
1Hojjat Ghaderi, University of Toronto, Fall 2006

CSC384: Intro to Artificial Intelligence
Decision Making Under Uncertainty

2Hojjat Ghaderi, University of Toronto, Fall 2006

Preferences
● I give robot a planning problem: I want

coffee
■but coffee maker is broken: robot reports “No

plan!”

3Hojjat Ghaderi, University of Toronto, Fall 2006

Preferences
● We really want more robust behavior.
■Robot to know what to do if my primary goal

can’t be satisfied – I should provide it with some
indication of my preferences over alternatives

■e.g., coffee better than tea, tea better than water,
water better than nothing, etc.

● But it’s more complex:
■it could wait 45 minutes for coffee maker to be

fixed
■what’s better: tea now? coffee in 45 minutes?
■could express preferences for <beverage,time>

pairs

4Hojjat Ghaderi, University of Toronto, Fall 2006

Preference Orderings

●A preference ordering ≽ is a ranking of all
possible states of affairs (worlds) S
■these could be outcomes of actions, truth assts,

states in a search problem, etc.
■s ≽ t: means that state s is at least as good as t
■s ≻ t: means that state s is strictly preferred to t

●We insist that ≽ is
■reflexive: i.e., s ≽ s for all states s
■transitive: i.e., if s ≽ t and t ≽ w, then s ≽ w
■connected: for all states s,t, either s ≽ t or t ≽ s

5Hojjat Ghaderi, University of Toronto, Fall 2006

Why Impose These Conditions?

●Structure of preference ordering
imposes certain “rationality
requirements” (it is a weak
ordering)
●E.g., why transitivity?

■Suppose you (strictly) prefer coffee to
tea, tea to OJ, OJ to coffee

■ If you prefer X to Y, you’ll trade me Y
plus $1 for X

■ I can construct a “money pump” and
extract arbitrary amounts of money
from you

≻

≻

≻

Best

Worst

6Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Problems: Certainty
● A decision problem under certainty is:
■ a set of decisions D
● e.g., paths in search graph, plans, actions…

■ a set of outcomes or states S
● e.g., states you could reach by executing a

plan
■ an outcome function f : D →S
● the outcome of any decision

■ a preference ordering ≽ over S
● A solution to a decision problem is any d*∊

D such that f(d*) ≽ f(d) for all d∊D

7Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Problems: Certainty
● A decision problem under certainty is:

■ a set of decisions D
■ a set of outcomes or states S
■ an outcome function f : D →S
■ a preference ordering ≽ over S

● A solution to a decision problem is any d*∊ D such
that f(d*) ≽ f(d) for all d∊D
■ e.g., in classical planning we that any goal state s is

preferred/equal to every other state. So d* is a solution iff
f(d*) is a solution state. I.e., d* is a solution iff it is a plan
that achieves the goal.

■ More generally, in classical planning we might consider
different goals with different values, and we want d* to be
a plan that optimizes our value.

8Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Making under Uncertainty

● Suppose actions don’t have deterministic outcomes
■ e.g., when robot pours coffee, it spills 20% of time, making

a mess
■ preferences: chc, ¬mess ≻ ¬chc,¬mess ≻ ¬chc, mess

● What should robot do?
■ decision getcoffee leads to a good outcome and a bad

outcome with some probability
■ decision donothing leads to a medium outcome for sure

● Should robot be optimistic? pessimistic?
● Really odds of success should influence decision

■ but how?

getcoffee
chc, ¬mess

¬chc, mess
donothing ¬chc, ¬mess

.8

.2

9Hojjat Ghaderi, University of Toronto, Fall 2006

Utilities

● Rather than just ranking outcomes, we must
quantify our degree of preference
■ e.g., how much more important is having coffee

than having tea?
● A utility function U: S →ℝ associates a real-

valued utility with each outcome (state).
■ U(s) quantifies our degree of preference for s

● Note: U induces a preference ordering ≽U over
the states S defined as: s ≽U t iff U(s) ≥ U(t)
■ ≽U is reflexive, transitive, connected

