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CSC384: Intro to Artificial Intelligence
Decision Making Under Uncertainty
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Preferences
● I give robot a planning problem: I want 

coffee
■but coffee maker is broken: robot reports “No 

plan!”
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Preferences
● We really want more robust behavior. 
■Robot to know what to do if my primary goal 

can’t be satisfied – I should provide it with some 
indication of my preferences over alternatives

■e.g., coffee better than tea, tea better than water, 
water better than nothing, etc.

● But it’s more complex:
■it could wait 45 minutes for coffee maker to be 

fixed
■what’s better: tea now? coffee in 45 minutes?
■could express preferences for <beverage,time> 

pairs
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Preference Orderings

●A preference ordering ≽ is a ranking of all 
possible states of affairs (worlds) S
■these could be outcomes of actions, truth assts, 

states in a search problem, etc.
■s ≽ t: means that state s is at least as good as t
■s ≻ t: means that state s is strictly preferred to t

●We insist that ≽ is
■reflexive: i.e., s ≽ s  for all states s 
■transitive: i.e., if  s ≽ t  and  t ≽ w,  then  s ≽ w 
■connected: for all states s,t, either s ≽ t  or t ≽ s 
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Why Impose These Conditions?

●Structure of preference ordering 
imposes certain “rationality 
requirements” (it is a weak 
ordering)
●E.g., why transitivity?

■Suppose you (strictly) prefer coffee to 
tea, tea to OJ, OJ to coffee

■ If you prefer X to Y, you’ll trade me Y 
plus $1 for X

■ I can construct a “money pump” and 
extract arbitrary amounts of money 
from you

≻

≻

≻

Best

Worst
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Decision Problems: Certainty
● A decision problem under certainty is:
■ a set of decisions D
● e.g., paths in search graph, plans, actions…

■ a set of outcomes or states S
● e.g., states you could reach by executing a 

plan
■ an outcome function f : D →S
● the outcome of any decision

■ a preference ordering ≽ over S
● A solution to a decision problem is any d*∊

D such that f(d*) ≽ f(d) for all d∊D
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Decision Problems: Certainty
● A decision problem under certainty is:

■ a set of decisions D
■ a set of outcomes or states S
■ an outcome function f : D →S
■ a preference ordering ≽ over S

● A solution to a decision problem is any d*∊ D such 
that f(d*) ≽ f(d) for all d∊D
■ e.g., in classical planning we that any goal state s is 

preferred/equal to every other state. So d* is a solution iff
f(d*) is a solution state. I.e., d* is a solution iff it is a plan 
that achieves the goal.

■ More generally, in classical planning we might consider 
different goals with different values, and we want d* to be 
a plan that optimizes our value.
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Decision Making under Uncertainty

● Suppose actions don’t have deterministic outcomes
■ e.g., when robot pours coffee, it spills 20% of time, making 

a mess
■ preferences: chc, ¬mess ≻ ¬chc,¬mess ≻ ¬chc, mess

● What should robot do?
■ decision getcoffee leads to a good outcome and a bad 

outcome with some probability
■ decision donothing leads to a medium outcome for sure

● Should robot be optimistic? pessimistic?
● Really odds of success should influence decision

■ but how?

getcoffee
chc, ¬mess

¬chc, mess
donothing ¬chc, ¬mess

.8

.2
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Utilities

● Rather than just ranking outcomes, we must 
quantify our degree of preference
■ e.g., how much more important is having coffee 

than having tea?
● A utility function U: S →ℝ associates a real-

valued utility with each outcome (state).
■ U(s) quantifies our degree of preference for s

● Note: U induces a preference ordering ≽U over 
the states S defined as:  s ≽U t  iff U(s) ≥ U(t)
■ ≽U is reflexive, transitive, connected
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Expected Utility
● With utilities we can compute expected 

utilities!
● In decision making under uncertainty, each 

decision d induces a distribution Prd over 
possible outcomes
■ Prd(s) is probability of outcome s under decision 

d
● The expected utility of decision d is defined

∑
∈

=
Ss

d sUsdEU )()(Pr)(
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Expected Utility
● Say U(chc,¬ms) = 10, U(¬chc,¬ms) = 5, 

