
1Hojjat Ghaderi, University of Toronto, Fall 2006

CSC384: Intro to Artificial Intelligence
Planning-III

2Hojjat Ghaderi, University of Toronto, Fall 2006

GraphPlan
● GraphPlan is an approach to planning that is

built on ideas similar to “reachability”. But
the approach is not heuristic: delete effects
are not ignored.

● The performance is not at good as heuristic
search, but GraphPlan can be generalized to
other types of planning, e.g., finding
optimal plans, planning with sensing, etc.

3Hojjat Ghaderi, University of Toronto, Fall 2006

Graphplan
●Operates in two phases.

■Phase I. Guess a “concurrent” plan length k, then
build a leveled graph with k alternating layers.

■Phase II. Search this leveled graph for a plan. If
no plan is found, return to phase I and build a
bigger leveled graph with k+1 alternating layers.
The final plan, if found, consists of a sequence
of sets of actions

{a1
1,a2

1,…} → {a1
2, a2

2,…} → {a1
3, a2

3, …} → …

The plan is “concurrent” in the sense that at
stage I, all actions in the i-th set are executed in
parallel.

4Hojjat Ghaderi, University of Toronto, Fall 2006

Graphplan
●The leveled graph alternates between levels

containing propositional nodes and levels
containing action nodes. (Similar to the
reachability graph).

●Three types of edges: precondition-edges,
add-edges, and delete-edges.

5Hojjat Ghaderi, University of Toronto, Fall 2006

GraphPlan Level Graph
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

Initial state
Only the
propositions
true in the
initial state.

All propositions
added by actions in
previous level

Possible actions
Only the actions
whose preconditions
are in the previous
level.
Also have no-ops
for capturing non-
changes.

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

pickup(A)
pickup(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

Precondition

Delete
Add

6Hojjat Ghaderi, University of Toronto, Fall 2006

GraphPlan Level Graph
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

Level S0 contains all facts true in the initial state.
Level A0 contains all actions whose preconditions are true in S0.

Included in the set of actions are no-ops. One no-op for every
ground atomic fact. The precondition of the no-op is its fact, its
add effect is its fact.

…
Level Si contains all facts that are added by actions at level Ai-1

Level Ai contains all actions whose preconditions are true in Si

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

pickup(A)
pickup(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

7Hojjat Ghaderi, University of Toronto, Fall 2006

GraphPlan Mutexes.
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

In addition to the facts/actions. GraphPlan also computes and adds
mutexes to the graph.

Mutexes are edges between two labels, indicating that these two
labels cannot be true at the same time.

Mutexes are added as we construct each layer, and in fact alter the
set of labels the eventually appear in a layer.

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

pickup(A)
pickup(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

8Hojjat Ghaderi, University of Toronto, Fall 2006

Mutexes

●A mutex between two actions a1 and a2 in the
same layer Ai, means that a1 and a2 cannot be
executed simultaneously (in parallel) at the ith
step of a concurrent plan.

●A mutex between two facts F1 and F2 in the
same state layer Si, means that F1 and F2
cannot be be simultaneously true after i stages
of parallel action execution.

9Hojjat Ghaderi, University of Toronto, Fall 2006

Mutexes

●It is not possible to compute all mutexes.
■This is as hard as solving the planning problem, and

we want to perform mutex computation as a
precursor to solving a planning instance.

●However, we can quickly compute a subset of
the set of all mutexes. Although incomplete
these mutexes are still very useful.
■This is what GraphPlan does.

10Hojjat Ghaderi, University of Toronto, Fall 2006

Mutexes
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

pickup(A)
pickup(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

●Two actions are mutex if either action deletes a
precondition or add effect of another.