10Hojjat Ghaderi, University of Toronto, Fall 2006

Expected Utility
● With utilities we can compute expected

utilities!
● In decision making under uncertainty, each

decision d induces a distribution Prd over
possible outcomes
■ Prd(s) is probability of outcome s under decision

d
● The expected utility of decision d is defined

∑
∈

=
Ss

d sUsdEU)()(Pr)(

11Hojjat Ghaderi, University of Toronto, Fall 2006

Expected Utility
● Say U(chc,¬ms) = 10, U(¬chc,¬ms) = 5,

U(¬chc,ms) = 0,
● Then
■ EU(getcoffee) = 8
■ EU(donothing) = 5

● If U(chc,¬ms) = 10, U(¬chc,¬ms) = 9,
U(¬chc,ms) = 0,
■ EU(getcoffee) = 8
■ EU(donothing) = 9

12Hojjat Ghaderi, University of Toronto, Fall 2006

The MEU Principle

● The principle of maximum expected utility
(MEU) states that the optimal decision under
conditions of uncertainty is the decision that
has greatest expected utility.

● In our example
■ if my utility function is the first one, my robot

should get coffee
■ if your utility function is the second one, your robot

should do nothing

13Hojjat Ghaderi, University of Toronto, Fall 2006

Computational Issues
● At some level, solution to a dec. prob. is trivial

■ complexity lies in the fact that the decisions and outcome
function are rarely specified explicitly

■ e.g., in planning or search problem, you construct the set
of decisions by constructing paths or exploring search
paths. Then we have to evaluate the expected utility of
each. Computationally hard!

■ e.g., we find a plan achieving some expected utility e
● Can we stop searching?
● Must convince ourselves no better plan exists
● Generally requires searching entire plan space, unless

we have some clever tricks

14Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Problems: Uncertainty
●A decision problem under uncertainty is:

■a set of decisions D
■a set of outcomes or states S
■an outcome function Pr : D →∆(S)

●∆(S) is the set of distributions over S (e.g.,
Prd)

■a utility function U over S
●A solution to a decision problem under
uncertainty is any d*∊ D such that EU(d*) ≽
EU(d) for all d∊D

15Hojjat Ghaderi, University of Toronto, Fall 2006

Expected Utility: Notes

●Note that this viewpoint accounts for both:
■uncertainty in action outcomes
■uncertainty in state of knowledge
■any combination of the two

s0

s1

s2a
0.8

0.2

s3

s4

b 0.3

0.7

0.7 s1

0.3 s2

0.7 t1

0.3 t2

0.7 w1

0.3 w2

a

b

Stochastic actions Uncertain knowledge

16Hojjat Ghaderi, University of Toronto, Fall 2006

Expected Utility: Notes

●Why MEU? Where do utilities come from?
■underlying foundations of utility theory tightly

couple utility with action/choice
■a utility function can be determined by asking

someone about their preferences for actions in
specific scenarios (or “lotteries” over outcomes)

●Utility functions needn’t be unique
■ if I multiply U by a positive constant, all decisions

have same relative utility
■ if I add a constant to U, same thing
■U is unique up to positive affine transformation

17Hojjat Ghaderi, University of Toronto, Fall 2006

So What are the Complications?
●Outcome space is large

■ like all of our problems, states spaces can be
huge

■don’t want to spell out distributions like Prd
explicitly

■Soln: Bayes nets (or related: influence diagrams)

18Hojjat Ghaderi, University of Toronto, Fall 2006

So What are the Complications?
●Decision space is large

■usually our decisions are not one-shot actions
■rather they involve sequential choices (like plans)
■ if we treat each plan as a distinct decision,

decision space is too large to handle directly
■Soln: use dynamic programming methods to

construct optimal plans (actually generalizations
of plans, called policies… like in game trees)

19Hojjat Ghaderi, University of Toronto, Fall 2006

An Simple Example
● Suppose we have two actions: a, b
● We have time to execute two actions in

sequence
● This means we can do either:
■ [a,a], [a,b], [b,a], [b,b]

● Actions are stochastic: action a induces
distribution Pra(si | sj) over states
■ e.g., Pra(s2 | s1) = .9 means prob. of moving to

state s2 when a is performed at s1 is .9
■ similar distribution for action b

● How good is a particular sequence of
actions?

