
1Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

CSC384: Intro to Artificial Intelligence
Game Tree Search II

●Midterm: Everything covered so far
plus this lecture slides.

2Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Depth-first Implementation of
MinMax

●Depth-first evaluation of game tree
■ terminal(N) holds if the state (node) is a terminal

node. Similarly for maxMove(N) (Max player’s move)
and minMove(N) (Min player’s move).

■ utility of terminals is specified as part of the input

utility(N,U) :- terminal(N), utility(N,U).
utility(N,U) :- maxMove(N), children(N,CList),

utilityList(CList,UList),
max(UList,U).

utility(N,U) :- minMove(N), children(N,CList),
utilityList(CList,UList),
min(UList,U).

3Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Depth-first Implementation of
MinMax

■ utilityList simply computes a list of utilities, one for
each node on the list.

■ The way prolog executes implies that this will
compute utilities using a depth-first post-order
traversal of the game tree.
● post-order (visit children before visiting parents).

utilityList([],[]).
utilityList([N|R],[U|UList])

:- utility(N,U), utilityList(R,UList).

4Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Depth-first Implementation of MinMax

●Notice that the game tree has to have finite
depth for this to work

●Advantage of DF implementation: space
efficient

5Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Visualization of DF-MinMax

t3 t4 t5

t11 t12

t25 t26

s1 s13 s16

s0

s2 s6 s17 s24

s21s18

t14 t15

t22 t23t19 t20

s10s7

t8 t9

Once s17 eval’d, no need to store
tree: s16 only needs its value.
Once s24 value computed, we can

evaluate s16

6Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Pruning

●It is not necessary to examine entire tree to
make correct minimax decision

●Assume depth-first generation of tree
■ After generating value for only some of n’s children

we can prove that we’ll never reach n in a MinMax
strategy.

■ So we needn’t generate or evaluate any further
children of n !

●Two types of pruning (cuts):
■ pruning of max nodes (α-cuts)
■ pruning of min nodes (β-cuts)

7Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Cutting Max Nodes (Alpha Cuts)
● At a Max node n:
■ Let β be the lowest value of n’s siblings examined so far

(siblings to the left of n that have already been searched)
■ Let α be the highest value of n’s children examined so far

(changes as children examined)

max node
min node
terminal

s1 s13 s16

s0

s2 s6

T3
8

T4
10

T5
5

α =8 α=10 α=105
β =5 only one sibling value known

sequence of values for α as s6’s
children are explored

8Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Cutting Max Nodes (Alpha Cuts)
●If α becomes ≥ β we can stop expanding

the children of n
■Min will never choose to move from n’s parent to

n since it would choose one of n’s lower valued
siblings first.

n

P

s1 s2 s3

14 12 8

β = 8

2 4 9

α = 2 4 9

min node

9Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Cutting Min Nodes (Beta Cuts)
● At a Min node n:
■ Let β be the lowest value of n’s children

examined so far (changes as children examined)
■ Let α be the highest value of n’s sibling’s

examined so far (fixed when evaluating n)

max node
min node
terminal

s1 s13 s16

s0

s2 s6α =10

β =5 β =3

10Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Cutting Min Nodes (Beta Cuts)
●If β becomes ≤ α we can stop expanding

the children of n.
■Max will never choose to move from n’s parent to

n since it would choose one of n’s higher value
siblings first.

n

P

s1 s2 s3

6 2 7

alpha = 7

9 8 3

beta = 9 8 3

11Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Alpha-Beta Algorithm

Evaluate(startNode):
/* assume Max moves first */
MaxEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MinEval(c, alpha, beta)
alpha ← max(alpha, val)
If alpha ≥ beta, return alpha

Return alpha

MinEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MaxEval(c, alpha, beta)
beta ← min(beta, val)
If alpha ≥ beta, return beta

Return beta

Pseudo-code that associates
a value with each node.
Strategy extracted by
moving to Max node (if you
are player Max) at each
step.

12Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Rational Opponents
●This all assumes that your opponent is

rational
■ e.g., will choose moves that minimize your score

●What if your opponent doesn’t play
rationally?
■ will it affect quality of outcome?

13Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Rational Opponents
●Storing your strategy is a potential issue:
■ you must store “decisions” for each node you can

reach by playing optimally
■ if your opponent has unique rational choices, this

is a single branch through game tree
■ if there are “ties”, opponent could choose any one

of the “tied” moves: must store strategy for each
subtree

●What if your opponent doesn’t play
rationally? Will your stored strategy still
work?

14Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Practical Matters
●All “real” games are too large to enumerate

tree
■ e.g., chess branching factor is roughly 35
■ Depth 10 tree: 2,700,000,000,000,000 nodes
■ Even alpha-beta pruning won’t help here!

15Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Practical Matters
●We must limit depth of search tree

■can’t expand all the way to terminal nodes
■we must make heuristic estimates about the

values of the (nonterminal) states at the leaves
of the tree

■evaluation function is an often used term
■evaluation functions are often learned

●Depth-first expansion almost always used
for game trees because of sheer size of trees

16Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Heuristics

●Think of a few games and suggest some
heuristics for estimating the “goodness” of a
position
■ chess?
■ checkers?
■ your favorite video game?
■ “find the last parking spot”?

17Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Some Interesting Games

●Tesauro’s TD-Gammon
■ champion backgammon player which learned

evaluation function; stochastic component (dice)
●Checker’s (Samuel, 1950s; Chinook 1990s

Schaeffer)
●Chess (which you all know about)
●Bridge, Poker, etc.
●Check out Jonathan Schaeffer’s Web page:
■ www.cs.ualberta.ca/~games
■ they’ve studied lots of games (you can play too)

18Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

An Aside on Large Search Problems

●Issue: inability to expand tree to terminal
nodes is relevant even in standard search
■ often we can’t expect A* to reach a goal by

expanding full frontier
■ so we often limit our lookahead, and make moves

before we actually know the true path to the goal
■ sometimes called online or realtime search

●In this case, we use the heuristic function not
just to guide our search, but also to commits
to moves we actually make
■ in general, guarantees of optimality are lost, but we

reduce computational/memory expense dramatically

19Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006

Realtime Search Graphically
1. We run A* (or our favorite search algorithm)

until we are forced to make a move or run out
of memory. Note: no leaves are goals yet.

2. We use evaluation function f(n) to decide which
path looks best (let’s say it is the red one).

3. We take the first step along the best path
(red), by actually making that move.

4. We restart search at the node we reach by
making that move. (We may actually cache the
results of the relevant part of first search
tree if it’s hanging around, as it would with A*).