U(¬chc,ms) = 0, 
● Then 
■ EU(getcoffee) = 8
■ EU(donothing) = 5

● If U(chc,¬ms) = 10, U(¬chc,¬ms) = 9, 
U(¬chc,ms) = 0,
■ EU(getcoffee) = 8
■ EU(donothing) = 9
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The MEU Principle

● The principle of maximum expected utility 
(MEU) states that the optimal decision under 
conditions of uncertainty is the decision that 
has greatest expected utility.

● In our example
■ if my utility function is the first one, my robot 

should get coffee
■ if your utility function is the second one, your robot 

should do nothing
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Computational Issues
● At some level, solution to a dec. prob. is trivial

■ complexity lies in the fact that the decisions and outcome 
function are rarely specified explicitly

■ e.g., in planning or search problem, you construct the set 
of decisions by constructing paths or exploring search 
paths. Then we have to evaluate the expected utility of 
each. Computationally hard!

■ e.g., we find a plan achieving some expected utility e
● Can we stop searching?
● Must convince ourselves no better plan exists
● Generally requires searching entire plan space, unless 

we have some clever tricks
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Decision Problems: Uncertainty
●A decision problem under uncertainty is:

■a set of decisions D
■a set of outcomes or states S
■an outcome function Pr : D →∆(S)

●∆(S) is the set of distributions over S (e.g., 
Prd)

■a utility function U over S
●A solution to a decision problem under 
uncertainty is any d*∊ D such that EU(d*) ≽
EU(d) for all d∊D
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Expected Utility: Notes

●Note that this viewpoint accounts for both:
■uncertainty in action outcomes
■uncertainty in state of knowledge
■any combination of the two

s0

s1

s2a
0.8

0.2

s3

s4

b 0.3

0.7

0.7  s1

0.3  s2

0.7  t1

0.3  t2

0.7  w1

0.3  w2

a

b

Stochastic actions Uncertain knowledge
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Expected Utility: Notes

●Why MEU? Where do utilities come from?
■underlying foundations of utility theory tightly 

couple utility with action/choice
■a utility function can be determined by asking 

someone about their preferences for actions in 
specific scenarios (or “lotteries” over outcomes)

●Utility functions needn’t be unique
■ if I multiply U by a positive constant, all decisions 

have same relative utility
■ if I add a constant to U, same thing
■U is unique up to positive affine transformation
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So What are the Complications?
●Outcome space is large

■ like all of our problems, states spaces can be 
huge

■don’t want to spell out distributions like Prd
explicitly

■Soln: Bayes nets (or related: influence diagrams)
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So What are the Complications?
●Decision space is large

■usually our decisions are not one-shot actions
■rather they involve sequential choices (like plans)
■ if we treat each plan as a distinct decision, 

decision space is too large to handle directly
■Soln: use dynamic programming methods to 

construct optimal plans (actually generalizations 
of plans, called policies… like in game trees)
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An Simple Example
● Suppose we have two actions: a, b
● We have time to execute two actions in 

sequence
● This means we can do either:
■ [a,a], [a,b], [b,a], [b,b]

● Actions are stochastic: action a induces 
distribution Pra(si | sj) over states
■ e.g., Pra(s2 | s1) = .9 means prob. of moving to 

state s2 when a is performed at  s1 is .9
■ similar distribution for action b

● How good is a particular sequence of 
actions?
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Distributions for Action Sequences

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b
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Distributions for Action Sequences

●Sequence [a,a] gives distribution over “final states”
■ Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

●Similarly:
■ [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = 

.03
■ and similar distributions for sequences [b,a] and [b,b]

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b
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How Good is a Sequence?

