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CSC384: Intro to Artificial Intelligence

Search 

■ Chapter 3 of the text is very useful reading. We won’t cover the 
material in section 3.6 in much detail.

■ Chapter 4.1, 4.2, some of 4.3 covers heuristic search. We won’t 
talk about the material in sections 4.4, 4.5. But this is interesting 
additional reading

■ Announcements: Prolog Tutorial?
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Why Search

● Successful

■ Success in game playing programs based on search.

■ Many other AI problems can be successfully solved by 
search.

● Practical

■ Many problems don’t have a simple algorithmic solution. 
Casting these problems as search problems is often the 
easiest way of solving them. Search can also be useful in 
approximation (e.g., local search in optimization problems).

■ Often specialized algorithms cannot be easily modified to 
take advantage of extra knowledge. Heuristics provide 
search provides a natural way of utilizing extra knowledge. 

● Some critical aspects of intelligent behaviour, e.g., 
planning, can be naturally cast as search.
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Example, a holiday in Jamaica 
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Things to consider 

● Prefer to avoid hurricane season.

● Rules of the road, larger vehicle has right of way 
(especially trucks).
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Want to climb up to 
the top of Dunns
river falls.
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But you want to 
start your climb 
at 8:00 am 
before the 
crowds arrive!
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Want to swim in the 
Blue Lagoon
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Want to hike the 
Cockpit Country

No roads, need local 
guide and supplies.



9Hojjat Ghaderi, University of Toronto

•Easier goal, climb to the top of Blue Mountain

•Near Kingston. Organized hikes available.

•Need to arrive on the peak at dawn, before the fog 
sets in.

•Can get some Blue Mountain coffee!
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How do we plan our holiday?

●We must take into account various preferences 
and constraints to develop a schedule.

●An important technique in developing such a 
schedule is “hypothetical” reasoning.

■ e.g., if I fly into Kingston and drive a car to Port 
Antonio, I’ll have to drive on the roads at night. How 
desirable is this?

■ If I’m in Port Antonio and leave at 6:30am, I can arrive 
a Dunns river falls by 8:00am.
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How do we plan our holiday?

●This kind of hypothetical reasoning involves 
asking

■ “what state will I be in after the following sequence 
of events?”

●From this we can reason about what sequence 
of events one should try to bring about to 
achieve a desirable state.

●Search is a computational method for 
capturing a particular version of this kind of 
reasoning.
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Search

●There are many difficult questions that are not 
resolved by search. In particular, the whole 
question of how does an intelligent system 
formulate its problem as a search problem is 
not addressed by search.

●Search only shows how to solve the problem 
once we have it correctly formulated. 
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The formalism.

● To formulate a problem as a search problem 
we need the following components: 

1. Formulate a state space over which to search. The 
state space necessarily involves abstracting the 
real problem. 

2. Formulate actions that allow one to move between 
different states. The actions are abstractions of 
actions you could actually perform.

3. Identify the initial state that best represents your 
current state and the desired condition one wants 
to achieve.

4. Formulate various heuristics to help guide the 
search process.
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The formalism.

●Once the problem has been formulated as a 
state space search, various algorithms can be 
utilized to solve the problem.

■ A solution to the problem will be a sequence of 
actions/moves that can transform your current state 
into state where your desired condition holds.
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Example 1: Romania Travel.

Currently in Arad, need to get to Bucharest by 
tomorrow to catch a flight. What is the State Space?
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Example 1.

●State space.

■ States: the various cities you could be located in.

Note we are ignoring the low level details of 
driving, states where you are on the road between 
cities, etc.

■ Actions: drive between neighboring cities.

■ Initial state: in Arad

■ Desired condition (Goal): be in a state where you are 
in Bucharest. (How many states satisfy this condition?)

●Solution will be the route, the sequence of 
cities to travel through to get to Bucharest.
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Example 2. The 8-Puzzle

•Rule: Can slide a tile into the blank spot. 
(Equivalently, can think if it as moving the blank 
around).
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Example 2. The 8-Puzzle

●State space.
■ States: The different configurations of the tiles. 
How many different states? 

