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CSC384: Intro to Artificial Intelligence

Backtracking Search

(CSPs)
■Chapter 5

5.3 is about local search which is a very 
useful idea but we won’t cover it in class.
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Constraint Satisfaction Problems

● The search algorithms we discussed so far had no 
knowledge of the states representation (black box). 
■ For each problem we had to design a new state 
representation (and embed in it the sub-routines we pass to 
the search algorithms). 

● Instead we can have a general state representation 
that works well for many different problems. 

● We can build then specialized search algorithms that 
operate efficiently on this general state representation. 

● We call the class of problems that can be represented 
with this specialized representation CSPs---Constraint 
Satisfaction Problems. 

● Techniques for solving CSPs find more practical 
applications in industry than most other areas of AI.
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Constraint Satisfaction Problems

●The idea: represent states as a vector of 
feature values. We have

■ k-features  (or variables)

■ Each feature takes a value. Domain of possible 
values for the variables:

height = {short, average, tall}, 

weight = {light, average, heavy}.

● In CSPs, the problem is to search for a set of 
values for the features (variables) so that the 
values satisfy some conditions (constraints).

■ i.e., a goal state specified as conditions on the vector 
of feature values.
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Constraint Satisfaction Problems

●Sudoku:

■ 81 variables, each representing the value of a cell.

■ Values: a fixed value for those cells that are already 
filled in, the values {1-9} for those cells that are empty.

■ Solution: a value for each cell satisfying the 
constraints:

no cell in the same column can have the same value.

no cell in the same row can have the same value.

no cell in the same sub-square can have the same value.
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Constraint Satisfaction Problems

●Scheduling

■Want to schedule a time and a space for each final 
exam so that

No student is scheduled to take more than one final 
at the same time.

The space allocated has to be available at the time 
set.

The space has to be large enough to 
accommodate all of the students taking the exam.
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Constraint Satisfaction Problems

●[Scheduling….] Variables:

■ T1, …, Tm: Ti is a variable representing the scheduled 
time for the i-th final.

Assume domains are fixed to {MonAm, MonPm, …, 
FriAm, FriPm}. 

■ S1, …, Sm: Si is the space variable for the i-th final. 

Domain of Si are all rooms big enough to hold the i-
th final. 



7Hojjat Ghaderi, University of Toronto

Constraint Satisfaction Problems

●[Scheduling….]Want to find an assignment of 
values to each variable (times, rooms for each 
final), subject to the constraints:
■ For all pairs of finals i, j (i ≠ j) such that there is a 

student taking both:

Ti ≠ Tj

■ For all pairs of finals i, j (i ≠ j) :

Ti ≠ Tj or Si ≠ Sj

� either i and j are not scheduled at the same time, 
or if they are they are not in the same space.
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Constraint Satisfaction Problems (CSP)

●More formally, a CSP consists of

■ a set of variables V1, …, Vn

■ for each variable a domain of possible values 
Dom[Vi].

■ A set of constraints C1,…, Cm.
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Constraint Satisfaction Problems

●Each variable be assigned any value from its 
domain. 

Vi = d where d ∈ Dom[Vi]

●Each constraint C has 

■ A set of variables it is over, called its scope: e.g., 
C(V1,V2,V4).

■ Is a boolean function that maps assignments to these 
variables to true/false.

e.g. C(V1=a,V2=b,V4=c) = True

● this set of assignments satisfies the constraint.

e.g. C(V1=b,V2=c,V4=c) = False

● this set of assignments falsifies the constraint.
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● Unary Constraints (over one variable)
■ e.g.   C(X):X=2      C(Y): Y>5

● Binary Constraints (over two variables)
■ e.g.   C(X,Y): X+Y<6

■ Can be represented by  Constraint Graph

Nodes are variables, arcs show constraints. 

E.g. 4-Queens:

● Higher-order constraints: over 3 or more variables
■ We can convert any constraint into a set of binary 
constraints (may need some auxiliary variables). Look at 
the exercise in the book.

Arity of constraints

Q1 Q2

Q3 Q4
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Constraint Satisfaction Problems

●A solution to a CSP is

■ an assignment of a value to all of the variables such 
that

every constraint is satisfied.
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Constraint Satisfaction Problems

● Sudoku:
■ V11, V12, …, V21, V22, …, V91, …, V99

Dom[Vij] = {1-9} for empty cells
Dom[Vij] = {k} a fixed value k for filled cells.