● We associate utilities with the “final” outcomes
■ how good is it to end up at s4, s5, s6, …

● Now we have:
■ EU(aa) = .45u(s4)  + .45u(s5) + .02u(s8) + .08u(s9)
■ EU(ab) = .54u(s6)  + .36u(s7) + .07u(s10) + 

.03u(s11)
■ etc…
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Utilities for Action Sequences
s1

s13s12s3s2

a b

.9 .1 .2 .8

u(s4) u(s5)

.5 .5
u(s6)

.6 .4

a b

.2 .8 .7 .3

a b

.1 .9 .2 .8

a b

.2 .8
u(s21)

.7 .3

a b

etc….

Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)
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Action Sequences are not sufficient

●Suppose we do a first; we could reach s2 or s3:
■ At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + 

.4u(s7)
■ At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11) 

● After doing a first, we want to do a next if we reach 
s2, but we want to do b second if we reach s3

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b
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Policies
●This suggests that when dealing with 
uncertainty we want to consider policies, not
just sequences of actions (plans)
●We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

●Contrast this with four “plans”
■[a; a],  [a; b],  [b; a],  [b; b]
■note: each plan corresponds to a policy, so we 

can only gain by allowing decision maker to use 
policies
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Evaluating Policies
●Number of plans (sequences) of length k

■exponential in k:   |A|k if A is our action set
●Number of policies is even larger

■ if we have n=|A| actions and m=|O| outcomes per 
action, then we have (nm)k policies

●Fortunately, dynamic programming can be 
used
■e.g., suppose EU(a) > EU(b) at s2
■never consider a policy that does anything else at s2

●How to do this?
■back values up the tree much like minimax search
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Decision Trees
●Squares denote choice nodes

■these denote action choices by 
decision maker (decision nodes)

●Circles denote chance nodes
■these denote uncertainty 

regarding action effects
■“nature” will choose the child 

with specified probability
●Terminal nodes labeled with 
utilities
■denote utility of final state (or it 

could denote the utility of 
“trajectory” (branch) to decision 
maker

s1a b

.9 .1 .2 .8

5 2 4 3
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Evaluating Decision Trees

●Procedure is exactly like game trees, except…
■key difference: the “opponent” is “nature” who 

simply chooses outcomes at chance nodes with 
specified probability: so we take expectations 
instead of minimizing

●Back values up the tree
■U(t) is defined for all terminals (part of input)
■U(n) = exp {U(c) : c a child of n} if n is a chance node
■U(n) = max {U(c) : c a child of n} if n is a choice node

●At any choice node (state), the decision maker 
chooses action that leads to highest utility child
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Evaluating a Decision Tree
●U(n3) = .9*5 + .1*2
●U(n4) = .8*3 + .2*4
●U(s2) = max{U(n3), U(n4)}

■decision a or b (whichever is max)
●U(n1) = .3U(s2) + .7U(s3)
●U(s1) = max{U(n1), U(n2)}

■decision: max of a, b

s2

n3
a b

.9 .1

5 2

n4
.8 .2

3 4

s1

n1
a b

.3 .7
n2

s3
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Decision Tree Policies
●Note that we don’t 
just compute values, 
but policies for the 
tree
●A policy assigns a 
decision to each 
choice node in tree

●Some policies can’t be distinguished in terms of their 
expected values
■ e.g., if policy chooses a at node s1, choice at s4 doesn’t 

matter because it won’t be reached
■ Two policies are implementationally indistinguishable if 

they disagree only at unreachable decision nodes
●reachability is determined by policy themselves

s2

n3
a b

n4

s1

n1
a b

.3 .7
n2

s3 s4
a bab



31Hojjat Ghaderi, University of Toronto, Fall 2006

Key Assumption: Observability
●Full observability: we must know the initial 
state and outcome of each action
■specifically, to implement the policy, we must be 

able to resolve the uncertainty of any chance 
node that is followed by a decision node

■e.g., after doing a at s1, we must know which of 
the outcomes (s2 or s3) was realized so we know 
what action to do next (note: s2 and s3 may 
prescribe different ations)
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Computational Issues

●Savings compared to explicit policy evaluation 
is substantial
●Evaluate only O((nm)d ) nodes in tree of depth d

■total computational cost is thus O((nm)d ) 
●Note that this is how many policies there are

■but evaluating a single policy explicitly requires 
substantial computation: O(nmd ) 

■total computation for explicity evaluating each 
policy would be O(ndm2d ) !!!