■ Actions: Moving the blank up, down, left, right. 
Can every action be performed in every state?

■ Initial state: as shown on previous slide.

■ Desired condition (Goal): be in a state where the 
tiles are all in the positions shown on the previous 
slide.

●Solution will be a sequence of moves of the 
blank that transform the initial state to a 
goal state.
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Example 2. The 8-Puzzle

●Although there are 9! different 
configurations of the tiles (362,880) in fact 
the state space is divided into two disjoint 
parts. 

●Only when the blank is in the middle are all 
four actions possible.

●Our goal condition is satisfied by only a 
single state. But one could easily have a 
goal condition like

■ The 8 is in the upper left hand corner. 

How many different states satisfy this goal? 
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Example 3. Vacuum World.

● In the previous two examples, a state in the 
search space corresponded to a unique 
state of the world (modulo details we have 
abstracted away).

●However, states need not map directly to 
world configurations. Instead, a state could 
map to the agent’s mental conception of 
how the world is configured: the agent’s 
knowledge state.
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Example 3. Vacuum World.

●We have a vacuum 
cleaner and two rooms.

● Each room may or may 
not be dirty.

● The vacuum cleaner can 
move left or right (the 
action has no effect if 
there is no room to the 

right/left).

● The vacuum cleaner can 
suck; this cleans the room 
(even if the room was 
already clean). Physical states
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Example 3. Vacuum World.

● The state space can 
consist of a set of 
states. The agent knows 
that it is in one of these 
states, but doesn’t 
know which. 

Goal is to have all 
rooms clean.

Knowledge level State Space
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Example 3. Vacuum World.

●Complete knowledge 
of the world: agent 
knows exactly which 
state it is in. State space 
states consist of single 
physical states:

● Start in {5}: 
<right, suck>  

Goal is to have all 
rooms clean.

Knowledge level State Space
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Example 3. Vacuum World.

●No knowledge of the 
world. States consist of 
sets of physical states.

● Start in {1,2,3,4,5,6,7,8}, 
agent doesn’t have any 
knowledge of where it is.

●Nevertheless, the actions 
<right, suck, left, suck> 
achieves the goal. 

Goal is to have all 
rooms clean.

Knowledge level State Space



25Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

Initial state.

{1,2,3,4,5,6,7,8}

Left
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Example 3. Vacuum World.

Suck
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Example 3. Vacuum World.

Right
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Example 3. Vacuum World.

Suck
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More complex situations.

●The agent might be able to perform some 
sensing actions. These actions change the 
agent’s mental state, not the world 
configuration.

●With sensing can search for a contingent
solution: a solution that is contingent on the 
outcome of the sensing actions

■<right, if dirt then suck>

●Now the issue of interleaving execution and 
search comes into play. 
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More complex situations.

● Instead of complete lack of knowledge, the 
agent might think that some states of the 
world are more likely than others.

●This leads to probabilistic models of the 
search space and different algorithms for 
solving the problem.

●Later we will see some techniques for 
reasoning and making decisions under 
uncertainty.
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Algorithms for Search.

● Inputs:

■a specified initial state (a specific world state or a 
set of world states representing the agent’s 
knowledge, etc.)

■a successor function S(x) = {set of states that can 
be reached from state x via a single action}. 

■a goal test a function that can be applied to a 
state and returns true if the state is satisfies the 
goal condition. 

■A step cost function C(x,a,y) which determines the 
cost of moving from state x to state y using action 
a. (C(x,a,y) = ∞ if a does not yield y from x) 
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Algorithms for Search.

●Output:

■a sequence of states leading from the initial state 
to a state satisfying the goal test. 

■The sequence might be

annotated by the name of the action used.

optimal in cost for some algorithms.
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Algorithms for Search

●Obtaining the action sequence.
■ The set of successors of a state x might arise from 
different actions, e.g.,

x → a → y

x → b → z

■ Successor function S(x) yields a set of states that can 
be reached from x via a (any) single action. 

