CSC384: Intro to Artificial Intelligence
Game Tree Search I

● Readings
 ■ Chapter 6.1, 6.2, 6.3, 6.6

● Announcements:
 ■ Sample Questions for Test1 posted on the web!
 ■ T3: Fri Sep 29 10–11am SS2127
 ■ T4: Fri Sep 29 4–5pm BA3012
Generalizing Search Problems

● So far: our search problems have assumed agent has complete control of environment
 ■ state does not change unless the agent (robot) changes it.
 ● makes a straight path to goal state feasible.

● Assumption not always reasonable
 ■ stochastic environment (e.g., the weather, traffic accidents).
 ■ other agents whose interests conflict with yours
Generalizing Search Problems

- In these cases, we need to generalize our view of search to handle state changes that are not in the control of the agent.
- One generalization yields game tree search:
 - The other agents are acting to maximize their profits.
 - This might not have a positive effect on your profits.
Two–person Zero–Sum Games

- Two–person, zero–sum games
 - chess, checkers, tic–tac–toe, backgammon, go, Doom, “find the last parking space”
 - Your winning means that your opponent looses, and vice–versa.
 - Zero–sum means the sum of your and your opponent’s payoff is zero—any thing you gain come at your opponent’s cost (and vice–versa). Key insight:
 - how you act depends on how the other agent acts (or how you think they will act)
 - and vice versa (if your opponent is a rational player)
More General Games

● What makes something a game?
 ■ there are two (or more) agents influencing state change
 ■ each agent has their own interests
 ● e.g., goal states are different; or we assign different values to different paths/states
 ■ Each agent tries to alter the state so as to best benefit itself.
More General Games

● What makes games hard?

- how you should play depends on how you think the other person will play; but how they play depends on how they think you will play; so how you should play depends on how you think they think you will play; but how they play should depend on how they think you think they think you will play; …
More General Games

● Zero-sum games are “fully competitive”
 ■ if one player wins, the other player loses
 ■ e.g., the amount of money I win (lose) at poker is the amount of money you lose (win)

● More general games can be “cooperative”
 ■ some outcomes are preferred by both of us, or at least our values aren’t diametrically opposed

● We’ll look in detail at zero-sum games
 ■ but first, some examples of simple zero-sum and cooperative games
Game 1: Rock, Paper Scissors

- Scissors cut paper, paper covers rock, rock smashes scissors
- Represented as a matrix: Player I chooses a row, Player II chooses a column
- Payoff to each player in each cell \((P_I \; / \; P_{II})\)
 - 1: win, 0: tie, -1: loss
 - so it’s zero-sum

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0/0</td>
<td>-1/1</td>
<td>1/-1</td>
</tr>
<tr>
<td>P</td>
<td>1/-1</td>
<td>0/0</td>
<td>-1/1</td>
</tr>
<tr>
<td>S</td>
<td>-1/1</td>
<td>1/-1</td>
<td>0/0</td>
</tr>
</tbody>
</table>
Game 2: Prisoner’s Dilemma

- Two prisoner’s in separate cells, DA doesn’t have enough evidence to convict them
- If one confesses, other doesn’t:
 - confessor goes free
 - other sentenced to 4 years
- If both confess (both defect)
 - both sentenced to 3 years
- Neither confess (both cooperate)
 - sentenced to 1 year on minor charge
- Payoff: 4 minus sentence

<table>
<thead>
<tr>
<th></th>
<th>Coop</th>
<th>Def</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coop</td>
<td>3/3</td>
<td>0/4</td>
</tr>
<tr>
<td>Def</td>
<td>4/0</td>
<td>1/1</td>
</tr>
</tbody>
</table>

Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006
Game 3: Battlebots

- Two robots: Blue (Craig’s), Red (Fahiem’s)
 - one cup of coffee, one tea left
 - both C, F prefer coffee (value 10)
 - tea acceptable (value 8)
- Both robot’s go for Cof
 - collide and get no payoff
- Both go for tea: same
- One goes for coffee, other for tea:
 - coffee robot gets 10
 - tea robot gets 8