20Hojjat Ghaderi, University of Toronto, Fall 2006

Distributions for Action Sequences

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5

.5 .5
s6 s7

.6 .4

a b

s8 s9

.2 .8
s10 s11

.7 .3

a b

s14 s15

.1 .9
s16 s17

.2 .8

a b

s18 s19

.2 .8
s20 s21

.7 .3

a b

21Hojjat Ghaderi, University of Toronto, Fall 2006

Distributions for Action Sequences

●Sequence [a,a] gives distribution over “final states”
■ Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

●Similarly:
■ [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) =

.03
■ and similar distributions for sequences [b,a] and [b,b]

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b

22Hojjat Ghaderi, University of Toronto, Fall 2006

How Good is a Sequence?

● We associate utilities with the “final” outcomes
■ how good is it to end up at s4, s5, s6, …

● Now we have:
■ EU(aa) = .45u(s4) + .45u(s5) + .02u(s8) + .08u(s9)
■ EU(ab) = .54u(s6) + .36u(s7) + .07u(s10) +

.03u(s11)
■ etc…

23Hojjat Ghaderi, University of Toronto, Fall 2006

Utilities for Action Sequences
s1

s13s12s3s2

a b

.9 .1 .2 .8

u(s4) u(s5)

.5 .5
u(s6)

.6 .4

a b

.2 .8 .7 .3

a b

.1 .9 .2 .8

a b

.2 .8
u(s21)

.7 .3

a b

etc….

Looks a lot like a game tree, but with chance nodes
instead of min nodes. (We average instead of minimizing)

24Hojjat Ghaderi, University of Toronto, Fall 2006

Action Sequences are not sufficient

●Suppose we do a first; we could reach s2 or s3:
■ At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) +

.4u(s7)
■ At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11)

● After doing a first, we want to do a next if we reach
s2, but we want to do b second if we reach s3

s1

s13s12s3s2

a b

.9 .1 .2 .8

s4 s5
.5 .5

s6 s7
.6 .4

a b

s8 s9
.2 .8

s10 s11
.7 .3

a b

s14 s15
.1 .9

s16 s17
.2 .8

a b

s18 s19
.2 .8

s20 s21
.7 .3

a b

25Hojjat Ghaderi, University of Toronto, Fall 2006

Policies
●This suggests that when dealing with
uncertainty we want to consider policies, not
just sequences of actions (plans)
●We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

●Contrast this with four “plans”
■[a; a], [a; b], [b; a], [b; b]
■note: each plan corresponds to a policy, so we

can only gain by allowing decision maker to use
policies

26Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluating Policies
●Number of plans (sequences) of length k

■exponential in k: |A|k if A is our action set
●Number of policies is even larger

■ if we have n=|A| actions and m=|O| outcomes per
action, then we have (nm)k policies

●Fortunately, dynamic programming can be
used
■e.g., suppose EU(a) > EU(b) at s2
■never consider a policy that does anything else at s2

●How to do this?
■back values up the tree much like minimax search

27Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Trees
●Squares denote choice nodes

■these denote action choices by
decision maker (decision nodes)

●Circles denote chance nodes
■these denote uncertainty

regarding action effects
■“nature” will choose the child

with specified probability
●Terminal nodes labeled with
utilities
■denote utility of final state (or it

could denote the utility of
“trajectory” (branch) to decision
maker

s1a b

.9 .1 .2 .8

5 2 4 3

28Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluating Decision Trees

●Procedure is exactly like game trees, except…
■key difference: the “opponent” is “nature” who

simply chooses outcomes at chance nodes with
specified probability: so we take expectations
instead of minimizing