●Tremendous value to dynamic programming 
solution
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Computational Issues

●Tree size: grows exponentially with depth
●Possible solutions:

■bounded lookahead with heuristics (like game trees)
■heuristic search procedures (like A*)
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Other Issues

●Specification: suppose each state is an 
assignment to variables; then representing 
action probability distributions is complex (and 
branching factor could be immense)
●Possible solutions:

■represent distribution using Bayes nets
■solve problems using decision networks (or 

influence diagrams)
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Large State Spaces (Variables)

●To represent outcomes of actions or decisions, 
we need to specify distributions 
■Pr(s|d) : probability of outcome s given decision d
■Pr(s|a,s’): prob. of state s given that action a 

performed in state s’
●But state space exponential in # of variables

■spelling out distributions explicitly is intractable
●Bayes nets can be used to represent actions

■this is just a joint distribution over variables, 
conditioned on action/decision and previous state
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Example Action using Dynamic BN

Tt

Lt

Ct

Rt

Tt+1

Lt+1

Ct+1

Rt+1

Deliver Coffee action

fR(Lt,Rt,Ct,Ct+1)

fJ(Tt,Tt+1)

L R  C   C(t+1) C(t+1)

T  T  T    1.0  0.0
F  T  T    1.0  0.0
T  F  T    1.0  0.0
F  F  T    1.0  0.0
T  T  F    0.8  0.2
F  T  F    0.0  1.0
T  F  F    0.0  1.0
F  F  F    0.0  1.0

T   T(t+1) T(t+1)
T    1.0   0.0
F    0.0   1.0

Mt Mt+1

M – mail waiting   C – Craig has coffee
T – lab tidy          R – robot has coffee
L – robot located in Craig’s office
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Dynamic BN Action Representation
●Dynamic Bayesian networks (DBNs): 

■a way to use BNs to represent specific actions
■ list all state variables for time t (pre-action)
■ list all state variables for time t+1 (post-action)
■ indicate parents of all t+1 variables

●these can include time t and time t+1 
variables
●network must be acyclic

■specify CPT for each time t+1 variable
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Dynamic BN Action Representation
●Note: generally no prior given for time t 
variables
■we’re (generally) interested in conditional

distribution over post-action states given pre-
action state

■so time t vars are instantiated as “evidence” 
when using a DBN (generally)
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Example of Dependence within 
Slice

Throw rock at window action

Alarmt Alarmt+1

Brokent Brokent+1 P(brokent+1 | brokent) = 1
P(brokent+1 | ¬brokent) = .6

P(alt+1 | alt, Brt) = 1
P(alt+1 | ¬alt,¬brt+1) = 0
P(alt+1 | ¬alt,brt+1) = .95

Throwing rock has certain probability of breaking window and
setting off alarm; but whether alarm is triggered depends on
whether rock actually broke the window.
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Use of BN Action Reprsnt’n
●DBNs: actions concisely,naturally specified

■These look a bit like STRIPS and the situtation
calculus, but allow for probabilistic effects
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Use of BN Action Reprsnt’n
●How to use:

■use to generate “expectimax” search tree to 
solve decision problems

■use directly in stochastic decision making 
algorithms

●First use doesn’t buy us much 
computationally when solving decision 
problems. But second use allows us to 
compute expected utilities without 
enumerating the outcome space (tree)
■well see something like this with decision 

networks
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Decision Networks
●Decision networks (more commonly known as 
influence diagrams) provide a way of 
representing sequential decision problems
■basic idea: represent the variables in the problem 

as you would in a BN
■add decision variables – variables that you 

“control”
■add utility variables – how good different states 

are
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Sample Decision Network

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional
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Decision Networks: Chance Nodes
●Chance nodes