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0/0</td>
<td>10/8</td>
</tr>
<tr>
<td>T</td>
<td>8/10</td>
<td>0/0</td>
</tr>
</tbody>
</table>
Two Player Zero Sum Games

● Key point of previous games: what you should do depends on what other guy does
● Previous games are simple “one shot” games
 ■ single move each
 ■ in game theory: strategic or normal form games
● Many games extend over multiple moves
 ■ e.g., chess, checkers, etc.
 ■ in game theory: extensive form games
● We’ll focus on the extensive form
 ■ that’s where the computational questions emerge
Two-Player, Zero-Sum Game: Defn

- Two *players* A (Max) and B (Min)
- set of *positions* P (states of the game)
- a *starting position* $s \in P$ (where game begins)
- *terminal positions* $T \subseteq P$ (where game can end)
- set of directed edges E_A between states (A’s *moves*)
- set of directed edges E_B between states (B’s *moves*)
- *utility* or *payoff function* $U : T \rightarrow \mathbb{R}$ (how good is each terminal state for player A)
 - why don’t we need a utility function for B?
Intuitions

- Players alternate moves (starting with Max)
 - Game ends when some terminal $p \in T$ is reached
- A game state: a position–player pair
 - Tells us what position we’re in, whose move it is
- Utility function and terminals replace goals
 - Max wants to maximize the terminal payoff
 - Min wants to minimize the terminal payoff
- Think of it as:
 - Max gets $U(t)$, Min gets $-U(t)$ for terminal node t
 - This is why it’s called zero (or constant) sum
Tic–tac–toe: States

Turn=Max(X)

Turn=Min(O)

Turn=Max(X)

Start

\[U = -1 \]

\[U = +1 \]

Min(O)

Max(X)

Terminal

Another terminal

Hojjat Ghaderi [Courtesy of Fahiem Bacchus], University of Toronto, Fall 2006
Tic-tac-toe: Game Tree

Max

Min

Max

Min

\[U = +1 \]
Game Tree

- Game tree looks like a search tree
 - Layers reflect the alternating moves
- But Max doesn’t decide where to go alone
 - after Max moves to state a, Mins decides whether to move to state b, c, or d
- Thus Max must have a *strategy*
 - must know what to do next no matter what move Min makes (b, c, or d)
 - a sequence of moves will not suffice: Max may want to do something different in response to b, c, or d
- What is a *reasonable* strategy?
Minimax Strategy: Intuitions

The terminal nodes have utilities. But we can compute a "utility" for the non-terminal states, by assuming both players always play their best move.
Minimax Strategy: Intuitions

If Max goes to s1, Min goes to t2
* $U(s1) = \min\{U(t1), U(t2), U(t3)\} = -6$
If Max goes to s2, Min goes to t4
* $U(s2) = \min\{U(t4), U(t5)\} = 3$
If Max goes to s3, Min goes to t6
* $U(s3) = \min\{U(t6), U(t7)\} = -10$

So Max goes to s2: so
$U(s0) = \max\{U(s1), U(s2), U(s3)\} = 3$
Minimax Strategy

- Build full game tree (all leaves are terminals)
 - root is start state, edges are possible moves, etc.
 - label terminal nodes with utilities
- Back values \textit{up} the tree
 - \(U(t) \) is defined for all terminals (part of input)
 - \(U(n) = \min \{ U(c) : c \text{ a child of } n \} \) if \(n \) is a min node
 - \(U(n) = \max \{ U(c) : c \text{ a child of } n \} \) if \(n \) is a max node
Minimax Strategy

- The values labeling each state are the values that Max will achieve in that state if both he and Min play their best moves.
 - Max plays a move to change the state to the highest valued min child.
 - Min plays a move to change the state to the lowest valued max child.

- If Min plays poorly, Max could do better, but never worse.
 - If Max, however know that Min will play poorly, there might be a better strategy of play for Max than minimax!