●Back values up the tree
■U(t) is defined for all terminals (part of input)
■U(n) = exp {U(c) : c a child of n} if n is a chance node
■U(n) = max {U(c) : c a child of n} if n is a choice node

●At any choice node (state), the decision maker
chooses action that leads to highest utility child

29Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluating a Decision Tree
●U(n3) = .9*5 + .1*2
●U(n4) = .8*3 + .2*4
●U(s2) = max{U(n3), U(n4)}

■decision a or b (whichever is max)
●U(n1) = .3U(s2) + .7U(s3)
●U(s1) = max{U(n1), U(n2)}

■decision: max of a, b

s2

n3
a b

.9 .1

5 2

n4
.8 .2

3 4

s1

n1
a b

.3 .7
n2

s3

30Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Tree Policies
●Note that we don’t
just compute values,
but policies for the
tree
●A policy assigns a
decision to each
choice node in tree

●Some policies can’t be distinguished in terms of their
expected values
■ e.g., if policy chooses a at node s1, choice at s4 doesn’t

matter because it won’t be reached
■ Two policies are implementationally indistinguishable if

they disagree only at unreachable decision nodes
●reachability is determined by policy themselves

s2

n3
a b

n4

s1

n1
a b

.3 .7
n2

s3 s4
a bab

31Hojjat Ghaderi, University of Toronto, Fall 2006

Key Assumption: Observability
●Full observability: we must know the initial
state and outcome of each action
■specifically, to implement the policy, we must be

able to resolve the uncertainty of any chance
node that is followed by a decision node

■e.g., after doing a at s1, we must know which of
the outcomes (s2 or s3) was realized so we know
what action to do next (note: s2 and s3 may
prescribe different ations)

32Hojjat Ghaderi, University of Toronto, Fall 2006

Computational Issues

●Savings compared to explicit policy evaluation
is substantial
●Evaluate only O((nm)d) nodes in tree of depth d

■total computational cost is thus O((nm)d)
●Note that this is how many policies there are

■but evaluating a single policy explicitly requires
substantial computation: O(nmd)

■total computation for explicity evaluating each
policy would be O(ndm2d) !!!

●Tremendous value to dynamic programming
solution

33Hojjat Ghaderi, University of Toronto, Fall 2006

Computational Issues

●Tree size: grows exponentially with depth
●Possible solutions:

■bounded lookahead with heuristics (like game trees)
■heuristic search procedures (like A*)

34Hojjat Ghaderi, University of Toronto, Fall 2006

Other Issues

●Specification: suppose each state is an
assignment to variables; then representing
action probability distributions is complex (and
branching factor could be immense)
●Possible solutions:

■represent distribution using Bayes nets
■solve problems using decision networks (or

influence diagrams)

35Hojjat Ghaderi, University of Toronto, Fall 2006

Large State Spaces (Variables)

●To represent outcomes of actions or decisions,
we need to specify distributions
■Pr(s|d) : probability of outcome s given decision d
■Pr(s|a,s’): prob. of state s given that action a

performed in state s’
●But state space exponential in # of variables

■spelling out distributions explicitly is intractable
●Bayes nets can be used to represent actions

■this is just a joint distribution over variables,
conditioned on action/decision and previous state

36Hojjat Ghaderi, University of Toronto, Fall 2006

Example Action using Dynamic BN

Tt

Lt

Ct

Rt

Tt+1

Lt+1

Ct+1

Rt+1

Deliver Coffee action

fR(Lt,Rt,Ct,Ct+1)

fJ(Tt,Tt+1)

L R C C(t+1) C(t+1)

T T T 1.0 0.0
F T T 1.0 0.0
T F T 1.0 0.0
F F T 1.0 0.0
T T F 0.8 0.2
F T F 0.0 1.0
T F F 0.0 1.0
F F F 0.0 1.0

T T(t+1) T(t+1)
T 1.0 0.0
F 0.0 1.0

Mt Mt+1

M – mail waiting C – Craig has coffee
T – lab tidy R – robot has coffee
L – robot located in Craig’s office

