
CSC 148H Midterm

Fall 2005

St. George Campus

Duration | 50 minutes

Student Number:

Family Name:

Given Name:

No Aids Allowed.

Do not turn this page until you have received the signal to start.

Read this entire page or you'll miss the bonus question.

Bonus question: if you legibly write your student ID at the top of
each odd numbered page you will get an extra mark.

1: /10

2: /10

3: /10

BONUS: / 1

TOTAL: /30

Good Luck! PLEASE HAND IN

Total pages = 7 Page 1 cont'd: : :

CSC 148H Midterm Fall 2005

Question 1. [10 marks]

public class ArrayQueue

implements Queue {

public int size;

public Object[] contents;

public ArrayQueue(int n) {

contents = new Object[n];

}

/** Precondition:

* The queue cannot be full. */

public void enqueue(Object o) {

contents[size++] = o;

}

/** Precondition:

* The queue cannot be empty. */

public Object dequeue() {

Object head = contents[0];

for (int i = 0; i < size - 1; ++i) {

contents[i] = contents[i + 1];

}

--size;

return head;

}

/** Precondition:

* The queue cannot be empty. */

public Object head() {

return contents[0];

}

public int size() {

return size;

}

public int capacity() {

return contents.length;

}

} // End of ArrayQueue.

The ArrayQueue class de�nition to the left is
same as the one we discussed in class, except
the instance variables size and contents are
public. (While it is is not a good idea in general
to set these instance variables to have public

accessibility, it is useful for the purposes of this
exam.) Assume the interface Queue includes the
methods headers (other than the constructor) of
all the methods in ArrayQueue. Note that the
�rst element in the queue (if any) is always stored
at index 0 of the contents array, and the last
element (if any) is at index size-1.

Write the Java code for a subclass of ArrayQueue,
called LeakyQ, which has the following properties.
It should have a constructor which takes a

single integer parameter which speci�es the
(constant) capacity of the queue to be constructed.
It should also have a remove method which

takes a single integer parameter providing
the index of a queue element to be removed. The
remove method should return the Object that is
removed from the queue. Any items which come
after the removed item in the queue should be
moved one space towards the front of the queue.
If the parameter for remove is not between 0

and size-1, then the method should throw a
java.lang.IndexOutOfBoundsException, which
is a RuntimeException.

Your LeakyQ should not declare any instance vari-
ables. Moreover, it should only contain one con-
structor and one method, as described above.

An example of the use of this new class is as follows:

LeakyQ q = new LeakyQ(10);

q.enqueue("A");

q.enqueue("B");

q.enqueue("C");

q.remove(1); // returns "B"

q.size(); // returns 2

q.head(); // returns "A"

q.remove(1); // returns "C"

q.size(); // returns 1

q.head(); // returns "A"

Use the back of the last page for scratch work, and write your solution on the next page.

Total pages = 7 Page 2 cont'd: : :

CSC 148H Midterm Fall 2005

Question 1. (continued)

Total pages = 7 Page 3 cont'd: : :

CSC 148H Midterm Fall 2005

Question 2. [10 marks]

The LinkedRing class provides a linked list of items where the last element in the list refers back to the
�rst element. A sketch of a possible con�guration for the LinkedRing is given below:

0

1

2

3
prev: Write the insert method in the LinkedRing class

according to the method comment below. For ex-
ample, the state pictured to the left would arise
from the following code:

LinkedRing lr = new LinkedRing();

lr.insert(new Integer(0));

lr.insert(new Integer(1));

lr.insert(new Integer(2));

lr.insert(new Integer(3));

Each item in the list is stored in a ListNode, which is de�ned as follows:

public class ListNode {

public Object value;

public ListNode link;

public ListNode(Object o) {

value = o;

}

}

Finally, here is the beginning of the LinkedRing class de�nition:

public class LinkedRing {

/** If prev == null then the list is empty,

* otherwise, prev.link refers to the first item

* on the list. */

private ListNode prev;

/** The number of items in the list. */

private int size;

public LinkedRing() {}

/** Insert object o as the first element in the list, pushing all the other

* items in the list one step further away from being the first item.

* Postcondition: The link for last item in the list will refer to this

* newly inserted item. */

public void insert(Object o) {

// Complete this method (only). There is more space on the next page.

Total pages = 7 Page 4 cont'd: : :

CSC 148H Midterm Fall 2005

Question 2. (continued)

Total pages = 7 Page 5 cont'd: : :

CSC 148H Midterm Fall 2005

Question 3. [10 marks]

Draw the memory model for the situation where the 5th line of the main method is about to be executed.
You do not need to draw String or String[] objects. There is more space on the last page.

public class Driver {

public static void main(String[] args) {

1: Point a = new Point(0, 0);

2: Origin b = new Origin(a);

3: Point c = b.get();

4: a.x = 100;

5: a.y = 50;

}

}

public class Origin {

private Point o;

public Origin(Point p) { o = p; }

public Point get() { return o; }

}

public class Point {

public int x;

public int y;

public Point(int x, int y) {

this.x = x;

this.y = y;

}

}

Total pages = 7 Page 6 cont'd: : :

CSC 148H Midterm Fall 2005

Question 3. (continued)

Total pages = 7 Page 7 End of Midterm

