
1Hojjat Ghaderi, University of Toronto

CSC384: Intro to Artificial Intelligence

Search

■ Chapter 3 of the text is very useful reading. We won’t cover the
material in section 3.6 in much detail.

■ Chapter 4.1, 4.2, some of 4.3 covers heuristic search. We won’t
talk about the material in sections 4.4, 4.5. But this is interesting
additional reading

■ Announcements: Prolog Tutorial?

2Hojjat Ghaderi, University of Toronto

Why Search

● Successful

■ Success in game playing programs based on search.

■ Many other AI problems can be successfully solved by
search.

● Practical

■ Many problems don’t have a simple algorithmic solution.
Casting these problems as search problems is often the
easiest way of solving them. Search can also be useful in
approximation (e.g., local search in optimization problems).

■ Often specialized algorithms cannot be easily modified to
take advantage of extra knowledge. Heuristics provide
search provides a natural way of utilizing extra knowledge.

● Some critical aspects of intelligent behaviour, e.g.,
planning, can be naturally cast as search.

3Hojjat Ghaderi, University of Toronto

Example, a holiday in Jamaica

4Hojjat Ghaderi, University of Toronto

Things to consider

● Prefer to avoid hurricane season.

● Rules of the road, larger vehicle has right of way
(especially trucks).

5Hojjat Ghaderi, University of Toronto

Want to climb up to
the top of Dunns
river falls.

6Hojjat Ghaderi, University of Toronto

But you want to
start your climb
at 8:00 am
before the
crowds arrive!

7Hojjat Ghaderi, University of Toronto

Want to swim in the
Blue Lagoon

8Hojjat Ghaderi, University of Toronto

Want to hike the
Cockpit Country

No roads, need local
guide and supplies.

9Hojjat Ghaderi, University of Toronto

•Easier goal, climb to the top of Blue Mountain

•Near Kingston. Organized hikes available.

•Need to arrive on the peak at dawn, before the fog
sets in.

•Can get some Blue Mountain coffee!

10Hojjat Ghaderi, University of Toronto

How do we plan our holiday?

●We must take into account various preferences
and constraints to develop a schedule.

●An important technique in developing such a
schedule is “hypothetical” reasoning.

■ e.g., if I fly into Kingston and drive a car to Port
Antonio, I’ll have to drive on the roads at night. How
desirable is this?

■ If I’m in Port Antonio and leave at 6:30am, I can arrive
a Dunns river falls by 8:00am.

11Hojjat Ghaderi, University of Toronto

How do we plan our holiday?

●This kind of hypothetical reasoning involves
asking

■ “what state will I be in after the following sequence
of events?”

●From this we can reason about what sequence
of events one should try to bring about to
achieve a desirable state.

●Search is a computational method for
capturing a particular version of this kind of
reasoning.

12Hojjat Ghaderi, University of Toronto

Search

●There are many difficult questions that are not
resolved by search. In particular, the whole
question of how does an intelligent system
formulate its problem as a search problem is
not addressed by search.

●Search only shows how to solve the problem
once we have it correctly formulated.

13Hojjat Ghaderi, University of Toronto

The formalism.

● To formulate a problem as a search problem
we need the following components:

1. Formulate a state space over which to search. The
state space necessarily involves abstracting the
real problem.

2. Formulate actions that allow one to move between
different states. The actions are abstractions of
actions you could actually perform.

3. Identify the initial state that best represents your
current state and the desired condition one wants
to achieve.

4. Formulate various heuristics to help guide the
search process.

14Hojjat Ghaderi, University of Toronto

The formalism.

●Once the problem has been formulated as a
state space search, various algorithms can be
utilized to solve the problem.

■ A solution to the problem will be a sequence of
actions/moves that can transform your current state
into state where your desired condition holds.

15Hojjat Ghaderi, University of Toronto

Example 1: Romania Travel.

Currently in Arad, need to get to Bucharest by
tomorrow to catch a flight. What is the State Space?

16Hojjat Ghaderi, University of Toronto

Example 1.

●State space.

■ States: the various cities you could be located in.

Note we are ignoring the low level details of
driving, states where you are on the road between
cities, etc.

■ Actions: drive between neighboring cities.

■ Initial state: in Arad

■ Desired condition (Goal): be in a state where you are
in Bucharest. (How many states satisfy this condition?)

●Solution will be the route, the sequence of
cities to travel through to get to Bucharest.