■ 9 Row constraints:
CR1(V11, V12, V13, …, V19)
CR2(V21, V22, V23, …, V29)
....,
CR9(V91, V92, …, V99)

■ 9 Column Constraints:
CC1(V11, V21, V31, …, V91)
CC2(V21, V22, V13, …, V92)
...., 
CC9(V19, V29, …, V99)

■ 9 Sub-Square Constraints:
CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33)
CSS2(V41, V42, V43, V51, V52, V53, V61, V62, V63)
…,
CSS9(V77, V78, V79, V87, V88, V89, V97, V98, V99)
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Constraint Satisfaction Problems

●Sudoku:

■ Each of these constraints is over 9 variables, and they 
are all the same constraint:

Any assignment to these 9 variables such that each 
variable has a unique value satisfies the constraint.

Any assignment where two or more variables have 
the same value falsifies the constraint.

■ Such constraints are often called ALL-DIFF constraints.
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Constraint Satisfaction Problems

●Sudoku:

■ Thus Sudoku has 3x9 ALL-Diff constraints, one over 
each set of variables in the same row, one over each 
set of variables in the same column, and one over 
each set of variables in the same sub-square.

■ Note also that an ALL-Diff constraint over k variables 
can be equivalently represented by k choose 2 not-
equal constraints over each pair of these variables.

e.g. CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) ≡≡≡≡
NEQ(V11,V12), NEQ(V11,V13), NEQ(V11,V21) …, NEQ(V32,V33) 

� NEQ is a not-equal constraint.
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Constraint Satisfaction Problems

●Exam Scheduling constraints:

■ For all pairs of finals  i, j  such that there is a student 
taking both, we add the following constraint:

NEQ(Ti,Tj)

■ For all pairs of finals i, j (i ≠ j) add the following 

constraint: 

C(Ti,Tj,Si,Sj)   where

� This constraint is satisfied

● by any set of assignments in which Ti ≠ Tj.

● any set of assignments in which Si ≠ Sj.

� Falsified by any set of assignments in which Ti=Tj
AND Si=Sj at the same time.
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Solving CSPs

●CSPs can be solved by a specialized version of 
depth first search. 

●Key intuitions:

■We can build up to a solution by searching through 
the space of partial assignments. 

■Order in which we assign the variables does not 
matter---eventually they all have to be assigned.

■ If during the process of building up a solution we 
falsify a constraint, we can immediately reject all 
possible ways of extending the current partial 
assignment.
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Backtracking Search

● These ideas lead to the backtracking search algorithm
Backtracking (BT) Algorithm:Backtracking (BT) Algorithm:Backtracking (BT) Algorithm:Backtracking (BT) Algorithm:

BT(Level)BT(Level)BT(Level)BT(Level)

If all variables assignedIf all variables assignedIf all variables assignedIf all variables assigned
PRINT Value of each VariablePRINT Value of each VariablePRINT Value of each VariablePRINT Value of each Variable
RETURN or EXIT (RETURN for more solutions) RETURN or EXIT (RETURN for more solutions) RETURN or EXIT (RETURN for more solutions) RETURN or EXIT (RETURN for more solutions) 

(EXIT for only one solution)(EXIT for only one solution)(EXIT for only one solution)(EXIT for only one solution)
V := V := V := V := PickUnassignedVariablePickUnassignedVariablePickUnassignedVariablePickUnassignedVariable()()()()
Variable[Level] := VVariable[Level] := VVariable[Level] := VVariable[Level] := V
Assigned[V] := TRUEAssigned[V] := TRUEAssigned[V] := TRUEAssigned[V] := TRUE
for d := each member of Domain(V)for d := each member of Domain(V)for d := each member of Domain(V)for d := each member of Domain(V)

Value[V] := dValue[V] := dValue[V] := dValue[V] := d
OK := TRUEOK := TRUEOK := TRUEOK := TRUE
for each constraint C such that for each constraint C such that for each constraint C such that for each constraint C such that 

V is a variable of CV is a variable of CV is a variable of CV is a variable of C
and all other variables of C are assigned.and all other variables of C are assigned.and all other variables of C are assigned.and all other variables of C are assigned.

if C is not satisfied by the current set of assignmentsif C is not satisfied by the current set of assignmentsif C is not satisfied by the current set of assignmentsif C is not satisfied by the current set of assignments
OK := FALSEOK := FALSEOK := FALSEOK := FALSE

if(OK)if(OK)if(OK)if(OK)
BT(Level+1)BT(Level+1)BT(Level+1)BT(Level+1)

returnreturnreturnreturn
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Solving CSPs

●The algorithm searches a tree of partial 
assignments.

