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CSC384: Intro to Artificial Intelligence
Knowledge Representation III

●Announcements.
■ Office hours?

●Resolution Proofs.
■ Part I: Convert to clausal form
■ Part II: Dealing with variables (unification).
■ Part III: Constructing Resolution Proofs.
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Unification 

●Ground clauses are clauses with no 
variables in them. For ground clauses we 
can use syntactic identity to detect when we 
have a P and ¬P pair. 

●What about variables can the clauses
■ (P(john), Q(fred), R(X))
■ (¬P(Y), R(susan), R(Y))
Be resolved?
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Unification. 

●Intuitively, once reduced to clausal form, all 
remaining variables are universally 
quantified. So, implicitly (¬P(Y), R(susan), 
R(Y)) represents clauses like
■ (¬P(fred), R(susan), R(fred))
■ (¬P(john), R(susan), R(john))
■…

●So there is a “specialization” of this clause 
that can be resolved with (P(john), Q(fred), 
R(X)
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Unification. 

●We want to be able to match conflicting 
literals, even when they have variables. This 
matching process automatically determines 
whether or not there is a “specialization” 
that matches.

●We don’t want to over specialize!
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Unification. 

●(¬p(X), s(X), q(fred))
●(p(Y), r(Y))
●Possible resolvants
■ (s(john), q(fred), r(john)) {Y=X, X=john}
■ (s(sally), q(fred), r(sally)) {Y=X, X=sally}
■ (s(X), q(fred), r(X))          {Y=X}

●The last resolvant is “most-general”, the 
other two are specializations of it.

●We want to keep the most general clause so 
that we can use it future resolution steps.
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Unification. 

●unification is a mechanism for finding a 
“most general” matching.

●First we consider substitutions.
■ A substitution is a finite set of equations of the 

form 

(V = t)

where V is a variable and t is a term not 
containing V. (t might contain other variables).
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Substitutions. 

●We can apply a substitution σ to a formula f 
to obtain a new formula fσ by 
simultaneously replacing every variable 
mentioned in the left hand side of the 
substitution by the right hand side. 

p(X,g(Y,Z))[X=Y, Y=f(a)] p(Y,g(f(a),Z))

●Note that the substitutions are not applied 
sequentially, i.e., the first Y is not 
subsequently replaced by f(a).
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Substitutions. 

● We can compose two substitutions. θ and 
σ to obtain a new substition θσ. 

Let θ = {X1=s1, X2=s2, …, Xm=sm}
σ = {Y1=t1, Y2=t2, …, Yk=sk}

To compute θσ
1. S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,

Y2=t2,…, Yk=sk}

we apply σ to each RHS of θ and then add 
all of the equations of σ. 
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Substitutions. 

1. S = {X1=s1σ, X2=s2σ, …, Xm=smσ, Y1=t1,
Y2=t2,…, Yk=sk}

2. Delete any identities, i.e., equations of the 
form V=V.

3. Delete any equation Yi=si where Yi is equal 
to one of the Xj in θ.

The final set S is the composition θσ.
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Composition Example. 

θ = {X=f(Y), Y=Z}, σ = {X=a, Y=b, Z=Y}

θσ
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Substitutions. 

● The empty substitution ε = {} is also a 
substitution, and it acts as an identity under 
composition.

● More importantly substitutions when 
applied to formulas are associative:

(fθ)σ = f(θσ)

● Composition is simply a way of converting 
the sequential application of a series of 
substitutions to a single simultaneous 
substitution.
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Unifiers. 

● A unifier of two formulas f and g is a 
substitution σ that makes f and g 
syntactically identical. 

● Not all formulas can be unified—
substitutions only affect variables. 

p(f(X),a)     p(Y,f(w))

● This pair cannot be unified as there is no 
way of making a = f(w) with a substitution. 
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MGU. 

