Y bound to a, and Q bound to b.
 Note we can bind a variable to a term containing another variable!

 The predicate “=” shows what Prolog unifies!

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto32

Unification Examples

 Which of the following are unifiable?

Term1 Term 2 Bindings if unifiable

X f(a,b) X=f(a,b)

f(X,a) g(X,a)

3 2+1 No! use is if want 3

book(X,1) book(Z)

[1,2,3] [X|Y] X=1, Y=[2,3]

[a,b,X] [Y|[3,4]]

[a|X] [X|Y] X=a Y=a improper list

X(a,b) f(Z,Y)

[X|Y|Z] [a,b,c,d] X=a. Y=b, Z=[c,d]

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto33

Solving Queries

 How Prolog works:

 Unification

 Goal-Directed Reasoning

 Rule-Ordering

 DFS and backtracking

 When given a query Q = q1, q2, …, qn Prolog

performs a search in an attempt to solve this

query. The search can be specified as follows

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto34

Details of Solving Queries by Prolog

//note: variable bindings are global to the procedure “evaluate”

bool evaluate(Query Q)

if Q is empty

SUCCEED: print bindings of all variables in original query

if user wants more solutions (i.e. enters ';') return FALSE

else return TRUE

else

remove first predicate from Q, let q1 be this predicate

for each rule R = h :- r1, r2, ..., rj in the program in

the order they appear in the file

if(h unifies with q1 (i.e., the head of R unifies with q1))

put each ri into the query Q so that if the Q was originally
(q1, q2, …, qk) it now becomes (r1, r2, …, rj, q2, … qk)

NOTE: rule‟s body is put in front of previous query predicates.

NOTE: also some of the variables in the ri‟s and q2…qk might
now be bound because of unifying h with q1

if (evaluate(Q)) //recursive call on updated Q

return. //succeeded and printed bindings in recusive call.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto35

Computing with Queries
for each rule R = h :- r1, r2, ..., rj in the program in

the order the rules appear in the prolog file

if(h unifies with q1 (i.e., the head of R unifies with q1))

put each ri into the query Q so that if the Q was originally
(q1, q2, …, qk) it now becomes (r1, r2, …, rj, q2, … qk)

NOTE: rule‟s body is put in front of previous query predicates.

NOTE: also some of the variables in the ri‟s and q2…qk might
now be bound because of unifying h with q1

if(evaluate(Q))

return. //succeeded and printed bindings in recusive call.

else

UNDO all changes to the variable bindings that arose from
unifying h and q1

end for

//NOTE. If R‟s head fails to unify with q1 we move on to try the

next rule in the program. If R‟s head did unify but unable

to solve the new query recursively, we also move on to

try the next rule after first undoing the variable bindings.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto36

Computing with Queries

end for

//NOTE. If R‟s head fails to unify with q1 we move on to try the

next rule in the program. If R‟s head did unify but unable

to solve the new query recursively, we also move on to

try the next rule after first undoing the variable bindings.

return FALSE

//at this point we cannot solve q1, so we fail. This failure will

unroll the recursion and a higher level recursion with then try

different rule for the predicate it is working on.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto37

Query Answering is Depth First Search

 This procedure operates like a depth-first search, where the order of
the search depends on the order of the rules and predicates in the
rule bodies.

 When Prolog backtracks, it undoes the bindings it did before.

 Exercise: try the following queries on family.pl:
parent(P,C)

father(F,C).

[if you can, use the interactive SWI with graphical debugger]

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto38

Route finding in in a directed acyclic graph:

edge(a,b).

edge(a,c).

edge(b,d).

edge(d,e).

Another Example of Query Answering

path(X,Y) :- path(X,Z), edge(Z,Y).

path(X,Y) :- edge(X,Y).

The above is problematic. Why?

Here is the correct solution:

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

d e
c

b

a

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto39

Search Tree for Path Predicate
Here is the program:
edge(a,b).

edge(a,c).

edge(b,d).

edge(d,e).

path(X,Y) :- edge(X,Y).

path(X,Y) :- edge(X,Z), path(Z,Y).

Queries:

path(a,e). [run SWI interactively to see this in action.]

path(c,R).

path(S,c).

What if the graph is undirected? Simple:
undirEdge(X,Y):- edge(X,Y).

undirEdge(X,Y):- edge(Y,X).

then replace edge predicate by undirEdge in the definition of path.

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto40

Notes on Prolog Variables

 Prolog variables do not operate like other

programming languages! You cannot change

the value of variables, once they are bound to

a value they remain bound. However:

 If a variable binding contains another variable that other
variable can be bound thus altering the original
variable‟s value, e.g.

X = f(a, g(Y)), Y = b X is bound to f(a, g(b)); Y is bound to b

 Final answers can be computed by passing the
variable‟s value on to a new variable. E.g.,

X = a, Y = b, Z = [X,Y] X is bound to a, Y is bound to
b, and Z is bound to [a,b].

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto41

List Processing in Prolog
 Much of prolog‟s computation is organized around lists. Two key

things we do with a list is iterate over them and build new ones.

 E.g. checking membership: member(X,Y) X is a member of list Y.
member(X,[X|_]).

member(X,[_|T]):- member(X,T).

What if we define member like this:
member(X,[X|_]).

member(X,[Y|T]):- X \= Y, member(X,T).

what is the result of member(X,[a,b,c,d])?

 E.g. building a list of integers in range [i, j].
build(from, to, NewList)

build (I,J,[]) :- I > J.

build (I,J,[I | Rest]) :- I =< J, N is I + 1,
build(N,J,Rest).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto42

List Processing in Prolog continue…

 Computing the size of a list: size(List, ListSize)

size([],0).

size([_|T],N) :- size(T,N1), N is N1+1.

 Computing the sum of a list of nums: sumlist(List, Sum)

sumlist([],0)

sumlist([H|T],N) :- sumlist(T,N1), N is N1+H.

 Exercise: implement append(L1,L2, L3) which holds if L3 is

the result of appending list L1 and L2. For example,
append([a,b,c],[1,2,3,4],[a,b,c,1,2,3,4]).

Hojjat Ghaderi and Fahiem Bacchus, University of Toronto43

Next Tutorial (Part 2)

 More advanced material in the next tutorial:

 Efficient lists processing using accumulators

 Constructing predicates dynamically (on-the-fly)

 Cut (controlling how Prolog does the search)

 Negation as failure (NAF)

 if-then-else

 Debugging Prolog programs