17Hojjat Ghaderi, University of Toronto

Example 2. The 8-Puzzle

•Rule: Can slide a tile into the blank spot.
(Equivalently, can think if it as moving the blank
around).

18Hojjat Ghaderi, University of Toronto

Example 2. The 8-Puzzle

●State space.
■ States: The different configurations of the tiles.
How many different states?

■ Actions: Moving the blank up, down, left, right.
Can every action be performed in every state?

■ Initial state: as shown on previous slide.

■ Desired condition (Goal): be in a state where the
tiles are all in the positions shown on the previous
slide.

●Solution will be a sequence of moves of the
blank that transform the initial state to a
goal state.

19Hojjat Ghaderi, University of Toronto

Example 2. The 8-Puzzle

●Although there are 9! different
configurations of the tiles (362,880) in fact
the state space is divided into two disjoint
parts.

●Only when the blank is in the middle are all
four actions possible.

●Our goal condition is satisfied by only a
single state. But one could easily have a
goal condition like

■ The 8 is in the upper left hand corner.

How many different states satisfy this goal?

20Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

● In the previous two examples, a state in the
search space corresponded to a unique
state of the world (modulo details we have
abstracted away).

●However, states need not map directly to
world configurations. Instead, a state could
map to the agent’s mental conception of
how the world is configured: the agent’s
knowledge state.

21Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

●We have a vacuum
cleaner and two rooms.

● Each room may or may
not be dirty.

● The vacuum cleaner can
move left or right (the
action has no effect if
there is no room to the

right/left).

● The vacuum cleaner can
suck; this cleans the room
(even if the room was
already clean). Physical states

22Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

● The state space can
consist of a set of
states. The agent knows
that it is in one of these
states, but doesn’t
know which.

Goal is to have all
rooms clean.

Knowledge level State Space

23Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

●Complete knowledge
of the world: agent
knows exactly which
state it is in. State space
states consist of single
physical states:

● Start in {5}:
<right, suck>

Goal is to have all
rooms clean.

Knowledge level State Space

24Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

●No knowledge of the
world. States consist of
sets of physical states.

● Start in {1,2,3,4,5,6,7,8},
agent doesn’t have any
knowledge of where it is.

●Nevertheless, the actions
<right, suck, left, suck>
achieves the goal.

Goal is to have all
rooms clean.

Knowledge level State Space

25Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

Initial state.

{1,2,3,4,5,6,7,8}

Left

26Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

Suck

27Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

Right

28Hojjat Ghaderi, University of Toronto

Example 3. Vacuum World.

Suck

29Hojjat Ghaderi, University of Toronto

More complex situations.

●The agent might be able to perform some
sensing actions. These actions change the
agent’s mental state, not the world
configuration.

●With sensing can search for a contingent
solution: a solution that is contingent on the
outcome of the sensing actions

■<right, if dirt then suck>

●Now the issue of interleaving execution and
search comes into play.

30Hojjat Ghaderi, University of Toronto

More complex situations.

● Instead of complete lack of knowledge, the
agent might think that some states of the
world are more likely than others.

●This leads to probabilistic models of the
search space and different algorithms for
solving the problem.

●Later we will see some techniques for
reasoning and making decisions under
uncertainty.

31Hojjat Ghaderi, University of Toronto

Algorithms for Search.

● Inputs:

■a specified initial state (a specific world state or a
set of world states representing the agent’s
knowledge, etc.)

■a successor function S(x) = {set of states that can
be reached from state x via a single action}.

■a goal test a function that can be applied to a
state and returns true if the state is satisfies the
goal condition.

■A step cost function C(x,a,y) which determines the
cost of moving from state x to state y using action
a. (C(x,a,y) = ∞ if a does not yield y from x)

32Hojjat Ghaderi, University of Toronto

Algorithms for Search.

●Output:

■a sequence of states leading from the initial state
to a state satisfying the goal test.

■The sequence might be

annotated by the name of the action used.

optimal in cost for some algorithms.

33Hojjat Ghaderi, University of Toronto

Algorithms for Search

●Obtaining the action sequence.
■ The set of successors of a state x might arise from
different actions, e.g.,

x → a → y

x → b → z

■ Successor function S(x) yields a set of states that can
be reached from x via a (any) single action.

Rather than just return a set of states, we might
annotate these states by the action used to obtain
them:

� S(x) = {<y,a>, <z,b>}
y via action a, z via action b.

� S(x) = {<y,a>, <y,b>}
y via action a, also y via alternative action b.

34Hojjat Ghaderi, University of Toronto

Tree search.