37Hojjat Ghaderi, University of Toronto, Fall 2006

Dynamic BN Action Representation
●Dynamic Bayesian networks (DBNs):

■a way to use BNs to represent specific actions
■ list all state variables for time t (pre-action)
■ list all state variables for time t+1 (post-action)
■ indicate parents of all t+1 variables

●these can include time t and time t+1
variables
●network must be acyclic

■specify CPT for each time t+1 variable

38Hojjat Ghaderi, University of Toronto, Fall 2006

Dynamic BN Action Representation
●Note: generally no prior given for time t
variables
■we’re (generally) interested in conditional

distribution over post-action states given pre-
action state

■so time t vars are instantiated as “evidence”
when using a DBN (generally)

39Hojjat Ghaderi, University of Toronto, Fall 2006

Example of Dependence within
Slice

Throw rock at window action

Alarmt Alarmt+1

Brokent Brokent+1 P(brokent+1 | brokent) = 1
P(brokent+1 | ¬brokent) = .6

P(alt+1 | alt, Brt) = 1
P(alt+1 | ¬alt,¬brt+1) = 0
P(alt+1 | ¬alt,brt+1) = .95

Throwing rock has certain probability of breaking window and
setting off alarm; but whether alarm is triggered depends on
whether rock actually broke the window.

40Hojjat Ghaderi, University of Toronto, Fall 2006

Use of BN Action Reprsnt’n
●DBNs: actions concisely,naturally specified

■These look a bit like STRIPS and the situtation
calculus, but allow for probabilistic effects

41Hojjat Ghaderi, University of Toronto, Fall 2006

Use of BN Action Reprsnt’n
●How to use:

■use to generate “expectimax” search tree to
solve decision problems

■use directly in stochastic decision making
algorithms

●First use doesn’t buy us much
computationally when solving decision
problems. But second use allows us to
compute expected utilities without
enumerating the outcome space (tree)
■well see something like this with decision

networks

42Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks
●Decision networks (more commonly known as
influence diagrams) provide a way of
representing sequential decision problems
■basic idea: represent the variables in the problem

as you would in a BN
■add decision variables – variables that you

“control”
■add utility variables – how good different states

are

43Hojjat Ghaderi, University of Toronto, Fall 2006

Sample Decision Network

Disease

TstResult
Chills

Fever

BloodTst Drug

U

optional

44Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks: Chance Nodes
●Chance nodes

■random variables, denoted by circles
■as in a BN, probabilistic dependence on parents

Disease

Fever

Pr(flu) = .3
Pr(mal) = .1
Pr(none) = .6

Pr(f|flu) = .5
Pr(f|mal) = .3
Pr(f|none) = .05

TstResult

BloodTst

Pr(pos|flu,bt) = .2
Pr(neg|flu,bt) = .8
Pr(null|flu,bt) = 0
Pr(pos|mal,bt) = .9
Pr(neg|mal,bt) = .1
Pr(null|mal,bt) = 0
Pr(pos|no,bt) = .1
Pr(neg|no,bt) = .9
Pr(null|no,bt) = 0
Pr(pos|D,¬bt) = 0
Pr(neg|D,¬bt) = 0
Pr(null|D,¬bt) = 1

45Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks: Decision Nodes
●Decision nodes

■variables decision maker sets, denoted by
squares

■parents reflect information available at time
decision is to be made

●In example decision node: the actual values
of Ch and Fev will be observed before the
decision to take test must be made
■agent can make different decisions for each

instantiation of parents

Chills

Fever
BloodTst BT ∊ {bt, ¬bt}

46Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks: Value Node
●Value node

■specifies utility of a state, denoted by a diamond
■utility depends only on state of parents of value

node
■generally: only one value node in a decision

network
●Utility depends only on disease and drug

Disease

BloodTst Drug

U

optional

U(fludrug, flu) = 20
U(fludrug, mal) = -300
U(fludrug, none) = -5
U(maldrug, flu) = -30
U(maldrug, mal) = 10
U(maldrug, none) = -20
U(no drug, flu) = -10
U(no drug, mal) = -285
U(no drug, none) = 30

47Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks: Assumptions
●Decision nodes are totally ordered

■decision variables D1, D2, …, Dn
■decisions are made in sequence
■e.g., BloodTst (yes,no) decided before Drug

(fd,md,no)

48Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Networks: Assumptions
●No-forgetting property

■any information available when decision Di is
made is available when decision Dj is made (for i
< j)

■thus all parents of Di are parents of Dj
●Network does not show these “implicit
parents”, but the links are present, and must
be considered when specifying the network
parameters, and when computing.

