
CSC148H

Summer 2006

L0101 Midterm

Duration: 50 minutes

Last Name: ___

First Name: ___

Student Number: ___

__

Do not turn this page until you have received the signal to start.

Midterm aids allowed: NONE

Please write legibly.

If you run out of space on a question, use the back of the page.

#1: _____ / 10

#2: _____ / 10

#3: _____ / 10

Total: _____ / 30

CSC148H Midterm Summer 2006

Page 2 of 4

Question 1. [10 MARKS]

Consider the following Java code:

public class IntNode {

public IntNode next;

public int data;

}

In this question you will write a public static method called deleteLast for the IntNode class. This
method should take a single IntNode as a parameter, representing the start of a linked-list, and its return type
should be void. You may assume that the IntNode parameter represents a linked-list with more than one element.

a) Implement deleteLast as an iterative method. Include the method header and an appropriate comment
(Javadoc is not necessary). [5 MARKS]

// traverse the linked-list until the second-last node is reached, then delete
the last one.

public static void deleteLast(IntNode node) {

while(node.next.next != null) {

node = node.next;

}

node.next = null;

}

b) Implement deleteLast as a recursive method. Include the method header and an appropriate comment
(Javadoc is not necessary). [5 MARKS]

// recurse until the list is length 2 – then delete the last node and return.
public static void deleteLast(IntNode node) {

if(node.next.next == null) {

node.next = null;

// no return necessary

} else {

deleteLast(node.next);

}

}

CSC148H Midterm Summer 2006

Page 3 of 4

Question 2. [10 MARKS]

Assume that each of the following operations is implemented using the most efficient (in the Big-Oh sense)
algorithm.

For each, give the worst-case time complexity in Big-Oh (using the smallest, simplest expression), and give a BRIEF
explanation of why this performance is produced.

a) Determine whether an unsorted linked-list of length n contains any duplicate entries. [2 MARKS]

Runtime efficiency: O(n2)
Explanation:

An element must be compared to each subsequent element, which is O(n), and
there are n elements.

b) Find the mth element in a sorted linked list of n items. (Assume m is less than n.) [2 MARKS]

Runtime efficiency: O(m)
Explanation:

m elements need to be traversed sequentially, regardless of n.

c) Determine whether the value n is a power of 2. [2 MARKS]

Runtime efficiency: O(logn)
Explanation:

Can be determined by repeatedly dividing n by 2 until a number <= 1 is
reached – this takes O(logn) divisions.

d) Find the value that occurs most often in a sorted array of n elements. [2 MARKS]

Runtime efficiency: O(n)
Explanation:

Because the array is sorted, duplicate elements occur together, so in a
single pass we can keep track of the most frequent element so far while
counting the current element.

e) Print the mth element of an array of length n. (Assume m is less than n.) [2 MARKS]

Runtime efficiency: O(1)
Explanation:

Any element in an array can be accessed directly, in constant time.

CSC148H Midterm Summer 2006

Page 4 of 4

Question 3. [10 MARKS]

The following Java program compiles properly. In the box provided, write the output after running the main
method.

public class ExceptionTrace {

 public static void main(String[] args) {

 A a = new A(2);

 B b = new B(2);

 try {

 f(2, a);

 f(2, b);

 f(1, b);

 System.out.println("Done");

 } catch (Exception e) {

 System.out.println("Oops");

 }

 }

 public static void f(int i, A a) throws Exception {

 a.m2(i);

 if (i % 2 == 0) {

 a.m(i);

 } else {

 ((B)a).m();

 }

 System.out.println("End of f.");

 }

}

Output:

A.m2:2
A.m: i=2
End of f.
B.m2: i=2
A.m: i=4
Oops

public class A {

 private int r[];

 public A(int x) { r = new int[x]; }

 public int m(int i) {

 System.out.println("A.m: i="+i);

 return r[i-1];

 }

 public void m2(int i) {

 System.out.println("A.m2:" + r.length);

 }

}

public class B extends A {

 public B(int x) {

 super(x);

 }

 public void m2(int i) {

 System.out.println("B.m2: i="+i);

 super.m(2*i);

 }

 public void m() throws Exception {

 System.out.println("B.m");

 throw new Exception();

 }

}