Root {}

Vi=a Vi=b Vi=c

Vj=1 Vj=2

The root has the empty 
set of assignments

Children of a node are 
all possible values of 
some (any) unassigned 

variable

Subtree

Search stops 
descending if the 
assignments on 
path to the node 
violate a constraint 
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Backtracking Search

●Heuristics are used to determine which variable 
to assign next “PickUnassignedVariable”.

●The choice can vary from branch to branch, 
e.g.,

■ under the assignment V1=a we might choose to 
assign V4 next, while under V1=b we might choose to 
assign V5 next.

●This “dynamically” chosen variable ordering 
has a tremendous impact on performance.
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Example.

●N-Queens. Place N Queens on an N X N chess board so 
that no Queen can attack any other Queen.

■ N Variables, one per row.

Value of Qi is the column the Queen in row i is placed.

■Constrains:
Vi ≠ Vj for all i ≠ j (cannot put two Queens in same column)

|Vi-Vj| ≠ |i-j| (Diagonal constraint)

� (i.e., the difference in the values assigned to Vi and Vj can’t 
be equal to the difference between i and j.



21Hojjat Ghaderi, University of Toronto

Example.

●4X4 Queens



22Hojjat Ghaderi, University of Toronto

Example.

●4X4 Queens
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Example.

●4X4 Queens

Solution!
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Problems with plain backtracking.

9

8

7

654

321
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Constraint Satisfaction Problems

● Sudoku:
■ The 3,3 cell has no possible value.  But in the backtracking search we 

don’t detect this until all variables of a row/column or sub-square 
constraint are assigned. So  we have the following situation

Variable has no 
possible value, 
but we don’t 

detect this. Until 
we try to assign it 

a value
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Constraint Propagation

●Constraint propagation refers to the technique 
of “looking ahead” in the search at the as yet 
unassigned variables.

●Try to detect if any obvious failures have 
occurred.

●“Obvious” means things we can test/detect 
efficiently.

●Even if we don’t detect an obvious failure we 
might be able to eliminate some possible part 
of the future search.
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Constraint Propagation

■ Propagation has to be applied during search. 
Potentially at every node of the search tree.

■ If propagation is slow, this can slow the search down 
to the point where we are better off not to do any 
propagation!

■ There is always a tradeoff between searching fewer 
nodes in the search, and having a higher 
nodes/second processing rate.
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Forward Checking

●Forward checking is an extension of 
backtracking search that employs a “modest” 
amount of propagation (lookahead).

●When a variable is instantiated we check all 
constraints that have only one uninstantiated
variable remaining.

●For that uninstantiated variable, we check all of 
its values, pruning those values that violate the 
constraint.



29Hojjat Ghaderi, University of Toronto

Forward Checking  Algorithm

/* this method just checks the constraint C */

FCCheck(C,x) 
// C is a constraint with all its variables already
// assigned, except for variable x.
for d := each member of CurDom[x]

if making x = d together with 
previous assignments to
variables in scope C falsifies C

then 
remove d from CurDom[x]   

if CurDom[x] = {} then return DWO   (Domain Wipe Out)
return ok
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Forward Checking Algorithm
FC(Level) /*Forward Checking Algorithm */

If all variables are assigned
PRINT Value of each Variable
RETURN or EXIT (more solutions, or just one) 

V := PickAnUnassignedVariable()
Variable[Level] := V
Assigned[V] := TRUE
for d := each member of CurDom(V)

Value[V] := d
DWOoccured := False

for each constraint C over V that has exactly one
unassigned variable in its scope (say X).

if(FCCheck(C,X) == DWO)/*X domain becomes empty*/
DWOoccurred := True;/*no point to continue*/

break

if(not DWOoccured) /*all constraints were ok*/
FC(Level+1)

RestoreAllValuesPrunedByFCCheck()

return; 
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FC Example.