● we use the successor state function to simulate an
exploration of the state space.

● Initial call has Frontier = initial state.
■ Frontier is the set of states we haven’t yet
explored/expanded, and want to explore.

TreeSearch(Frontier, Sucessors, Goal?)

If Frontier is empty return failure

Curr = select state from Frontier

If (Goal?(Curr)) return Curr.

Frontier’ = (Frontier – {Curr}) U Successors(Curr)

return TreeSearch(Frontier’, Successors, Goal?)

35Hojjat Ghaderi, University of Toronto

Tree search.

treeS([[State|Path],_],Soln) :-
goal?(State), reverse([State|Path], Soln).

treeS([[State|Path],Frontier],Soln) :-
genSuccessors(State,Path,NewPaths),
merge(NewPaths,Frontier,NewFrontier),
treeS(NewFrontier,Succ,Soln).

Prolog Implementation:Prolog Implementation:Prolog Implementation:Prolog Implementation:

36Hojjat Ghaderi, University of Toronto

{Arad},

Solution: Arad -> Sibiu -> Fagaras -> Bucharest
Cost: 140 + 99 + 211 = 450

37Hojjat Ghaderi, University of Toronto

{Arad}

Solution: Arad -> Sibiu -> Rimnicu Vilcea -> Pitesti ->Bucharest
Cost: 140 + 80 + 97 + 101 = 418

38Hojjat Ghaderi, University of Toronto

{Arad},

Frontier is a set of paths not a set of states: cycles become an issue.

39Hojjat Ghaderi, University of Toronto

Selection Rule.

●The example shows that order states are
selected from the frontier has a critical effect
on the operation of the search:

■Whether or not a solution is found

■ The cost of the solution found.

■ The time and space required by the search.

40Hojjat Ghaderi, University of Toronto

Critical Properties of Search.

●Completeness: will the search always find a
solution if a solution exists?

●Optimality: will the search always find the least
cost solution? (when actions have costs)

●Time complexity: what is the maximum number
of nodes than can be expanded or
generated?

●Space complexity: what is the maximum
number of nodes that have to be stored in
memory?

41Hojjat Ghaderi, University of Toronto

Uninformed Search Strategies

●These are strategies that adopt a fixed rule for
selecting the next state to be expanded.

●The rule does not change irrespective of the
search problem being solved.

●These strategies do not take into account any
domain specific information about the
particular search problem.

●Popular uninformed search techniques:
■ Breadth-First, Uniform-Cost, Depth-First, Depth-Limited, and
Iterative-Deepening search

42Hojjat Ghaderi, University of Toronto

Selecting vs. Sorting

●A simple equivalence we will exploit

■Order the elements on the frontier.

■ Always select the first element.

●Any selection rule can be achieved by
employing an appropriate ordering of the
frontier set.

43Hojjat Ghaderi, University of Toronto

Breadth First.

●Place the successors of the current state at the
end of the frontier.

●Example:

■ let the states be the positive integers {0,1,2,…}

■ let each state n have as successors n+1 and n+2

E.g. S(1) = {2, 3}; S(10) = {11, 12}

■ Start state 0

■Goal state 5

44Hojjat Ghaderi, University of Toronto

Breadth First Example.

{0<>}

45Hojjat Ghaderi, University of Toronto

Breadth First Properties

● Measuring time and space complexity.

■let b be the maximum number of successors
of any state.

■let d be the number of actions in the shortest
solution.

46Hojjat Ghaderi, University of Toronto

Breadth First Properties

●Completeness?

■ The length of the path from the initial state to the
expanded state must increase monotonically.

we replace each expanded state with states on
longer paths.

All shorter paths are expanded prior before any
longer path.

■ Hence, eventually we must examine all paths of
length d, and thus find the shortest solution.

47Hojjat Ghaderi, University of Toronto

Breadth First Properties

■ 1 + b + b2 + b3 + … + bd-1 + bd + b(bd – 1) = O(bd+1)

●Time Complexity?

48Hojjat Ghaderi, University of Toronto

Breadth First Properties

●Space Complexity?

■O(bd+1): If goal node is last node at level d, all of the
successors of the other nodes will be on the frontier
when the goal node is expanded b(bd – 1)

● Optimality?

■Will find shortest length solution

least cost solution?

49Hojjat Ghaderi, University of Toronto

Breadth First Properties

●Space complexity is a real problem.