Chills

Fever

BloodTst Drug
Dashed arcs
ensure the
no-forgetting
property

49Hojjat Ghaderi, University of Toronto, Fall 2006

Policies
●Let Par(Di) be the parents of decision node Di

■Dom(Par(Di)) is the set of assignments to parents
●A policy δ is a set of mappings δi, one for
each decision node Di
■δi :Dom(Par(Di)) →Dom(Di)
■δi associates a decision with each parent asst for

Di
●For example, a policy for BT might be:

■δBT (c,f) = bt
■δBT (c,¬f) = ¬bt
■δBT (¬c,f) = bt
■δBT (¬c,¬f) = ¬bt

Chills

Fever
BloodTst

50Hojjat Ghaderi, University of Toronto, Fall 2006

Value of a Policy
●Value of a policy δ is the expected utility
given that decision nodes are executed
according to δ
●Given asst x to the set X of all chance
variables, let δ(x) denote the asst to decision
variables dictated by δ
■e.g., asst to D1 determined by it’s parents’ asst

in x
■e.g., asst to D2 determined by it’s parents’ asst

in x along with whatever was assigned to D1
■etc.

●Value of δ : EU(δ) = ΣX P(X, δ(X)) U(X, δ(X))

51Hojjat Ghaderi, University of Toronto, Fall 2006

Optimal Policies

●An optimal policy is a policy δ* such that
EU(δ*) ≥ EU(δ) for all policies δ

●We can use the dynamic programming principle
to avoid enumerating all policies
●We can also use the structure of the decision
network to use variable elimination to aid in the
computation

52Hojjat Ghaderi, University of Toronto, Fall 2006

Computing the Best Policy
●We can work backwards as follows
●First compute optimal policy for Drug (last
dec’n)
■for each asst to parents (C,F,BT,TR) and for each

decision value (D = md,fd,none), compute the
expected value of choosing that value of D

■set policy choice for each
value of parents to be
the value of D that

has max value
■eg: δD(c,f,bt,pos) = md

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

53Hojjat Ghaderi, University of Toronto, Fall 2006

Computing the Best Policy

●Next compute policy for BT given policy
δD(C,F,BT,TR) just determined for Drug
■since δD(C,F,BT,TR) is fixed, we can treat Drug as a

normal random variable with deterministic
probabilities

■ i.e., for any instantiation of parents, value of Drug is
fixed by policy δD

■this means we can solve for optimal policy for BT
just as before

■only uninstantiated vars are random vars (once we
fix its parents)

54Hojjat Ghaderi, University of Toronto, Fall 2006

Computing the Best Policy
●How do we compute these expected values?

■ suppose we have asst <c,f,bt,pos> to parents of Drug
■we want to compute EU of deciding to set Drug = md
■we can run variable elimination!

●Treat C,F,BT,TR,Dr as evidence
■ this reduces factors (e.g., U restricted to bt,md: depends on

Dis)
■ eliminate remaining variables (e.g., only Disease left)

■ left with factor:U() = ΣDis P(Dis|c,f,bt,pos,md)U(Dis)

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

55Hojjat Ghaderi, University of Toronto, Fall 2006

Computing the Best Policy
We now know EU of doing Dr=md when c,f,bt,pos
true
●Can do same for fd,no to

decide which is best

Disease

TstResult
Chills

Fever
BloodTst Drug

U

optional

56Hojjat Ghaderi, University of Toronto, Fall 2006

Computing Expected Utilities
●The preceding illustrates a general
phenomenon
■computing expected utilities with BNs is quite

easy
■utility nodes are just factors that can be dealt

with using variable elimination

EU = ΣA,B,C P(A,B,C) U(B,C)
= ΣA,B,C P(C|B) P(B|A) P(A) U(B,C)