●Note no-ops participate in mutexes.
■ Intuitively these actions have to be sequenced—they

can’t be executed in parallel

11Hojjat Ghaderi, University of Toronto, Fall 2006

Mutexes

●Two propositions p and q are mutex if all
actions adding p are mutex of all actions
adding q.
■Must look at all pairs of actions that add p and q.
■ Intuitively, can’t achieve p and q together at this

stage because we can’t concurrently execute
achieving actions for them at the previous stage.

onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

pickup(A)
pickup(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

12Hojjat Ghaderi, University of Toronto, Fall 2006

Mutexes

●Two actions are mutex if two of their
preconditions are mutex.
■ Intuitively, we can’t execute these two actions

concurrently at this stage because their
preconditions can’t simultaneously hold at the
previous stage.

putdown(A)
putdown(B)
no-op(onTable(A))
no-op(onTable(B))
no-op(Clear(A))
no-op(Clear(B))
no-op(handempty)

holding(A)
holding(B)
onTable(A)
onTable(B)
clear(A)
clear(B)
handempty

13Hojjat Ghaderi, University of Toronto, Fall 2006

How Mutexes affect the level graph.
1. Two actions are mutex if either action deletes a precondition

or add effect of another
2. Two propositions p and q are mutex if all actions adding p

are mutex of all actions adding q
3. Two actions are mutex if two of their preconditions are

mutex
● We compute mutexes as we add levels.

■ S0 is set of facts true in initial state. (Contains no mutexes).
■ A0 is set of actions whose preconditions are true in S0.

● Mark as mutex any action pair where one deletes a
precondition or add effect of the other.

■ S1 is set of facts added by actions at level A0.
● Mark as mutex any pair of facts p and q if all actions

adding p are mutex with all actions adding q.
■ A1 is set of actions whose preconditions are not mutex at S1.

● Mark as mutex any action pair with preconditions that
are mutex in S1, or where one deleted a precondition or
add effect of the other.

14Hojjat Ghaderi, University of Toronto, Fall 2006

How Mutexes affect the level graph.
1. Two actions are mutex if either action deletes a precondition

or add effect of another
2. Two propositions p and q are mutex if all actions adding p

are mutex of all actions adding q
3. Two actions are mutex if two of their preconditions are

mutex
●

■ …
■ Si is set of facts added by actions in level Ai-1

● Mark as mutex all facts satisfying 2 (where we look at the
action mutexes of Ai-1 is set of facts true in initial state.
(Contains no mutexes).

■ Ai is set of actions whose preconditions are true and non-
mutex at Si.
● Mark as mutex any action pair satisfying 1 or 2.

15Hojjat Ghaderi, University of Toronto, Fall 2006

How Mutexes affect the level graph.
● Hence, mutexes will prune actions and facts

from levels of the graph.
● They also record useful information about

impossible combinations.

16Hojjat Ghaderi, University of Toronto, Fall 2006

Example
on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

pickup deletes
handempty, one of

unstack(a,b)’s
preconditions.

NoOp-on(a,b)

unstack(a,b)
deletes the add
effect of NoOp-
on(a,b), so these

actions are
mutex as well

17Hojjat Ghaderi, University of Toronto, Fall 2006

Example
on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)
unstack(a,b) is
the only action

that adds
clear(b), and this

is mutex with
pickup(c), which

is the only way of
adding holding(c).

18Hojjat Ghaderi, University of Toronto, Fall 2006

Example
on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)

These two are
mutex for the
same reason.

19Hojjat Ghaderi, University of Toronto, Fall 2006

Example
on(a,b),
on(b,c),
ontable(c),
ontable(b),
clear(a),
clear(c),
handempty

unstack(a,b)

pickup(c)

on(a,b),
on(b,c),
ontable(c),
ontable(d),
clear(a),
clear(c),
handempty,
holding(a),
clear(b),
holding(c)

precondition
add effect
del effect

NoOp-on(a,b)

unstack(a,b) is
also mutex with

the NoOp-
on(a,b).

So these two
facts are mutex

(NoOp is the only
way on(a,b) can

be created).

20Hojjat Ghaderi, University of Toronto, Fall 2006

Phase II. Searching the Graphplan
on(A,B)
on(B,C)
onTable(c)
onTable(B)
clear(A)
clear(B)
handempty

K

● Build the graph to level k, such that every
member of the goal is present at level k, and
no two are mutex. Why?

21Hojjat Ghaderi, University of Toronto, Fall 2006

Searching the Graphplan
on(A,B)
on(B,C)
onTable(c)
onTable(B)
clear(A)
clear(B)
handempty

stack(A,B)
stack(B,C)
no-op(on(B,C))
...

● Find a non-mutex collection of actions that
add all of the facts in the goal.