Rather than just return a set of states, we might 
annotate these states by the action used to obtain 
them:

� S(x) = {<y,a>, <z,b>} 
y via action a, z via action b.

� S(x) = {<y,a>, <y,b>}
y via action a, also y via alternative action b.
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Tree search.

● we use the successor state function to simulate an 
exploration of the state space.

● Initial call has Frontier = initial state.
■ Frontier is the set of states we haven’t yet 
explored/expanded, and want to explore.

TreeSearch(Frontier, Sucessors, Goal? )

If Frontier is empty return failure

Curr = select state from Frontier

If (Goal?(Curr)) return Curr.

Frontier’ = (Frontier – {Curr}) U Successors(Curr)

return TreeSearch(Frontier’, Successors, Goal?)
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Tree search.

treeS([[State|Path],_],Soln) :-
goal?(State), reverse([State|Path], Soln).

treeS([[State|Path],Frontier],Soln) :-
genSuccessors(State,Path,NewPaths),
merge(NewPaths,Frontier,NewFrontier),
treeS(NewFrontier,Succ,Soln).

Prolog Implementation:Prolog Implementation:Prolog Implementation:Prolog Implementation:
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{Arad}, 

Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost:           140   +      99      +      211   =  450



37Hojjat Ghaderi, University of Toronto

{Arad}

Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->Bucharest
Cost:              140       +   80                  +    97        +  101 = 418
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{Arad},

Frontier is a set of paths not a set of states: cycles become an issue.
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Selection Rule.

●The example shows that order states are 
selected from the frontier has a critical effect 
on the operation of the search:

■Whether or not a solution is found

■ The cost of the solution found.

■ The time and space required by the search.
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Critical Properties of Search.

●Completeness: will the search always find a 
solution if a solution exists?

●Optimality: will the search always find the least 
cost solution? (when actions have costs)

●Time complexity: what is the maximum number 
of nodes than can be expanded or 
generated?

●Space complexity: what is the maximum 
number of nodes that have to be stored in 
memory?
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Uninformed Search Strategies

●These are strategies that adopt a fixed rule for 
selecting the next state to be expanded.

●The rule does not change irrespective of the 
search problem being solved.

●These strategies do not take into account any 
domain specific information about the 
particular search problem.

●Popular uninformed search techniques:
■ Breadth-First, Uniform-Cost, Depth-First, Depth-Limited, and 
Iterative-Deepening search
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Selecting vs. Sorting

●A simple equivalence we will exploit

■Order the elements on the frontier.

■ Always select the first element.

●Any selection rule can be achieved by 
employing an appropriate ordering of the 
frontier set.
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Breadth First.

●Place the successors of the current state at the 
end of the frontier.

●Example: 

■ let the states be the positive integers {0,1,2,…}

■ let each state n have as successors n+1 and n+2

E.g. S(1) = {2, 3}; S(10) = {11, 12}

■ Start state 0

■Goal state 5
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Breadth First Example.

{0<>}
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Breadth First Properties

● Measuring time and space complexity.

■let b be the maximum number of successors 
of any state.

■let d be the number of actions in the shortest 
solution.
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Breadth First Properties

●Completeness?

■ The length of the path from the initial state to the 
expanded state must increase monotonically.

we replace each expanded state with states on 
longer paths.

All shorter paths are expanded prior before any 
longer path.

■ Hence, eventually we must examine all paths of 
length d, and thus find the shortest solution.
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Breadth First Properties

■ 1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) = O(bd+1)

●Time Complexity?
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Breadth First Properties

●Space Complexity?

■O(bd+1): If goal node is last node at level d, all of the 
successors of the other nodes will be on the frontier 
when the goal node is expanded b(bd – 1) 

● Optimality?

■Will find shortest length solution

least cost solution?
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Breadth First Properties

●Space complexity is a real problem. 

■ E.g., let b = 10, and say 1000 nodes can be expanded 
per second and each node requires 100 bytes of 
storage:

11 GB31 hrs.1088

111 MB18 mins.1066

100 bytes1 millisec.11

MemoryTimeNodesDepth

●Run out of space long before we run out of 
time in most applications.
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Uniform Cost Search.