● A substitution σ of two formulas f and g is a 
Most General Unifier (MGU) if

1. σ is a unifier. 
2. For every other unifier θ of f and g there 

must exist a third substitution λ such that 
θ = σλ

This says that every other unifier is “more 
specialized than σ. The MGU of a pair of 
formulas f and g is unique up to renaming. 
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MGU. 
p(f(X),Z)    p(Y,a)

1. σ = {Y = f(a), X=a, Z=a} is a unifier.

p(f(X),Z)σ = 
p(Y,a)σ =

But it is not an MGU.

2. θ = {Y=f(X), Z=a} is an MGU. 
p(f(X),Z) θ = 
p(Y,a) θ =
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MGU. 
p(f(X),Z)    p(Y,a)

3. σ = θλ, where λ={X=a}

σ = {Y = f(a), X=a, Z=a}
λ ={X=a}
θλ =
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MGU. 
● The MGU is the “least specialized” way of 

making clauses with universal variables 
match.

● We can compute MGUs.
● Intuitively we line up the two formulas and 

find the first sub-expression where they 
disagree. The pair of subexpressions where 
they first disagree is called the disagreement 
set.

● The algorithm works by successively fixing 
disagreement sets until the two formulas 
become syntactically identical.
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MGU. 
To find the MGU of two formulas f and g.

1. k = 0; σ0 = {}; S0 = {f,g}
2. If Sk contains an identical pair of formulas stop, and 

return σk as the MGU of f and g. 
3. Else find the disagreement set Dk={e1,e2} of Sk
4. If e1 = V a variable, and e2 = t a term not 

containing V (or vice-versa) then let
σk+1 = σk {V=t}    (Compose the additional 

substitution)
Sk+1 = Sk{V=t}    (Apply the additional substitution)
k = k+1
GOTO 2

5. Else stop, f and g cannot be unified.
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MGU Example 1. 

S_0 = {p(f(a), g(X))  ;   p(Y,Y)}
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MGU Example 2. 

S0 = {p(a,X,h(g(Z)))  ;   p(Z,h(Y),h(Y))}
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MGU Example 3. 

S0 = {p(X,X)  ;  p(Y,f(Y))}
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Non-Ground Resolution

●Resolution of non-ground clauses. From the 
two clauses

(L, Q1, Q2, …, Qk)
(¬M, R1, R2, …, Rn)

Where there exists σ a MGU for L and M.

We infer the new clause

(Q1σ, …, Qkσ, R1σ, …, Rnσ)
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Non-Ground Resolution E.G. 
1. (p(X), q(g(X)))
2. (r(a), q(Z), ¬p(a))

L=p(X); M=p(a)
σ = {X=a}

3. R[1a,2c]{X=a} (q(g(a)), r(a), q(Z))

The notation is important. 
● “R” means resolution step. 
● “1a” means the first (a-th) literal in the first clause i.e. p(X). 
● “2c” means the third (c-th) literal in the second clause, ¬p(a). 

■ 1a and 2c are the “clashing” literals.
● {X=a} is the substitution applied to make the clashing literals

identical.
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Resolution Proof Example 

“Some patients like all doctors. No patient likes 
any quack. Therefore no doctor is a quack.”

Resolution Proof Step 1.
Pick symbols to represent these assertions.

p(X): X is a patient
d(x): X is a doctor
q(X): X is a quack
l(X,Y): X likes Y
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Resolution Proof Example 

Resolution Proof Step 2.
Convert each assertion to a first-order formula.

1. Some patients like all doctors. 

F1. 
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Resolution Proof Example 

2. No patient likes any quack

F2. 

3. Therefore no doctor is a quack.
Query. 
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Resolution Proof Example 

Resolution Proof Step 3. 
Convert to Clausal form.

F1. 

F2.

Negation of Query. 
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Resolution Proof Example 

Resolution Proof Step 4. 
Resolution Proof from the Clauses.
1. p(a)
2. (¬d(Y),  l(a,Y))
3. (¬p(Z), ¬q(R), ¬l(Z,R))
4. d(b)
5. q(b)
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Resolution Proof Example 