■ E.g., let b = 10, and say 1000 nodes can be expanded
per second and each node requires 100 bytes of
storage:

11 GB31 hrs.1088

111 MB18 mins.1066

100 bytes1 millisec.11

MemoryTimeNodesDepth

●Run out of space long before we run out of
time in most applications.

50Hojjat Ghaderi, University of Toronto

Uniform Cost Search.

●Keep the frontier sorted in increasing cost of the
path to a node.

●Always expand the least cost node.

● Identical to Breadth first if each transition has
the same cost.

●Example:

■ let the states be the positive integers {0,1,2,…}

■ let each state n have as successors n+1 and n+2

■ Say that the n+1 action has cost 2, while the n+2
action has cost 3.

51Hojjat Ghaderi, University of Toronto

Uniform-Cost Search Example

{0}

52Hojjat Ghaderi, University of Toronto

Uniform-Cost Search

●Completeness?
■ If each transition has costs ≥ ε > 0.

■ The previous argument used for breadth first search
holds: the cost of the expanded state must increase
monotonically.

53Hojjat Ghaderi, University of Toronto

Uniform-Cost Search

● Time and Space Complexity?
■O(bC*/ε) where C* is the cost of the optimal solution.

Difficulty is that there may be many long paths
with cost ≤ C*; Uniform-cost search must explore
them all.

54Hojjat Ghaderi, University of Toronto

Uniform-Cost Search

●Optimality?

■ Finds optimal solution if each transition has

cost ≥ ε > 0.

Explores paths in the search space in increasing
order of cost. So must find minimum cost path to a
goal before finding any higher costs paths.

55Hojjat Ghaderi, University of Toronto

Uniform-Cost Search. Proof of Optimality.

Lemma 1.

Let c(n) be the cost of the path to node n. If
n2 is expanded after n1 then
c(n1) ≤ c(n2).

Proof: there are 2 cases:
a. n2 was on the frontier when n1was expanded

b. n2 was added to the frontier when n1was expanded

56Hojjat Ghaderi, University of Toronto

Uniform-Cost Search. Proof of Optimality.

Lemma 2.

When n is expanded every path with cost strictly less
than c(n) has already been expanded (i.e., every
node on it has been expanded).

Proof:

Let <Start, n0, n1, …, nk> be a path with cost less than c(n). Our

claim is that every node on this path must have already been
expanded by the time n is expanded by uniform-cost search.

57Hojjat Ghaderi, University of Toronto

Uniform-Cost Search. Proof of Optimality.

Lemma 3.

The first time uniform-cost expands a state, it
has found the minimal cost path to it (it might
later find other paths to the same state but
none of them can be less costly).

Proof:

58Hojjat Ghaderi, University of Toronto

Depth First Search

●Place the successors of the current state at
the front of the frontier.

59Hojjat Ghaderi, University of Toronto

Depth First Search Example
(applied to the example of BFS)

60Hojjat Ghaderi, University of Toronto

Depth First Properties

●Completeness?

■ Infinite paths?

■ Prune paths with duplicate states?

●Optimality?

61Hojjat Ghaderi, University of Toronto

Depth First Properties

●Time Complexity?

■O(bm) where m is the length of the longest path in the
state space.

■ Very bad if m is much larger than d, but if there are
many solution paths it can be much faster than
breadth first.

62Hojjat Ghaderi, University of Toronto

Depth First Backtrack Points

● Unexplored siblings of nodes along current path.

■ These are the nodes on the frontier.

63Hojjat Ghaderi, University of Toronto

Depth First Properties

● Space Complexity?
■O(bm), linear space!

Only explore a single path at a time.

The frontier only contains the deepest states on
the current path along with the backtrack points.

64Hojjat Ghaderi, University of Toronto

Depth Limited Search

● Breadth first has computational, especially, space
problems. Depth first can run off down a very long (or
infinite) path.

●Depth limited search.
■ Perform depth first search but only to a pre-specified depth limit
L.

■ No node on a path that is more than L steps from the initial state
is placed on the Frontier.

■ We “truncate” the search by looking only at paths of length L or
less.

●Now infinite length paths are not a problem.

● But will only find a solution if a solution of length ≤ L
exists.

65Hojjat Ghaderi, University of Toronto

Depth Limited Search

DLS(Frontier, Sucessors, Goal?)

If Frontier is empty return failure

Curr = select state from Frontier

If(Goal?(Curr)) return Curr.