●Keep the frontier sorted in increasing cost of the 
path to a node.

●Always expand the least cost node.

● Identical to Breadth first if each transition has 
the same cost.

●Example: 

■ let the states be the positive integers {0,1,2,…}

■ let each state n have as successors n+1 and n+2

■ Say that the n+1 action has cost 2, while the n+2 
action has cost 3.
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Uniform-Cost Search Example

{0}
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Uniform-Cost Search

●Completeness?
■ If each transition has costs ≥ ε > 0.

■ The previous argument used for breadth first search 
holds: the cost of the expanded state must increase 
monotonically. 
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Uniform-Cost Search

● Time and Space Complexity?
■O(bC*/ε) where C* is the cost of the optimal solution.

Difficulty is that there may be many long paths 
with cost ≤ C*; Uniform-cost search must explore 
them all.
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Uniform-Cost Search

●Optimality?

■ Finds optimal solution if each transition has 

cost ≥ ε > 0.

Explores paths in the search space in increasing 
order of cost. So must find minimum cost path to a 
goal before finding any higher costs paths.
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Uniform-Cost Search. Proof of Optimality.

Lemma 1.

Let c(n) be the cost of the path to node n. If 
n2 is expanded after n1 then 
c(n1) ≤ c(n2).

Proof: there are 2 cases:
a. n2 was on the frontier when n1was expanded

b. n2 was added to the frontier when n1was expanded
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Uniform-Cost Search. Proof of Optimality.

Lemma 2.

When n is expanded every path with cost strictly less 
than c(n) has already been expanded (i.e., every 
node on it has been expanded).

Proof:

Let <Start, n0, n1, …, nk> be a path with cost less than c(n). Our 

claim is that every node on this path must have already been 
expanded by the time n is expanded by uniform-cost search.
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Uniform-Cost Search. Proof of Optimality.

Lemma 3.

The first time uniform-cost expands a state, it 
has found the minimal cost path to it (it might 
later find other paths to the same state but 
none of them can be less costly).

Proof:
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Depth First Search

●Place the successors of the current state at 
the front of the frontier.
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Depth First Search Example
(applied to the example of BFS)
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Depth First Properties

●Completeness?

■ Infinite paths?

■ Prune paths with duplicate states?

●Optimality?
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Depth First Properties

●Time Complexity?

■O(bm) where m is the length of the longest path in the 
state space.

■ Very bad if m is much larger than d, but if there are 
many solution paths it can be much faster than 
breadth first.
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Depth First Backtrack Points

● Unexplored siblings of nodes along current path.

■ These are the nodes on the frontier.
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Depth First Properties

● Space Complexity?
■O(bm), linear space!

Only explore a single path at a time.

The frontier only contains the deepest states on 
the current path along with the backtrack points.
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Depth Limited Search

● Breadth first has computational, especially, space 
problems. Depth first can run off down a very long (or 
infinite) path.

●Depth limited search. 
■ Perform depth first search but only to a pre-specified depth limit 
L.

■ No node on a path that is more than L steps from the initial state 
is placed on the Frontier. 

■ We “truncate” the search by looking only at paths of length L or
less.

●Now infinite length paths are not a problem.

● But will only find a solution if a solution of length ≤ L 
exists.
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Depth Limited Search

DLS(Frontier, Sucessors, Goal?)

If Frontier is empty return failure

Curr = select state from Frontier

If(Goal?(Curr)) return Curr.

If Depth(Curr) < L
Frontier’ = (Frontier – {Curr}) U Successors(state)

Else
Frontier’ = Frontier – {Curr}
CutOffOccured = TRUE.

return DLS(Frontier’, Successors, Goal?)
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Iterative Deepening Search.

●Take the idea of depth limited search one step 
further.

●Starting at depth limit L = 0, we iteratively 
increase the depth limit, performing a depth 
limited search for each depth limit.

