CSC384: Intro to Artificial Intelligence
Backtracking Search II

● Announcements

■ A1 marking scheme will be posted on the web by tomorrow.
■ Please let me know of any error in your marks.
■ A2 has been posted. Due Nov 1. Please start early to get help you might need
Unary Constraints (over one variable)
- e.g. \(C(X): X = 2 \) \(C(Y): Y > 5 \)

Binary Constraints (over two variables)
- e.g. \(C(X, Y): X + Y < 6 \)
- Can be represented by Constraint Graph
 - Nodes are variables, arcs are show constraints.
 - E.g. 4–Queens:

Higher-order constraints: over 3 or more variables
- We can convert any constraint into a set of binary constraints (may need some auxiliary variables)
Problems with plain backtracking.
Constraint Satisfaction Problems

- **Sudoku:**
 - The 3,3 cell has no possible value. But in the backtracking search we don’t detect this until all variables of a row/column or sub-square constraint are assigned. So we have the following situation:

 ![Diagram](image)

 Variable has no possible value, but we don’t detect this. Until we try to assign it a value.
Constraint Propagation

- Constraint propagation refers to the technique of “looking ahead” in the search at the as yet unassigned variables.
- Try to detect if any obvious failures have occurred.
- “Obvious” means things we can test/detect efficiently.
- Even if we don’t detect an obvious failure we might be able to eliminate some possible part of the future search.
Constraint Propagation

- Propagation has to be applied during search. Potentially at every node of the search tree.
- If propagation is slow, this can slow the search down to the point where using propagation actually slows search down!
- There is always a tradeoff between searching fewer nodes in the search, and having a higher nodes/second processing rate.
Forward Checking

● Forward checking is an extension of backtracking search that employs a “modest” amount of propagation (lookahead).

● When a variable is instantiated we check all constraints that have only one uninstantiated variable remaining.

● For that uninstantiated variable, we check all of its values, pruning those values that violate the constraint.
Forward Checking

$\text{FCCheck}\left(C, x \right)$

// C is a constraint with all
// its variables already
// assigned, except for variable x.

for $d :=$ each member of $\text{CurDom}[x]$
 if making $x = d$ together with
 previous assignments to
 variables in scope C falsifies C
 then
 remove d from $\text{CurDom}[V]$
 if $\text{CurDom}[V] = \{}$ then return DWO (Domain Wipe Out)

return ok
Forward Checking

FC(Level) (Forward Checking)

If all variables are assigned
- PRINT Value of each Variable
- RETURN or EXIT (RETURN for more solutions) (EXIT for only one solution)

V := PickAnUnassignedVariable()
Variable[Level] := V
Assigned[V] := TRUE
for d := each member of CurDom(V)
 Value[V] := d
 for each constraint C over V that has one
 unassigned variable in its scope X.
 val := FCCheck(C, X)
 if(val != DWO)
 FC(Level +1)
 RestoreAllValuesPrunedByFCCheck()
return;
FC Example.

- **4X4 Queens**
 - Q1, Q2, Q3, Q4 with domain \{1..4\}
 - All binary constraints: C(Qi,Qj)

- **FC illustration:** color values are removed from domain of each row (blue, then yellow, then green)

DWO happens for Q3
So backtrack, try another value for Q2
Example.

- **4X4 Queens continue...**

```
Solution!
```
Restoring Values

- After we backtrack from the current assignment (in the for loop) we must restore the values that were pruned as a result of that assignment.
- Some bookkeeping needs to be done, as we must remember which values were pruned by which assignment (FCCheck is called at every recursive invocation of FC).
Minimum Remaining Values

- FC also gives us for free a very powerful heuristic
 - Always branch on a variable with the smallest remaining values (smallest CurDom).
 - If a variable has only one value left, that value is forced, so we should propagate its consequences immediately.
 - This heuristic tends to produce skinny trees at the top. This means that more variables can be instantiated with fewer nodes searched, and thus more constraint propagation/DWO failures occur with less work.
Empirically

- FC often is about 100 times faster than BT
- FC with MRV (minimal remaining values) often 10000 times faster.
- But on some problems the speed up can be much greater
 - Converts problems that are not solvable to problems that are solvable.
Arc Consistency (2-consistency)

- Another form of propagation is to make each arc consistent.

- $C(X,Y)$ is consistent iff for every value of X there is some value of Y that satisfies C.

- Can remove values from the domain of variables:
 - E.G. $C(X,Y): X>Y$ Dom(X)={1,5,11} Dom(Y)={3,8,15}
 - For $X=1$ there is no value of Y s.t. $1>Y$ => remove 1 from domain X
 - For $Y=15$ there is no value of X s.t. $X>15$, so remove 15 from domain Y
 - We obtain Dom(X)={5,11} and Dom(Y)={3,8}.

- Removing a value from a domain may trigger further inconsistency, so we have to repeat the procedure until everything is consistent.
 - For efficient implementation, we keep track of inconsistent arcs by putting them in a Queue (See AC3 algorithm in the book).

- This is stronger than forward checking. why?
Backjumping

- Standard backtracking backtracks to the most recent variable (1 level up).

- Trying different values for this variable may have no effect:
 - E.g. \(C(X,Y,Z): X \neq Y \) & \(Z > 3 \) and \(C(W): W \mod 2 = 0 \)
 - \(\text{Dom}(X) = \text{Dom}(Y) = \{1..5\}, \text{Dom}(Z) = \{3,4,5\} \) \(\text{Dom}(W) = \{10...99\} \)

After assigning \(X=1, Y=1, \) and \(W=10, \) every value of \(Z \) fails. So we backtrack to \(W. \) But trying different values of \(W \) is useless, \(X \) and \(Y \) are sources of failure!

We should backtrack to \(Y! \)

- More intelligent: **Simple Backjumping** backtracks to the last variable among the set of variables that caused the failure, called the conflict set. Conflict set of variable \(V \) is the set of previously assigned variables that share a constraint with \(V. \) Can be shown that FC is stronger than simple backjumping.

- Even a more efficient approach: **Conflict-Directed-Backjumping**: a more complex notion of conflict set is used: When we backjump to \(Y \) from \(Z, \) we update the conflict set of \(Y: \text{conf}(Y) = \text{conf}(Y) \cup \text{Conf}(Z) - \{Z\} \)