●Just eliminate variables
in the usual way U

C

B

A

57Hojjat Ghaderi, University of Toronto, Fall 2006

Optimizing Policies: Key Points
●If a decision node D has no decisions that
follow it, we can find its policy by
instantiating each of its parents and
computing the expected utility of each
decision for each parent instantiation

58Hojjat Ghaderi, University of Toronto, Fall 2006

Optimizing Policies: Key Points

■no-forgetting means that all other decisions are
instantiated (they must be parents)

■ its easy to compute the expected utility using VE
■the number of computations is quite large: we

run expected utility calculations (VE) for each
parent instantiation together with each possible
decision D might allow

■policy: choose max decision for each parent
instant’n

59Hojjat Ghaderi, University of Toronto, Fall 2006

Optimizing Policies: Key Points

●When a decision D node is optimized, it can be
treated as a random variable
■for each instantiation of its parents we now know

what value the decision should take
■just treat policy as a new CPT: for a given parent

instantiation x, D gets δ(x) with probability 1(all
other decisions get probability zero)

●If we optimize from last decision to first, at
each point we can optimize a specific decision
by (a bunch of) simple VE calculations
■ it’s successor decisions (optimized) are just normal

nodes in the BNs (with CPTs)

60Hojjat Ghaderi, University of Toronto, Fall 2006

Decision Network Notes

●Decision networks commonly used by decision
analysts to help structure decision problems
●Much work put into computationally effective
techniques to solve these
●Complexity much greater than BN inference

■we need to solve a number of BN inference
problems

■one BN problem for each setting of decision node
parents and decision node value

61Hojjat Ghaderi, University of Toronto, Fall 2006

Real Estate Investment

62Hojjat Ghaderi, University of Toronto, Fall 2006

DBN-Decision Nets for Planning

Tt

Lt

Ct

Rt

Tt+1

Lt+1

Ct+1

Rt+1

Mt Mt+1

Actt

U

Tt-1

Lt-1

Ct-1

Rt-1

Mt-1

Actt-1

Tt-2

Lt-2

Ct-2

Rt-2

Mt-2

Actt-2

63Hojjat Ghaderi, University of Toronto, Fall 2006

A Detailed Decision Net Example
● Setting: you want to buy a used car, but

there’s a good chance it is a “lemon” (i.e.,
prone to breakdown). Before deciding to
buy it, you can take it to a mechanic for
inspection. They will give you a report on
the car, labeling it either “good” or “bad”. A
good report is positively correlated with the
car being sound, while a bad report is
positively correlated with the car being a
lemon.

64Hojjat Ghaderi, University of Toronto, Fall 2006

A Detailed Decision Net Example
● However the report costs $50. So you could

risk it, and buy the car without the report.
● Owning a sound car is better than having

no car, which is better than owning a
lemon.

65Hojjat Ghaderi, University of Toronto, Fall 2006

Car Buyer’s Network

Lemon

Report

Inspect Buy

U

l ¬l
0.5 0.5

g b n

l i 0.2 0.8 0
¬l i 0.9 0.1 0
l ¬i 0 0 1
¬l ¬i 0 0 1

Rep: good,bad,none

b l -600
b ¬l 1000

¬b l -300
¬b¬l -300

Utility

-50 if
inspect

66Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluate Last Decision: Buy (1)
●EU(B|I,R) = ΣL P(L|I,R,B)U(L,B)

■ The probability of the remaining variables in the Utility function,
times the utility function. Note P(L|I,R,B) = P(L|I,R), as B is a decision
variable that does not influence L.