If Depth(Curr) < L
Frontier’ = (Frontier – {Curr}) U Successors(state)

Else
Frontier’ = Frontier – {Curr}
CutOffOccured = TRUE.

return DLS(Frontier’, Successors, Goal?)

66Hojjat Ghaderi, University of Toronto

Iterative Deepening Search.

●Take the idea of depth limited search one step
further.

●Starting at depth limit L = 0, we iteratively
increase the depth limit, performing a depth
limited search for each depth limit.

●Stop if no solution is found, or if the depth
limited search failed without cutting off any
nodes because of the depth limit.

67Hojjat Ghaderi, University of Toronto

Iterative Deepening Search Example

68Hojjat Ghaderi, University of Toronto

Iterative Deepening Search Properties

●Completeness?

■ Yes, if a minimal length solution of length d exists.
What happens when the depth limit L=d?

What happens when the depth limit L<d?

●Time Complexity?

69Hojjat Ghaderi, University of Toronto

Iterative Deepening Search Properties

● Time Complexity

■(d+1)b0 + db1 + (d-1)b2 + … + bd = O(bd)

■E.g. b=4, d=10

(11)*40 + 10*41 + 9*42 + … + 2*49 = 815,555

410 = 1,048,576

Most nodes lie on bottom layer.

In fact IDS can be more efficient than breadth first
search: nodes at limit are not expanded. BFS must
expand all nodes until it expand a goal node.

70Hojjat Ghaderi, University of Toronto

Breadth first can explore more nodes than IDS.

71Hojjat Ghaderi, University of Toronto

Iterative Deepening Search Properties

●Space Complexity
■O(bd) Still linear!

●Optimal?
■Will find shortest length solution which is optimal if
costs are uniform.

■ If costs are not uniform, we can use a “cost” bound
instead.

Only expand paths of cost less than the cost bound.

Keep track of the minimum cost unexpanded path
in each depth first iteration, increase the cost
bound to this on the next iteration.

This can be very expensive. Need as many iterations
of the search as there are distinct path costs.

72Hojjat Ghaderi, University of Toronto

Iterative Deepening Search Properties

● Consider space with three paths of length 3,
but each action having a distinct cost.

73Hojjat Ghaderi, University of Toronto

Cycle Checking

●Path checking

■ Recall paths are stored on the frontier (this allows us
to output the solution path).

If <S,n1,…,nk> is a path to node nk, and we expand
nk to obtain child c, we have

<S,n1,…,nk,c>

As the path to “c”.

■ Path checking:

Ensure that the state c is not equal to the state
reached by any ancestor of c along this path.

That is paths are checked in isolation!

74Hojjat Ghaderi, University of Toronto

Path Checking Example

Arad Lugoj

Zerind

Oradea

Timisoara

Arad

Timisoara Mehadia

Arad

Zerind Sibiu

Arad
Fagaras R. Vilcea

75Hojjat Ghaderi, University of Toronto

Path Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0

76Hojjat Ghaderi, University of Toronto

Cycle Checking

●Cycle Checking.

■ Keep track of all states previously expanded during
the search.

■When we expand nk to obtain child c

ensure that c is not equal to any previously
expanded state.

■ This is called cycle checking, or multiple path
checking.

■Why can’t we utilize this technique with depth-first
search?

If we modify depth-first search to do cycle checking
what happens to space complexity?

77Hojjat Ghaderi, University of Toronto

Cycle Checking Example

2

3 4

3

4 5

3

4 5

4

5 6

1 2

0

78Hojjat Ghaderi, University of Toronto

Cycle Checking

●High space complexity, only useful with
breadth first search.

●There is an additional issue when we are
looking for an optimal solution

■With uniform-cost search, we still find an optimal
solution

The first time uniform-cost expands a state it has
found the minimal cost path to it.

■ This means that the nodes rejected by cycle
checking can’t have better paths.

■We will see later that we don’t always have this
property when we do heuristic search.

79Hojjat Ghaderi, University of Toronto

Heuristic Search.

● In uninformed search, we don’t try to
evaluate which of the nodes on the frontier
are most promising. We never “look-ahead”
to the goal.

■ E.g., in uniform cost search we always expand the
cheapest path. We don’t consider the cost of
getting to the goal.

●Often we have some other knowledge
about the merit of nodes, e.g., going the
wrong direction in Romania.

80Hojjat Ghaderi, University of Toronto

Heuristic Search.

●Merit of a frontier node: different
notions of merit.
■ If we are concerned about the cost of the
solution, we might want a notion of merit
of how costly it is to get to the goal from
that search node.