●Stop if no solution is found, or if the depth 
limited search failed without cutting off any 
nodes because of the depth limit.
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Iterative Deepening Search Example
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Iterative Deepening Search Properties

●Completeness?

■ Yes, if a minimal length solution of length d exists. 
What happens when the depth limit L=d?  

What happens when the depth limit L<d? 

●Time Complexity?
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Iterative Deepening Search Properties

● Time Complexity

■(d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)

■E.g. b=4, d=10

(11)*40 + 10*41 + 9*42 + … + 2*49 = 815,555

410 = 1,048,576

Most nodes lie on bottom layer.

In fact IDS can be more efficient than breadth first 
search: nodes at limit are not expanded. BFS must 
expand all nodes until it expand a goal node.
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Breadth first can explore more nodes than IDS.
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Iterative Deepening Search Properties

●Space Complexity 
■O(bd) Still linear!

●Optimal?
■Will find shortest length solution which is optimal if 
costs are uniform.

■ If costs are not uniform, we can use a “cost” bound 
instead.

Only expand paths of cost less than the cost bound.

Keep track of the minimum cost unexpanded path 
in each depth first iteration, increase the cost 
bound to this on the next iteration.

This can be very expensive. Need as many iterations 
of the search as there are distinct path costs. 
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Iterative Deepening Search Properties

● Consider space with three paths of length 3, 
but each action having a distinct cost. 
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Cycle Checking

●Path checking

■ Recall paths are stored on the frontier (this allows us 
to output the solution path).

If <S,n1,…,nk> is a path to node nk, and we expand 
nk to obtain child c, we have

<S,n1,…,nk,c> 

As the path to “c”.

■ Path checking: 

Ensure that the state c is not equal to the state 
reached by any ancestor of c along this path. 

That is paths are checked in isolation!

74Hojjat Ghaderi, University of Toronto

Path Checking Example

Arad Lugoj

Zerind

Oradea

Timisoara

Arad

Timisoara Mehadia

Arad

Zerind Sibiu

Arad
Fagaras R. Vilcea
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Path Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0
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Cycle Checking

●Cycle Checking.

■ Keep track of all states previously expanded during 
the search.

■When we expand nk to obtain child c

ensure that c is not equal to any previously 
expanded state. 

■ This is called cycle checking, or multiple path 
checking. 

■Why can’t we utilize this technique with depth-first 
search? 

If we modify depth-first search to do cycle checking 
what happens to space complexity?
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Cycle Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0
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Cycle Checking

●High space complexity, only useful with 
breadth first search.

●There is an additional issue when we are 
looking for an optimal solution

■With uniform-cost search, we still find an optimal 
solution

The first time uniform-cost expands a state it has 
found the minimal cost path to it.

■ This means that the nodes rejected by cycle 
checking can’t have better paths.

■We will see later that we don’t always have this 
property when we do heuristic search.
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Heuristic Search.

● In uninformed search, we don’t try to 
evaluate which of the nodes on the frontier 
are most promising. We never “look-ahead” 
to the goal.

■ E.g., in uniform cost search we always expand the 
cheapest path. We don’t consider the cost of 
getting to the goal.

●Often we have some other knowledge 
about the merit of nodes, e.g., going the 
wrong direction in Romania. 
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Heuristic Search.

●Merit of a frontier node: different 
notions of merit.
■ If we are concerned about the cost of the 
solution, we might want a notion of merit 
of how costly it is to get to the goal from 
that search node.

■ If we are concerned about minimizing 
computation in search we might want a 
notion of ease in finding the goal from that 
search node. 

■We will focus on the “cost of solution” 
notion of merit.
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Heuristic Search.

●The idea is to develop a domain specific 
heuristic function h(n).

●h(n) guesses the cost of getting to the goal 
from node n. 

●There are different ways of guessing this cost in 
different domains. I.e., heuristics are domain 
specific. 
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Heuristic Search.

●Convention: If h(n1) < h(n2) this means that we 
guess that it is cheaper to get to the goal from 
n1 than from n2.

●We require that

■ h(n) = 0 for every node n that satisfies the goal.