● 4X4 Queens 
■ Q1,Q2,Q3,Q4 with domain {1..4}
■ All binary constraints: C(Qi,Qj)

● FC illustration: color values are 
removed from domain of each 
row (blue, then yellow, then 
green)

Q1=1Q1=1Q1=1Q1=1

Q2=3Q2=3Q2=3Q2=3 Q2=4Q2=4Q2=4Q2=4

Q3=2Q3=2Q3=2Q3=2

Dom(Q1)={1}
Dom(Q2)={1,2,3,4}={3,4}
Dom(Q3)={1,2,3,4}={2,4}
Dom(Q4)={1,2,3, 4}={2,3}

DWO happens for Q3
So backtrack, try another 
vlaue for Q2
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Example.

●4X4 Queens 
continue…

Solution!
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Restoring Values

●After we backtrack from the current 
assignment (in the for loop) we must restore the 
values that were pruned as a result of that 
assignment.

●Some bookkeeping needs to be done, as we 
must remember which values were pruned by 
which assignment (FCCheck is called at every 
recursive invocation of FC).
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Minimum Remaining Values Heuristic

●FC also gives us for free a very powerful 
heuristic

■ Always branch on a variable with the smallest 
remaining values (smallest CurDom).

■ If a variable has only one value left, that value is 
forced, so we should propagate its consequences 
immediately. 

■ This heuristic tends to produce skinny trees at the top. 
This means that more variables can be instantiated 
with fewer nodes searched, and thus more constraint 
propagation/DWO failures occur with less work. 
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Empirically

●FC often is about 100 times faster than BT

●FC with MRV (minimal remaining values) often 
10000 times faster.

●But on some problems the speed up can be 
much greater 

■Converts problems that are not solvable to problems 
that are solvable.

●Other more powerful forms of propagations are 
commonly used in practice.
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Arc Consistency  (2-consistency)

● Another form of propagation is to make each arc consistent.

● C(X,Y) is consistent iff for every value of X there is some value of of Y 
that satisfies C. 

● Can remove values from the domain of variables:
■ E.G. C(X,Y): X>Y  Dom(X)={1,5,11} Dom(Y)={3,8,15}
■ For X=1 there is no value of Y s.t. 1>Y => remove 1 from domain X
■ For Y=15 there is no value of X s.t. X>15, so remove 15 from domain Y
■ We obtain Dom(X)={5,11} and Dom(Y)={3,8}.

● Removing a value from a domain may trigger further 
inconsistency, so we have to repeat the procedure  until 
everything is consistent.

■ For efficient implementation, we keep track of inconsistent arcs by 
putting them in a Queue (See AC3 algorithm in the book).

● This is stronger than forward checking. why?
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● Standard backtracking backtracks to the most recent variable (1 level up). 

● Trying different values for this variable may have no effect:

■ E.g. C(X,Y,Z): X ≠Y & Z>3 and C(W): W mod 2 =0 
■ Dom(X)=Dom(Y)={1..5}, Dom(Z)={3,4,5} Dom(W)={10...99}

After assigning X=1,Y=1, and W=10,
every value of Z fails. So we backtrack to W.
But trying different values  of W is useless, 
X and Y are sources of failure!

We should backtrack to Y!

● More intelligent: Simple Backiumping backtracks to the last variable among the set 
of variables  that caused the failure, called the conflict set. Conflict set of variable 
V is the set of previously assigned variables that share a constraint with V. Can be 
shown that FC is stronger than simple backjumping.

● Even a more efficient approach: Confilct-Directed-Backjumping: a more complex 
notion of conflict set is used: When we backjump to Y from Z, we update the 
conflict set of Y: conf(Y)=conf(Y) U Conf(Z)-{Z}

Back-Jumping

Y=1Y=1Y=1Y=1

Z=3Z=3Z=3Z=3
Z=5Z=5Z=5Z=5

X=1X=1X=1X=1

W=10W=10W=10W=10 W=99W=99W=99W=99

Z=4Z=4Z=4Z=4