■random variables, denoted by circles
■as in a BN, probabilistic dependence on parents

Disease

Fever

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,¬bt) = 0
Pr(neg|D,¬bt) = 0
Pr(null|D,¬bt) = 1
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Decision Networks: Decision Nodes
●Decision nodes

■variables decision maker sets, denoted by 
squares

■parents reflect information available at time 
decision is to be made

●In example decision node: the actual values 
of Ch and Fev will be observed before the 
decision to take test must be made
■agent can make different decisions for each 

instantiation of parents

Chills

Fever
BloodTst BT ∊ {bt, ¬bt}
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Decision Networks: Value Node
●Value node

■specifies utility of a state, denoted by a diamond
■utility depends only on state of parents of value 

node
■generally: only one value node in a decision 

network
●Utility depends only on disease and drug

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30
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Decision Networks: Assumptions
●Decision nodes are totally ordered

■decision variables D1, D2, …, Dn
■decisions are made in sequence
■e.g., BloodTst (yes,no) decided before Drug 

(fd,md,no)
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Decision Networks: Assumptions
●No-forgetting property

■any information available when decision Di is 
made is available when decision Dj is made (for i 
< j)

■thus all parents of Di are parents of Dj
●Network does not show these “implicit 
parents”, but the links are present, and must 
be considered when specifying the network 
parameters, and when computing.

Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
no-forgetting
property
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Policies
●Let Par(Di) be the parents of decision node Di

■Dom(Par(Di)) is the set of assignments to parents
●A policy δ is a set of mappings δi, one for 
each decision node Di
■δi :Dom(Par(Di)) →Dom(Di)
■δi associates a decision with each parent asst for 

Di
●For example, a policy for BT might be:

■δBT (c,f) = bt
■δBT (c,¬f) = ¬bt
■δBT (¬c,f) = bt
■δBT (¬c,¬f) = ¬bt

Chills

Fever
BloodTst
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Value of a Policy
●Value of a policy δ is the expected utility 
given that decision nodes are executed 
according to δ
●Given asst x to the set X of all chance 
variables, let δ(x) denote the asst to decision 
variables dictated by δ
■e.g., asst to D1 determined by it’s parents’ asst 

in x
■e.g., asst to D2 determined by it’s parents’ asst 

in x along with whatever was assigned to D1
■etc.

●Value of δ : EU(δ) = ΣX P(X, δ(X)) U(X, δ(X))
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Optimal Policies

●An optimal policy is a policy δ* such that        
EU(δ*) ≥ EU(δ) for all policies δ

●We can use the dynamic programming principle 
to avoid enumerating all policies
●We can also use the structure of the decision 
network to use variable elimination to aid in the 
computation
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Computing the Best Policy
●We can work backwards as follows
●First compute optimal policy for Drug (last 
dec’n)
■for each asst to parents (C,F,BT,TR) and for each 

decision value (D = md,fd,none), compute the 
expected value of choosing that value of D

■set policy choice for each
value of parents to be
the value of D that

has max value
■eg: δD(c,f,bt,pos) = md

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional
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Computing the Best Policy

●Next compute policy for BT given policy 
δD(C,F,BT,TR) just determined for Drug
■since δD(C,F,BT,TR) is fixed, we can treat Drug as a 

normal random variable with deterministic 
probabilities

■ i.e., for any instantiation of parents, value of Drug is 
fixed by policy δD

■this means we can solve for optimal policy for BT 
just as before 

■only uninstantiated vars are random vars (once we 
fix its parents)
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Computing the Best Policy
●How do we compute these expected values?

■ suppose we have asst <c,f,bt,pos> to parents of Drug
■we want to compute EU of deciding to set Drug = md
■we can run variable elimination!