Zero cost of getting to a goal node from a goal 
node.
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Using only h(n): Greedy best-first search.

● We use h(n) to rank the nodes on open.

■ Always expand node with lowest h-value.

● We are greedily trying to achieve a low cost solution.

● However, this method ignores the cost of getting to n, so it can
be lead astray exploring nodes that cost a lot to get to but 
seem to be close to the goal:

S

n1

n2

n3

Goal

→ cost = 10

→ cost = 100
h(n3) = 50h(n1) = 200
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A* search

● Take into account the cost of getting to the node 
as well as our estimate of the cost of getting to the 
goal from n.

●Define
■ f(n) = g(n) + h(n)

g(n) is the cost of the path to node n

h(n) is the heuristic estimate of the cost of getting to a 
goal node from n. 

●Now we always expand the node with lowest f-
value on the frontier.

● The f-value is an estimate of the cost of getting to 
the goal via this node (path).
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Conditions on h(n)

●We want to analyze the behavior of the 
resultant search.

●Completeness, time and space, optimality? 

●To obtain such results we must put some 
further conditions on the heuristic function 
h(n) and the search space.
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Conditions on h(n): Admissible

●We always assume that c(n1→ n2) ≥ ε > 0. The cost 
of any transition is greater than zero and can’t be 
arbitrarily small.

● Let h*(n) be the cost of an optimal path from n to a 
goal node (∞ if there is no path). Then an admissible
heuristic satisfies the condition

■ h(n) ≤  h*(n)

i.e. h always underestimates of the true cost.

● Hence

■ h(g) = 0

■ For any goal node “g”
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Consistency/monotonicity.

● Is a stronger condition than h(n) ≤  h*(n). 

● A monotone/consistent heuristic satisfies the 
triangle inequality (for all nodes n1,n2): 

h(n1) ≤ c(n1 → n2) + h(n2)

●Note that there might be more than one 
transition (action) between n1 and n2, the 
inequality must hold for all of them.

●Note that monotonoicity implies admissibility. 
Why?
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Intuition behind admissibility

●h(n) ≤  h*(n) means that the search 
won’t miss any promising paths.

■ If it really is cheap to get to a goal via n 
(i.e., both g(n) and h*(n) are low), then f(n) 
= g(n) + h(n) will also be low, and the 
search won’t ignore n in favor of more 
expensive options. 

■This can be formalized to show that 
admissibility implies optimality.C
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Intuition behind monotonicity

●h(n1) ≤ c(n1→n2) + h(n2)

■This says something similar, but in addition 
one won’t be “locally” mislead. See next 
example. 
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Example: admissible but nonmonotonic

● The following h is not consistent since h(n2)>c(n2→n4)+h(n4). But it is admissible.

S

n1

n3

n2

Goal

→ cost = 200
→ cost = 100

{S} → {n1 [200+50=250], n2 [200+100=300]} 
→ {n2 [100+200=300], n3 [400+50=450]} 
→ {n4 [200+50=250], n3 [400+50=450]} 
→ {goal [300+0=300], n3 [400+50=450]} 

We do find the optimal path as the heuristic is 
still admissible. But we are mislead into ignoring 
n2 until after we expand n1. 

n4

h(n2) = 200

h(n4) = 50

h(n1) =50

h(n3) =50
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Consequences of monotonicity

1. The f-values of nodes along a path must be 
non-decreasing.

■ Let <Start→ n1→ n2…→ nk> be a path. We claim 
that

f(ni) ≤ f(ni+1)

■ Proof:

f(ni) = c(Start→ …→ ni) + h(ni)
≤ c(Start→ …→ ni)  + c(ni→ ni+1) + h(ni+1)
= c(Start→ …→ ni→ ni+1) + h(ni+1)
= g(ni+1) + h(ni+1) 
= f(ni+1).

92Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

2. If n2 is expanded after n1, then f(n1) ≤  f(n2)

(the f-value increases monotically)

Proof:

■ If n2 was on the frontier when n1 was expanded, 

then f(n1) ≤ f(n2) otherwise we would have expanded n2.