■ If we are concerned about minimizing
computation in search we might want a
notion of ease in finding the goal from that
search node.

■We will focus on the “cost of solution”
notion of merit.

81Hojjat Ghaderi, University of Toronto

Heuristic Search.

●The idea is to develop a domain specific
heuristic function h(n).

●h(n) guesses the cost of getting to the goal
from node n.

●There are different ways of guessing this cost in
different domains. I.e., heuristics are domain
specific.

82Hojjat Ghaderi, University of Toronto

Heuristic Search.

●Convention: If h(n1) < h(n2) this means that we
guess that it is cheaper to get to the goal from
n1 than from n2.

●We require that

■ h(n) = 0 for every node n that satisfies the goal.

Zero cost of getting to a goal node from a goal
node.

83Hojjat Ghaderi, University of Toronto

Using only h(n): Greedy best-first search.

● We use h(n) to rank the nodes on open.

■ Always expand node with lowest h-value.

● We are greedily trying to achieve a low cost solution.

● However, this method ignores the cost of getting to n, so it can
be lead astray exploring nodes that cost a lot to get to but
seem to be close to the goal:

S

n1

n2

n3

Goal

→ cost = 10

→ cost = 100
h(n3) = 50h(n1) = 200

84Hojjat Ghaderi, University of Toronto

A* search

● Take into account the cost of getting to the node
as well as our estimate of the cost of getting to the
goal from n.

●Define
■ f(n) = g(n) + h(n)

g(n) is the cost of the path to node n

h(n) is the heuristic estimate of the cost of getting to a
goal node from n.

●Now we always expand the node with lowest f-
value on the frontier.

● The f-value is an estimate of the cost of getting to
the goal via this node (path).

85Hojjat Ghaderi, University of Toronto

Conditions on h(n)

●We want to analyze the behavior of the
resultant search.

●Completeness, time and space, optimality?

●To obtain such results we must put some
further conditions on the heuristic function
h(n) and the search space.

86Hojjat Ghaderi, University of Toronto

Conditions on h(n): Admissible

●We always assume that c(n1→ n2) ≥ ε > 0. The cost
of any transition is greater than zero and can’t be
arbitrarily small.

● Let h*(n) be the cost of an optimal path from n to a
goal node (∞ if there is no path). Then an admissible
heuristic satisfies the condition

■ h(n) ≤ h*(n)

i.e. h always underestimates of the true cost.

● Hence

■ h(g) = 0

■ For any goal node “g”

87Hojjat Ghaderi, University of Toronto

Consistency/monotonicity.

● Is a stronger condition than h(n) ≤ h*(n).

● A monotone/consistent heuristic satisfies the
triangle inequality (for all nodes n1,n2):

h(n1) ≤ c(n1 → n2) + h(n2)

●Note that there might be more than one
transition (action) between n1 and n2, the
inequality must hold for all of them.

●Note that monotonoicity implies admissibility.
Why?

88Hojjat Ghaderi, University of Toronto

Intuition behind admissibility

●h(n) ≤ h*(n) means that the search
won’t miss any promising paths.

■ If it really is cheap to get to a goal via n
(i.e., both g(n) and h*(n) are low), then f(n)
= g(n) + h(n) will also be low, and the
search won’t ignore n in favor of more
expensive options.

■This can be formalized to show that
admissibility implies optimality.C

89Hojjat Ghaderi, University of Toronto

Intuition behind monotonicity

●h(n1) ≤ c(n1→n2) + h(n2)

■This says something similar, but in addition
one won’t be “locally” mislead. See next
example.

90Hojjat Ghaderi, University of Toronto

Example: admissible but nonmonotonic

● The following h is not consistent since h(n2)>c(n2→n4)+h(n4). But it is admissible.

S

n1

n3

n2

Goal

→ cost = 200
→ cost = 100

{S} → {n1 [200+50=250], n2 [200+100=300]}
→ {n2 [100+200=300], n3 [400+50=450]}
→ {n4 [200+50=250], n3 [400+50=450]}
→ {goal [300+0=300], n3 [400+50=450]}

We do find the optimal path as the heuristic is
still admissible. But we are mislead into ignoring
n2 until after we expand n1.

n4

h(n2) = 200

h(n4) = 50

h(n1) =50

h(n3) =50

91Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

1. The f-values of nodes along a path must be
non-decreasing.

■ Let <Start→ n1→ n2…→ nk> be a path. We claim
that

f(ni) ≤ f(ni+1)

■ Proof:

f(ni) = c(Start→ …→ ni) + h(ni)
≤ c(Start→ …→ ni) + c(ni→ ni+1) + h(ni+1)
= c(Start→ …→ ni→ ni+1) + h(ni+1)
= g(ni+1) + h(ni+1)
= f(ni+1).

92Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

2. If n2 is expanded after n1, then f(n1) ≤ f(n2)

(the f-value increases monotically)

Proof:

■ If n2 was on the frontier when n1 was expanded,

then f(n1) ≤ f(n2) otherwise we would have expanded n2.

■ If n2 was added to the frontier after n1’s expansion, then let n
be an ancestor of n2 that was present when n1 was being
expanded (this could be n1 itself). We have f(n1) ≤ f(n) since
A* chose n1 while n was present in the frontier. Also, since n is
along the path to n2, by property (1) we have f(n)≤f(n2). So,
we have f(n1) ≤ f(n2).

93Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

3. When n is expanded every path with lower f-value has
already been expanded.

● Proof: Assume by contradiction that there exists a path
<Start, n0, n1, ni-1, ni, ni+1, …, nk> with f(nk) < f(n) and
ni is its last expanded node.

■ ni+1 must be on the frontier while n is expanded, so

a) by (1) f(ni+1) ≤ f(nk) since they lie along the same path.

b) since f(nk) < f(n) so we have f(ni+1) < f(n)

c) by (2) f(n) ≤ f(n+1) because n is expanded before ni+1.

■ Contradiction from b&c!

94Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

4. With a monotone heuristic, the first time A*
expands a state, it has found the minimum cost
path to that state.

Proof:

* Let PATH1 = <Start, n0, n1, …, nk, n> be the first path to n
found. We have f(path1) = c(PATH1) + h(n).

* Let PATH2 = <Start, m0,m1, …, mj, n> be another path to n
found later. we have f(path2) = c(PATH2) + h(n).

* By property (3), f(path1) ≤ f(path2)

* hence: c(PATH1) ≤ c(PATH2)

95Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

● Complete.

■ Yes, consider a least cost path to a goal node

SolutionPath = <Start→ n1→ …→ G> with cost c(SolutionPath)

Since each action has a cost ≥ ε > 0, there are only a finite
number of paths that have cost ≤ c(SolutionPath).

All of these paths must be explored before any path of cost >
c(SolutionPath).

So eventually SolutionPath, or some equal cost path to a goal
must be expanded.

● Time and Space complexity.

■ When h(n) = 0, for all n h is monotone.

A* becomes uniform-cost search!

■ It can be shown that when h(n) > 0 for some n, the number of
nodes expanded can be no larger than uniform-cost.

■ Hence the same bounds as uniform-cost apply. (These are worst
case bounds).

96Hojjat Ghaderi, University of Toronto

Consequences of monotonicity

● Optimality

� Yes, by (4) the first path to a goal node must be
optimal.

● Cycle Checking

� If we do cycle checking (multiple path
checking) e.g. using GraphSearch instead of
TreeSearch, it is still optimal. Because by
property (4) we need keep only the first path to
a node, rejecting all subsequent paths.

97Hojjat Ghaderi, University of Toronto

Search generated by monotonicity

98Hojjat Ghaderi, University of Toronto

Admissibility without monotonicity

● When “h” is admissible but not monotonic.
■ Time and Space complexity remain the same. Completeness holds.

■ Optimality still holds (without cycle checking), but need a different
argument: don’t know that paths are explored in order of cost.

● Proof of optimality (without cycle checking):
■ Assume the goal path <S,…,G> found by A* has cost bigger than the

optimal cost: i.e. C* < f(G).

■ There must exists a node n in the optimal path that is still in the frontier.

■ We have: f(n)=g(n)+h(n) ≤ g(n)+h*(n)=C* < f(G)

■ Therefore, f(n) must have been selected before G by A*. contradiction!

99Hojjat Ghaderi, University of Toronto

Admissibility without monotonicity

● No longer guaranteed we have found an optimal path to a
node the first time we visit it.

● So, cycle checking might not preserve optimality.

■ To fix this: for previously visited nodes, must remember cost of
previous path. If new path is cheaper must explore again.

● contours of monotonic heuristics don’t hold.