●I = i, R = g:
■ P(L|I,g): use variable elimination. Query variable L is only remaining

variable, so we only need to normalize (no summations).
■ P(L,i,g) = P(L)P(g|L,i)

HENCE: P(L|i,g) = normalized [P(l)P(g|l,i),P(¬l)P(g|¬l,i)
= [0.5*.2, 0.5*0.9] = [.18, .82]

■ EU(buy) = P(l|i,g)U(buy,l) + P(¬l)P(¬l|i,g) U(buy,¬l)-50
= .18*-600 + .82*1000 – 50 = 662

■ EU(¬buy) = P(l|i, g) U(¬buy,l) + P(¬l|i, g) U(¬buy,¬l) – 50
= .18*-300 + .82*-300 -50 = -350

●So optimal δBuy (i,g) = buy

67Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluate Last Decision: Buy (2)

●I = i, R = b:
■ P(L,i,b) = P(L)P(b|L,i)

P(L|i,g) = normalized [P(l)P(b|l,i),P(¬l)P(b|¬l,i)
= [0.5*.8, 0.5*0.1] = [.89, .11]

■ EU(buy) = P(l|i, b) U(l,buy) + P(¬l|i, b) U(¬l,buy) - 50
= .89*-600 + .11*1000 - 50 = -474

■ EU(¬buy) = P(l|i, b) U(l,¬buy) + P(¬l|i, b) U(¬l,¬buy) – 50
= .89*-300 + .11*-300 -50 = -350

●So optimal δBuy (i,b) = ¬buy

68Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluate Last Decision: Buy (3)
●I = ¬i, R = n

■ P(L,¬i,n) = P(L)P(n|L,¬i)
P(L|¬i,n) = normalized [P(l)P(n|l,¬i),P(¬l)P(n|¬l,¬i)

= [0.5*1, 0.5*1] = [.5,.5]
■ EU(buy) = P(l|¬i,n) U(l,buy) + P(¬l|¬i,n) U(¬l,buy)

= .5*-600 + .5*1000 = 200 (no inspection cost)
■ EU(¬buy) = P(l|¬i, n) U(l,¬buy) + P(¬l|¬i, n) U(¬l,¬buy)

= .5*-300 +.5*-300 = -300
●So optimal δBuy (¬i,n) = buy

●Overall optimal policy for Buy is:
■ δBuy (i,g) = buy ; δBuy (i,b) = ¬buy ; δBuy (¬i,n) = buy

●Note: we don’t bother computing policy for (i,¬n),
(¬i, g), or (¬i, b), since these occur with probability
0

69Hojjat Ghaderi, University of Toronto, Fall 2006

Evaluate First Decision: Inspect
●EU(I) = ΣL,R P(L,R|I) U(L, δBuy (I,R))

■where P(R,L|I) = P(R|L,I)P(L|I)

■ EU(i) = .1*-600 + .4*-300 + .45*1000 + .05*-300 - 50
= 237.5 – 50 = 187.5

■ EU(¬i) = P(l|¬i, n) U(l,buy) + P(¬l|¬i, n) U(¬l,buy)
= .5*-600 + .5*1000 = 200

■ So optimal δInspect (¬i) = buy

-300 - 50 = -350¬buy0.1*.5 = .05b,¬l
1000 - 50 = 950buy0.9*.5 = .45g,¬l
-300 - 50 = -350¬buy0.8*.5 = .4b,l
-600 - 50 = -650buy0.2*.5 = .1g,l
U(L, δBuy)δBuyP(R,L |i)

70Hojjat Ghaderi, University of Toronto, Fall 2006

Value of Information
●So optimal policy is: don’t inspect, buy the car

■ EU = 200
■ Notice that the EU of inspecting the car, then buying it iff

you get a good report, is 237.5 less the cost of the
inspection (50). So inspection not worth the improvement
in EU.

■ But suppose inspection cost $25: then it would be worth it
(EU = 237.5 – 25 = 212.5 > EU(¬i))

■ The expected value of information associated with
inspection is 37.5 (it improves expected utility by this
amount ignoring cost of inspection). How? Gives
opportunity to change decision (¬buy if bad).

■ You should be willing to pay up to $37.5 for the report