■ If n2 was added to the frontier after n1’s expansion, then let n
be an ancestor of n2 that was present when n1 was being 
expanded (this could be n1 itself). We have f(n1) ≤ f(n) since 
A* chose n1 while n was present in the frontier. Also,  since n is 
along the path to n2, by property  (1) we have f(n)≤f(n2). So, 
we have f(n1) ≤ f(n2).



93Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

3. When n is expanded every path with lower f-value has 
already been expanded.

● Proof: Assume by contradiction that there exists a path  
<Start, n0, n1, ni-1, ni, ni+1, …, nk>  with f(nk) < f(n) and 
ni is its last expanded node.

■ ni+1 must be on the frontier while n is expanded, so

a) by (1) f(ni+1)  ≤ f(nk) since they lie along the same path.

b) since f(nk) < f(n) so we have f(ni+1) < f(n)

c) by (2) f(n)  ≤ f(n+1) because n is expanded before ni+1. 

■ Contradiction from b&c!
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Consequences of monotonicity

4. With a monotone heuristic, the first time A* 
expands a state, it has found the minimum cost 
path to that state.

Proof:

* Let PATH1 = <Start, n0, n1, …, nk, n> be the first path to n 
found. We have f(path1) = c(PATH1) + h(n).

* Let PATH2 = <Start, m0,m1, …, mj, n> be another path to n 
found later. we have f(path2) = c(PATH2) + h(n).

* By property (3), f(path1) ≤ f(path2)

* hence: c(PATH1) ≤ c(PATH2)
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Consequences of monotonicity

● Complete.

■ Yes, consider a least cost path to a goal node

SolutionPath = <Start→ n1→ …→ G> with cost c(SolutionPath) 

Since each action has a cost ≥ ε > 0, there are only a finite 
number of paths that have cost ≤ c(SolutionPath).

All of these paths must be explored before any path of cost > 
c(SolutionPath).

So eventually SolutionPath, or some equal cost path to a goal 
must be expanded.

● Time and Space complexity.

■ When h(n) = 0, for all n h is monotone.

A* becomes uniform-cost search!

■ It can be shown that when h(n) > 0 for some n, the number of 
nodes expanded can be no larger than uniform-cost.

■ Hence the same bounds as uniform-cost apply. (These are worst 
case bounds).
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Consequences of monotonicity

● Optimality

� Yes, by (4) the first path to a goal node must be 
optimal. 

● Cycle Checking

� If we do cycle checking (multiple path 
checking)  e.g. using GraphSearch instead of 
TreeSearch, it is still optimal. Because by 
property (4) we need keep only the first path to 
a node, rejecting all subsequent paths.
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Search generated by monotonicity
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Admissibility without monotonicity

● When “h” is admissible but not monotonic.
■ Time and Space complexity remain the same.  Completeness holds.

■ Optimality still holds (without cycle checking), but need a different 
argument: don’t know that paths are explored in order of cost.

● Proof of optimality (without cycle checking): 
■ Assume the goal path <S,…,G> found by A* has cost bigger than the 

optimal cost: i.e. C* < f(G). 

■ There must exists a node n in the optimal path that is still in the frontier. 

■ We have: f(n)=g(n)+h(n) ≤ g(n)+h*(n)=C*  < f(G)

■ Therefore, f(n) must have been selected before G by A*. contradiction!
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Admissibility without monotonicity

● No longer guaranteed we have found an optimal path to a 
node the first time we visit it.  

● So, cycle checking might not preserve optimality.

■ To fix this: for previously visited nodes, must remember cost of
previous path. If new path is cheaper must explore again.

● contours of monotonic heuristics don’t hold.

Space problem with A* (like breathSpace problem with A* (like breathSpace problem with A* (like breathSpace problem with A* (like breath----first searchfirst searchfirst searchfirst search):

IDA* is similar to Iterative Lengthening Search: It puts the newly 
expanded nodes in the front of frontier! Two new parameters:

●curBound (any node with a bigger f value is discarded)

●smallestNotExplored (the smallest f value for discarded nodes 
in a round)   when frontier becomes empty, the search starts a new 
round with this bound.
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Building Heuristics: Relaxed Problem

● One useful technique is to consider an easier 
problem, and let h(n) be the cost of reaching the 
goal in the easier problem. 