K

22Hojjat Ghaderi, University of Toronto, Fall 2006

Searching the Graphplan
on(A,B)
on(B,C)
onTable(c)
onTable(B)
clear(A)
clear(B)
handempty

K

stack(A,B)
stack(B,C)
no-op(on(B,C))
...

holding(A)
clear(B)
on(B,C)

K-1

● The preconditions of these actions at level K-
1 become the new goal at level K-1.

● Recursively try to solve this new goal. If this
fails, backtrack and try a different set of
actions for solving the goal at level k.

23Hojjat Ghaderi, University of Toronto, Fall 2006

Phase II-Search

● Solve(G,K)
■ forall sets of actions A={ai} such that

no pair (ai, aj) ∈ A is mutex
the actions in A suffice to add all facts in G
●Let P = union of preconditions of actions in A
● If Solve(P,K-1)

Report PLAN FOUND
■ At end of forall. Exhausted all possible action sets

A
Report NOPLAN

This is a depth first search.

24Hojjat Ghaderi, University of Toronto, Fall 2006

Graph Plan Algorithm
● Phase I. build leveled graph.
● Phase II. Search leveled graph.

■ Phase I: While last state level does not contain all
goal facts with no pair being mutex
●add new state/action level to graph
● if last state/Action level = previous state/action

level (including all MUTEXES) graph has leveled
off) report NO PLAN.

■ Phase II: Starting at last state level search
backwards in graph for plan. Try all ways of
moving goal back to initial state.
● If successful report PLAN FOUND.
●Else goto Phase I.

25Hojjat Ghaderi, University of Toronto, Fall 2006

Dinner Date Example
● Initial State

{dirty, cleanHands, quiet}
● Goal

{dinner, present, clean}
● Actions

■ Cook: Pre: {cleanHands}
Add: {dinner}

■ Wrap: Pre: {quiet}
Add: {present}

■ Tidy: Pre: {}
Add: {clean}
Del: {cleanHands, dirty}

■ Vac: Pre: {}
Add: {clean}
Del: {quite, dirty}

26Hojjat Ghaderi, University of Toronto, Fall 2006

Dinner example: rule1 action mutex

● Actions (including all No-OP actions)
■ Cook: Pre: {H} Add: {D} Del: {}
■ Wrap: Pre: {Q} Add: {P} Del: {}
■ Tidy: Pre: {} Add: {C} Del: {H,R}
■ Vac: Pre: {} Add: {C} Del: {Q, R}
■ NO(C): Pre: {C} Add: {C} Del: {}
■ NO(D): Pre: {D} Add: {D} Del: {}
■ NO(H): Pre: {H} Add: {H} Del: {}
■ NO(P): Pre: {P} Add: {P} Del: {}
■ NO(Q): Pre: {Q} Add: {Q} Del: {}
■ NO(R): Pre: {R} Add: {R} Del: {}

● Look at those with non-empty Del, and find others that have these Del in their Pre or Add:
● So, Rule 1 action mutex are as follows (these are fixed):

(Tidy,Cook), (Tidy, NO(H)), (Tidy, NO(R)), (Vac, Wrap), (Vac,NO(Q)), (Vac, NO(R))
● Rule 3 action mutex depend on state layer and you have to build the graph.

Legend: NO:No-Op, C:clean,D: Dinner, H: cleanHands, P:Present, Q:quiet, R: diRty

27Hojjat Ghaderi, University of Toronto, Fall 2006

Dinner Example:
Legend:
● Arrows: Blue: pre, Green: add, Red: Del, Black: Mutex
● D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty
● Init={R,H,Q} Goal={D,P,C}

R
H
Q

D
P
c
R
H
Q

Cook
Wrap
Tidy
Vac
NO(R)
NO(H)
NO(Q)

S0 A0 S1

Note:
At layer S1 all goals are present and no
pair forms a mutex
So, go to phase II and search the graph:
i.e. Find a set of non-mutex actions that
adds all goals {D,P,C}:

x{Cook, Wrap, Tidy} mutex Tidy&Cook

x{Cook, Wrap, Vac} mutex Vac&Wrap
No such set exists, nothing to backtrack,
so goto phase I and add one more action
and state layers

28Hojjat Ghaderi, University of Toronto, Fall 2006

Dinner Example:
● Arrows: Blue: pre, Green: add, Red: Del, Black: Mutex
● D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty
● Init={R,H,Q} Goal={D,P,C}
● Note: first draw rule1 action mutex at layer A1, then find rule3 action mutex (for

this only look at mutex fact at level S1). Finally, apply rule 2 for fact mutex at S2.

