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CSC384: Intro to Artificial Intelligence
Game Tree Search II

●Midterm: Everything covered so far 
plus this lecture slides.
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Depth-first Implementation of 
MinMax

●Depth-first evaluation of game tree
■ terminal(N) holds if the state (node) is a terminal 

node. Similarly for maxMove(N) (Max player’s move) 
and minMove(N) (Min player’s move). 

■ utility of terminals is specified as part of the input

utility(N,U) :- terminal(N), utility(N,U).
utility(N,U) :- maxMove(N), children(N,CList),

utilityList(CList,UList), 
max(UList,U). 

utility(N,U) :- minMove(N), children(N,CList),
utilityList(CList,UList), 
min(UList,U).
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Depth-first Implementation of 
MinMax

■ utilityList simply computes a list of utilities, one for 
each node on the list.

■ The way prolog executes implies that this will 
compute utilities using a depth-first post-order 
traversal of the game tree. 
● post-order (visit children before visiting parents).

utilityList([],[]).
utilityList([N|R],[U|UList])

:- utility(N,U), utilityList(R,UList).
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Depth-first Implementation of MinMax

●Notice that the game tree has to have finite 
depth for this to work

●Advantage of DF implementation: space 
efficient
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Visualization of DF-MinMax
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Once s17 eval’d, no need to store
tree: s16 only needs its value.
Once s24 value computed, we can

evaluate s16
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Pruning

●It is not necessary to examine entire tree to 
make correct minimax decision

●Assume depth-first generation of tree
■ After generating value for only some of n’s children 

we can prove that we’ll never reach n in a MinMax
strategy.

■ So we needn’t generate or evaluate any further 
children of n !

●Two types of pruning (cuts):
■ pruning of max nodes (α-cuts)
■ pruning of min nodes (β-cuts)

7Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Cutting Max Nodes (Alpha Cuts)
● At a Max node n:
■ Let β be the lowest value of n’s siblings examined so far 

(siblings to the left of n that have already been searched)
■ Let α be the highest value of n’s children examined so far 

(changes as children examined)

max node
min node
terminal
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α =8 α=10  α=105
β =5 only one sibling value known 

sequence of values for α as s6’s 
children are explored
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Cutting Max Nodes (Alpha Cuts)
●If α becomes ≥ β we can stop expanding 

the children of n
■Min will never choose to move from n’s parent to 

n since it would choose one of n’s lower valued 
siblings first.

n

P

s1 s2 s3

14 12 8

β = 8

2 4 9

α = 2 4 9

min node
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Cutting Min Nodes (Beta Cuts)
● At a Min node n:
■ Let β be the lowest value of n’s children 

examined so far (changes as children examined)
■ Let α be the highest value of n’s sibling’s 

examined so far (fixed when evaluating n)

max node
min node
terminal

s1 s13 s16

s0

s2 s6α =10

β =5 β =3
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Cutting Min Nodes (Beta Cuts)
●If β becomes ≤ α we can stop expanding 

the children of n.
■Max will never choose to move from n’s parent to 

n since it would choose one of n’s higher value 
siblings first.

n

P

s1 s2 s3

6 2 7

alpha = 7

9 8 3

beta = 9 8 3
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Alpha-Beta Algorithm

Evaluate(startNode):
/* assume Max moves first */
MaxEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
If terminal(node), return  U(n)
For each c in childlist(n)

val ← MinEval(c, alpha, beta)
alpha ← max(alpha, val)
If alpha ≥ beta, return alpha

Return alpha

MinEval(node, alpha, beta):
If terminal(node), return  U(n)
For each c in childlist(n)

val ← MaxEval(c, alpha, beta)
beta ← min(beta, val)
If alpha ≥ beta, return beta

Return beta

Pseudo-code that associates 
a value with each node. 
Strategy extracted by 
moving to Max node (if you 
are player Max) at each 
step. 
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Rational Opponents
●This all assumes that your opponent is 

rational
■ e.g., will choose moves that minimize your score

●What if your opponent doesn’t play 
rationally?
■ will it affect quality of outcome?
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Rational Opponents
●Storing your strategy is a potential issue:
■ you must store “decisions” for each node you can 

reach by playing optimally
■ if your opponent has unique rational choices, this 

is a single branch through game tree
■ if there are “ties”, opponent could choose any one 

of the “tied” moves: must store strategy for each 
subtree

●What if your opponent doesn’t play 
rationally? Will your stored strategy still 
work? 
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Practical Matters
●All “real” games are too large to enumerate 

tree
■ e.g., chess branching factor is roughly 35
■ Depth 10 tree: 2,700,000,000,000,000 nodes
■ Even alpha-beta pruning won’t help here!
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Practical Matters
●We must limit depth of search tree

■can’t expand all the way to terminal nodes
■we must make heuristic estimates about the 

values of the (nonterminal) states at the leaves 
of the tree

■evaluation function is an often used term
■evaluation functions are often learned

●Depth-first expansion almost always used 
for game trees because of sheer size of trees
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Heuristics

●Think of a few games and suggest some 
heuristics for estimating the “goodness” of a 
position
■ chess?
■ checkers?
■ your favorite video game?
■ “find the last parking spot”?
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Some Interesting Games

●Tesauro’s TD-Gammon
■ champion backgammon player which learned 

evaluation function; stochastic component (dice)
●Checker’s (Samuel, 1950s; Chinook 1990s 

Schaeffer)
●Chess (which you all know about)
●Bridge, Poker, etc.
●Check out Jonathan Schaeffer’s Web page:
■ www.cs.ualberta.ca/~games
■ they’ve studied lots of games (you can play too)
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An Aside on Large Search Problems

●Issue: inability to expand tree to terminal 
nodes is relevant even in standard search
■ often we can’t expect A* to reach a goal by 

expanding full frontier
■ so we often limit our lookahead, and make moves 

before we actually know the true path to the goal
■ sometimes called online or realtime search

●In this case, we use the heuristic function not 
just to guide our search, but also to commits 
to moves we actually make
■ in general, guarantees of optimality are lost, but we 

reduce computational/memory expense dramatically
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Realtime Search Graphically
1. We run A* (or our favorite search algorithm) 

until we are forced to make a move or run out 
of memory. Note: no leaves are goals yet.

2. We use evaluation function f(n) to decide which 
path looks best (let’s say it is the red one).

3. We take the first step along the best path 
(red), by actually making that move.

4. We restart search at the node we reach by 
making that move. (We may actually cache the 
results of the relevant part of first search 
tree if it’s hanging around, as it would with A*).