● 8-Puzzle moves.

■ Can move a tile from square A to B if

A is adjacent (left, right, above, below) to B

and B is blank

● Can relax some of these conditions

1. can move from A to B if A is adjacent to B (ignore 
whether or not position is blank)

2. can move from A to B if B is blank (ignore adjacency)

3. can move from A to B (ignore both conditions). 
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Building Heuristics: Relaxed Problem

● #3 leads to the misplaced tiles heuristic.
■ To solve the puzzle, we need to move each tile into its 
final position.

■Number of moves = number of misplaced tiles. 

■Clearly h(n) = number of misplaced tiles ≤ the h*(n) the 
cost of an optimal sequence of moves from n.

● #1 leads to the manhattan distance heuristic. 
■ To solve the puzzle we need to slide each tile into its final 
position.

■We can move vertically or horizontally. 

■Number of moves = sum over all of the tiles of the number 
of vertical and horizontal slides we need to move that tile 
into place. 

■Again h(n) = sum of the manhattan distances ≤ h*(n)

in a real solution we need to move each tile at least 
that that far and we can only move one tile at a 
time.
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Building Heuristics: Relaxed Problem

1,64139,135---24

1135393,473,94114

399347,12710

A*(Manhattan) A*(Misplaced) IDSDepth

Let h1=Misplaced,   h2=Manhattan 
● Does h2 always expand less nodes than h1?

■ Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this you 
can prove h2 is faster than h1.

■ Therefore, among several admissible heuristic the one with highest 
value is the fastest.

● The optimal cost to nodes in the relaxed problem is an admissible heuristic
for the original problem!

Proof: the optimal solution in the original problem is a (not necessarily 
optimal) solution for relaxed problem, therefore it must be at least as
expensive as the optimal solution in the relaxed problem.

● Comparison of IDS and A* (average total nodes expanded ):
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Building Heuristics: Pattern databases.

•By searching backwards from these goal states, we can compute the 
distance of any configuration of these tiles to their goal locations. We 
are ignoring the identity of the other tiles. 

•For any state n, the number of moves required to get these tiles into 
place form a lower bound on the cost of getting to the goal from n.

● Admissible heuristics can also be derived from solution to 
subproblems: Each state is mapped into a partial specification, 
e.g. in 15-puzzle only position of specific tiles matters.

● Here are goals for two sub-
problems (called Corner and Fringe) 
of 15puzzle. If you want to know how 
they came up with these 
subproblems? Here is the paper.

●Note that the goal state here for15-
puzzle is differentdifferentdifferentdifferent than what we have 
defined in Assignment1).
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Building Heuristics: Pattern databases.

● These configurations are stored in a database, 
along with the number of moves required to move 
the tiles into place.

● The maximum number of moves taken over all of 
the databases can be used as a heuristic. 

●On the 15-puzzle

■ The fringe data base yields about a 345 fold decrease in 
the search tree size.

■ The corner data base yields about 437 fold decrease.

● Some times disjoint patterns can be found, then the 
number of moves can be added rather than taking 
the max.
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Local Search

● So far, we keep the paths to the goal.
● For some problems (like 8-queens) we don’t care about the path, 
we only care about the solution. Many real problem like 
Scheduling, IC design, and network optimizations are of this form.

● Local search algorithms operate using a single Current state and 
generally move to neighbors of that state.

● There is an objective function that tells the value of each state. The 
goal has the highest value (global maximum).

● Algorithms like Hill Climbing try to move to a neighbor with the 
highest value.

● Danger of being stuck in a local maximum. So some randomness is 
added to “shake” out of local maxima. 

● Simulated Annealing: Instead of the best move, take a random 
move and if it improves the situation then always accept, 
otherwise accept with a probability <1.

● [If intrested read these two algorithms from the Book].