R
H
Q

D
P
c
R
H
Q

Cook
Wrap
Tidy
Vac
NO(R)
NO(H)
NO(Q)

Cook
Wrap
Tidy
Vac
NO(D)
NO(P)
NO(C)
NO(R)
NO(H)
NO(Q)

S0 A0 S1 A1 S2

D
P
c
R
H
Q

Note:At layer S2 all goals
are present and no pair
forms a mutex, so
phase II: Find a set of
non-mutex actions that
adds all goals {D,P,C}:

x{Cook, Wrap, Tidy}
x{Cook, Wrap, Vac}

{Cook, Wrap, NO(C)}
NewG={H,Q,C} @ S1

Cannot find any non-
mutex action set in A0
Backtrack to S2, try
another action set

{Cook, NO(P), Vac}

29Hojjat Ghaderi, University of Toronto, Fall 2006

Dinner Example:
● Arrows: Blue: pre, Green: add, Red: Del, Black: Mutex
● D: Dinner, C:clean, H: cleanHands, Q:quiet, P:Present, R: diRty
● Init={R,H,Q} Goal={D,P,C}
● Note: first draw rule1 action mutex at layer A1, then find rule3 action mutex (for

this only look at mutex fact at level S1). Finally, apply rule 2 for fact mutex at S2.

R
H
Q

D
P
c
R
H
Q

Cook
Wrap
Tidy
Vac
NO(R)
NO(H)
NO(Q)

Cook
Wrap
Tidy
Vac
NO(D)
NO(P)
NO(C)
NO(R)
NO(H)
NO(Q)

S0 A0 S1 A1 S2

D
P
c
R
H
Q

{Cook, NO(P), Vac}
NewG={H,P} @ S1

Find a nonmutex set of
act in A0 to get NewG:

{NO(H),Wrap}

NewG’={H,Q} @ S0
Done!
So, the actions are
Wrap, {Cook, Vac}

Wrap,Cook,Vac
Wrap,Vac,Cook

Note that we could still
backtrack to S2, try
remaining action sets!

30Hojjat Ghaderi, University of Toronto, Fall 2006

ADL Operators.

ADL operators add a number of features to STRIPS.
1. Their preconditions can be arbitrary formulas, not

just a conjunction of facts.
2. They can have conditional and universal effects.
3. Open world assumption:

1. States can have negative literals
2. The effect (P∧¬Q) means add P and ¬Q but delete ¬ P and

Q.

But they must still specify atomic changes to the
knowledge base (add or delete ground atomic facts).

31Hojjat Ghaderi, University of Toronto, Fall 2006

ADL Operators Examples.

move(X,Y,Z)
Pre: on(X,Y) ∧ clear(Z)
Effs: ADD[on(X,Z)]

DEL[on(X,Y)]
Z ≠ table → DEL[clear(Z)]
Y ≠ table → ADD[clear(Y)]

32Hojjat Ghaderi, University of Toronto, Fall 2006

ADL Operators, example

KB = { clear(c), clear(b),
on(c,a),
on(a,table),
on(b,table)}

C
A B

C
A B

move(c,a,b)

KB = {on(c,b)
clear(c), clear(a)
on(a,table),
on(b,table)}

move(c,a,b)
Pre: on(c,a) ∧ clear(b)
Effs: ADD[on(c,b)]

DEL[on(c,a)]
b ≠ table → DEL[clear(b)]
a ≠ table → ADD[clear(a)]

33Hojjat Ghaderi, University of Toronto, Fall 2006

ADL Operators Examples.

clearTable()
Pre:
Effs: ∀X. on(X,table) → DEL[on(X,table)]

34Hojjat Ghaderi, University of Toronto, Fall 2006

ADL Operators.

1. Arbitrary formulas as preconditions.
in a CW-KB we can evaluate whether or not the
preconditions hold for an arbitrary precondition.

2. They can have conditional and universal
effects.

Similarly we can evaluate the condition to see if
the effect should be applied, and find all bindings
for which it should be applied.

Specify atomic changes to the knowledge base.
■ CW-KB can be updated just as before.