Space problem with A* (like breathSpace problem with A* (like breathSpace problem with A* (like breathSpace problem with A* (like breath----first searchfirst searchfirst searchfirst search):

IDA* is similar to Iterative Lengthening Search: It puts the newly
expanded nodes in the front of frontier! Two new parameters:

●curBound (any node with a bigger f value is discarded)

●smallestNotExplored (the smallest f value for discarded nodes
in a round) when frontier becomes empty, the search starts a new
round with this bound.

100Hojjat Ghaderi, University of Toronto

Building Heuristics: Relaxed Problem

● One useful technique is to consider an easier
problem, and let h(n) be the cost of reaching the
goal in the easier problem.

● 8-Puzzle moves.

■ Can move a tile from square A to B if

A is adjacent (left, right, above, below) to B

and B is blank

● Can relax some of these conditions

1. can move from A to B if A is adjacent to B (ignore
whether or not position is blank)

2. can move from A to B if B is blank (ignore adjacency)

3. can move from A to B (ignore both conditions).

101Hojjat Ghaderi, University of Toronto

Building Heuristics: Relaxed Problem

● #3 leads to the misplaced tiles heuristic.
■ To solve the puzzle, we need to move each tile into its
final position.

■Number of moves = number of misplaced tiles.

■Clearly h(n) = number of misplaced tiles ≤ the h*(n) the
cost of an optimal sequence of moves from n.

● #1 leads to the manhattan distance heuristic.
■ To solve the puzzle we need to slide each tile into its final
position.

■We can move vertically or horizontally.

■Number of moves = sum over all of the tiles of the number
of vertical and horizontal slides we need to move that tile
into place.

■Again h(n) = sum of the manhattan distances ≤ h*(n)

in a real solution we need to move each tile at least
that that far and we can only move one tile at a
time.

102Hojjat Ghaderi, University of Toronto

Building Heuristics: Relaxed Problem

1,64139,135---24

1135393,473,94114

399347,12710

A*(Manhattan) A*(Misplaced) IDSDepth

Let h1=Misplaced, h2=Manhattan
● Does h2 always expand less nodes than h1?

■ Yes! Note that h2 dominates h1, i.e. for all n: h1(n)≤h2(n). From this you
can prove h2 is faster than h1.

■ Therefore, among several admissible heuristic the one with highest
value is the fastest.

● The optimal cost to nodes in the relaxed problem is an admissible heuristic
for the original problem!

Proof: the optimal solution in the original problem is a (not necessarily
optimal) solution for relaxed problem, therefore it must be at least as
expensive as the optimal solution in the relaxed problem.

● Comparison of IDS and A* (average total nodes expanded):

103Hojjat Ghaderi, University of Toronto

Building Heuristics: Pattern databases.

•By searching backwards from these goal states, we can compute the
distance of any configuration of these tiles to their goal locations. We
are ignoring the identity of the other tiles.

•For any state n, the number of moves required to get these tiles into
place form a lower bound on the cost of getting to the goal from n.

● Admissible heuristics can also be derived from solution to
subproblems: Each state is mapped into a partial specification,
e.g. in 15-puzzle only position of specific tiles matters.

● Here are goals for two sub-
problems (called Corner and Fringe)
of 15puzzle. If you want to know how
they came up with these
subproblems? Here is the paper.

●Note that the goal state here for15-
puzzle is differentdifferentdifferentdifferent than what we have
defined in Assignment1).

104Hojjat Ghaderi, University of Toronto

Building Heuristics: Pattern databases.

● These configurations are stored in a database,
along with the number of moves required to move
the tiles into place.

● The maximum number of moves taken over all of
the databases can be used as a heuristic.

●On the 15-puzzle

■ The fringe data base yields about a 345 fold decrease in
the search tree size.

■ The corner data base yields about 437 fold decrease.

● Some times disjoint patterns can be found, then the
number of moves can be added rather than taking
the max.

105Hojjat Ghaderi, University of Toronto

Local Search

● So far, we keep the paths to the goal.
● For some problems (like 8-queens) we don’t care about the path,
we only care about the solution. Many real problem like
Scheduling, IC design, and network optimizations are of this form.

● Local search algorithms operate using a single Current state and
generally move to neighbors of that state.

● There is an objective function that tells the value of each state. The
goal has the highest value (global maximum).

● Algorithms like Hill Climbing try to move to a neighbor with the
highest value.

● Danger of being stuck in a local maximum. So some randomness is
added to “shake” out of local maxima.

● Simulated Annealing: Instead of the best move, take a random
move and if it improves the situation then always accept,
otherwise accept with a probability <1.

● [If intrested read these two algorithms from the Book].