●Treat C,F,BT,TR,Dr as evidence
■ this reduces factors (e.g., U restricted to bt,md: depends on 

Dis)
■ eliminate remaining variables (e.g., only Disease left)

■ left with factor:U() = ΣDis P(Dis|c,f,bt,pos,md)U(Dis)

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional
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Computing the Best Policy
We now know EU of doing Dr=md when c,f,bt,pos
true
●Can do same for fd,no to 

decide which is best

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional
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Computing Expected Utilities
●The preceding illustrates a general 
phenomenon
■computing expected utilities with BNs is quite 

easy
■utility nodes are just factors that can be dealt 

with using variable elimination

EU = ΣA,B,C P(A,B,C) U(B,C)
= ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)

●Just eliminate variables
in the usual way U

C

B

A
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Optimizing Policies: Key Points
●If a decision node D has no decisions that 
follow it, we can find its policy by 
instantiating each of its parents and 
computing the expected utility of each 
decision for each parent instantiation
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Optimizing Policies: Key Points

■no-forgetting means that all other decisions are 
instantiated (they must be parents)

■ its easy to compute the expected utility using VE
■the number of computations is quite large: we 

run expected utility calculations (VE) for each 
parent instantiation together with each possible 
decision D might allow

■policy: choose max decision for each parent 
instant’n
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Optimizing Policies: Key Points

●When a decision D node is optimized, it can be 
treated as a random variable
■for each instantiation of its parents we now know 

what value the decision should take
■just treat policy as a new CPT: for a given parent 

instantiation x, D gets δ(x) with probability 1(all 
other decisions get probability zero)

●If we optimize from last decision to first, at 
each point we can optimize a specific decision 
by (a bunch of) simple VE calculations
■ it’s successor decisions (optimized) are just normal 

nodes in the BNs (with CPTs)
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Decision Network Notes

●Decision networks commonly used by decision 
analysts to help structure decision problems
●Much work put into computationally effective 
techniques to solve these
●Complexity much greater than BN inference

■we need to solve a number of BN inference 
problems

■one BN problem for each setting of decision node 
parents and decision node value
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Real Estate Investment
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DBN-Decision Nets for Planning

Tt

Lt

Ct

Rt

Tt+1

Lt+1

Ct+1

Rt+1

Mt Mt+1

Actt

U

Tt-1

Lt-1

Ct-1

Rt-1

Mt-1

Actt-1

Tt-2

Lt-2

Ct-2

Rt-2

Mt-2

Actt-2
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A Detailed Decision Net Example
● Setting: you want to buy a used car, but 

there’s a good chance it is a “lemon” (i.e., 
prone to breakdown). Before deciding to 
buy it, you can take it to a mechanic for 
inspection. They will give you a report on 
the car, labeling it either “good” or “bad”. A 
good report is positively correlated with the 
car being sound, while a bad report is 
positively correlated with the car being a 
lemon.
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A Detailed Decision Net Example
● However the report costs $50. So you could 

risk it, and buy the car without the report.
● Owning a sound car is better than having 

no car, which is better than owning a 
lemon.
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Car Buyer’s Network

Lemon

Report

Inspect Buy

U

l     ¬l
0.5 0.5

g      b     n

l  i   0.2   0.8   0
¬l i   0.9   0.1    0
l ¬i    0      0     1
¬l ¬i  0      0     1

Rep: good,bad,none

b   l   -600
b ¬l   1000

¬b l    -300
¬b¬l -300

Utility

-50 if
inspect
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Evaluate Last Decision: Buy (1)
●EU(B|I,R) = ΣL P(L|I,R,B)U(L,B) 

■ The probability of the remaining variables in the Utility function, 
times the utility function. Note P(L|I,R,B) = P(L|I,R), as B is a decision 
variable that does not influence L. 

●I = i, R = g:
■ P(L|I,g): use variable elimination. Query variable L is only remaining 

variable, so we only need to normalize (no summations).
■ P(L,i,g) = P(L)P(g|L,i)

HENCE: P(L|i,g) = normalized [P(l)P(g|l,i),P(¬l)P(g|¬l,i)
= [0.5*.2, 0.5*0.9] = [.18, .82]

■ EU(buy) = P(l|i,g)U(buy,l) + P(¬l)P(¬l|i,g) U(buy,¬l)-50
= .18*-600 + .82*1000 – 50  = 662

■ EU(¬buy) = P(l|i, g) U(¬buy,l) + P(¬l|i, g) U(¬buy,¬l) – 50
= .18*-300 + .82*-300 -50 = -350 

●So optimal δBuy (i,g) = buy
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Evaluate Last Decision: Buy (2)

●I = i, R = b:
■ P(L,i,b) = P(L)P(b|L,i)

P(L|i,g) = normalized [P(l)P(b|l,i),P(¬l)P(b|¬l,i)
= [0.5*.8, 0.5*0.1] = [.89, .11]

■ EU(buy) = P(l|i, b) U(l,buy) + P(¬l|i, b) U(¬l,buy) - 50
= .89*-600 + .11*1000 - 50  = -474

■ EU(¬buy) = P(l|i, b) U(l,¬buy) + P(¬l|i, b) U(¬l,¬buy) – 50
= .89*-300 + .11*-300 -50 = -350

●So optimal δBuy (i,b) = ¬buy
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Evaluate Last Decision: Buy (3)
●I = ¬i, R = n

■ P(L,¬i,n) = P(L)P(n|L,¬i)
P(L|¬i,n) = normalized [P(l)P(n|l,¬i),P(¬l)P(n|¬l,¬i)

= [0.5*1, 0.5*1] = [.5,.5]
■ EU(buy) = P(l|¬i,n) U(l,buy) + P(¬l|¬i,n) U(¬l,buy)

= .5*-600 + .5*1000  = 200 (no inspection cost)
■ EU(¬buy) = P(l|¬i, n) U(l,¬buy) + P(¬l|¬i, n) U(¬l,¬buy)

= .5*-300 +.5*-300 = -300
●So optimal δBuy (¬i,n) = buy

●Overall optimal policy for Buy is:
■ δBuy (i,g) = buy ; δBuy (i,b) = ¬buy ; δBuy (¬i,n) = buy

●Note: we don’t bother computing policy for (i,¬n),      
(¬i, g), or (¬i, b), since these occur with probability 
0
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Evaluate First Decision: Inspect
●EU(I) = ΣL,R P(L,R|I) U(L, δBuy (I,R))

■where P(R,L|I) = P(R|L,I)P(L|I)

■ EU(i) = .1*-600 + .4*-300 + .45*1000 + .05*-300 - 50
= 237.5 – 50 = 187.5

■ EU(¬i) = P(l|¬i, n) U(l,buy) + P(¬l|¬i, n) U(¬l,buy)
= .5*-600 + .5*1000 = 200

■ So optimal δInspect (¬i) = buy

-300 - 50 = -350¬buy0.1*.5 = .05b,¬l
1000 - 50 = 950buy0.9*.5 = .45g,¬l
-300 - 50 = -350¬buy0.8*.5 = .4b,l
-600 - 50 = -650buy0.2*.5 = .1g,l
U( L, δBuy )δBuyP(R,L |i)
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Value of Information
●So optimal policy is: don’t inspect, buy the car

■ EU = 200
■ Notice that the EU of inspecting the car, then buying it iff

you get a good report, is 237.5 less the cost of the 
inspection (50). So inspection not worth the improvement 
in EU.

■ But suppose inspection cost $25: then it would be worth it 
(EU = 237.5 – 25 = 212.5 > EU(¬i))

■ The expected value of information associated with 
inspection is 37.5 (it improves expected utility by this 
amount ignoring cost of inspection). How? Gives 
opportunity to change decision (¬buy if bad).

■ You should be willing to pay up to $37.5 for the report


