

University of Toronto
CSC148 – Introduction to Computer Science, Summer 2002

Mid Term Test – Section L0101

Duration: 50 minutes
Aids allowed: none

Make sure that your examination booklet has 6 pages (including this one). Write your
answers in the spaces provided. Write legibly. You may use page 6 for rough work (tear it
off, if you like). If you require more space to answer a question, write on the back of the
previous page, and indicate in the answer space where you answer is.

Surname:

Given name(s):

Student #:

TA’s name:

(please circle below)

Chao Yu Vivian Tsang Xiahui Yu Diana Inkpen

Please note that if you write the mid
term in pencil, you will not be allowed

to submit a remark request.

1. / 6
2. / 14
3. / 5
Total: / 25

Mid Term Test: CSC148 (Fall 2001). Page 2 of 6

 Page 2 of 6

Question 1: Design by Contract
 [6 marks total]

Below is a method, blah, that does something to a linked list of IntNodes (as well as the code
for IntNode)

void blah(IntNode f, int z, int x) {
 IntNode i = f;
 IntNode t = null;
 while (i.value != x) {
 if (i.value < z) {
 t.next = i.next;
 }
 t = i;
 i=i.next;
 }
}

class IntNode {
 public int value = 0;
 public IntNode next = null;
}

Part A: Preconditions:
Below, list any preconditions (requirements) for the method blah
(2 marks)

Part B: Method comment:
Below, write an appropriate method comment for the method blah. Phrase your comments at
a high level – don’t just re-write the Java code in English.
(2 marks)

Part C: Representation Invariant:
A Representation Invariant explains two different aspects of a class. What are they?
(2 marks)
1.

2.

Mid Term Test: CSC148 (Fall 2001). Page 3 of 6

 Page 3 of 6

Question 2: Queue & Linked Lists
[14 marks]

On the last page of the exam, you will find the code for the Queue interface. We will be
writing a new class, LinkedQueue, that will implement Queue and use a linked- list of
LLNodes to maintain the Queue.

(a) First, give the header for the class:
[2 marks]

(b) I have written the beginning of the class, including the enqueue method. You will write
the dequeue and size methods. Note that you may not add any instance variables to the
class, or modify enqueue in any way.

Note that you must write good internal documentation for your methods, including algorithm
& other comments.

[12 marks: 8 for implementation and 4 for comments]

See the next page for the contents of the LinkedQueue class. Here is the code for the LLNode
class:

class LLNode {
 public Object data;
 public LLNode next;

 public LLNode(Object o) { this.data = o; }
 public LLNode(Object o, LLNode n) { this.data = o; this.next = n; }
}

Mid Term Test: CSC148 (Fall 2001). Page 4 of 6

 Page 4 of 6

 LLNode tail = null; // the tail of the queue.
 // NOTE: YOU MAY NOT ADD ANY INSTANCE VARIABLES TO THE CLASS

 // Add o to the front of the Queue.
 void enqueue(Object o) {

 // Algorithm: add o to the head of the Queue, moving all other
 // elements down one (do not modify this method)

LLNode temp = new LLNode(o); // to hold the new object, will be
. // inserted into the queue.

 temp.next = tail; // put the new object at the tail of the queue

 tail = temp; // update the pointer

 } // end enqueue

 // Remove and return the element at the front of the Queue
 // Precondition: the stack must not be empty
 Object dequeue() {

 } // end dequeue

 //Returns the number of elements in the queue.
 int size() {

 } // end size
} // end LinkedQueue

Mid Term Test: CSC148 (Fall 2001). Page 5 of 6

 Page 5 of 6

Question 3: Memory Model Tracing
[5 marks]

Here is a memory model (this leaves out
the address & object for argv, but don’t
worry about that). This memory model
is from running the main() method in
class WC.

Below are 4 possible classes WC.
Indicate which class matches this
memory model by circling the letter
above the class.

(the line numbering for method play() in
the memory model may be slightly off –
don’t let this bother you)

A: B:
class WC {
 static String winner = null;
 static int a = 5;

 public static void main(String [] argv) {
 winner = “”;
 play(3,17);
 }

 private static int play(int team1, int
 team2) { // pause here }
}

class WC {
 static String winner = "";
 static int a = 2;

 public static void main(String [] argv) {
 a = 5;
 play(17,3);
 }

 private static int play(int team1, int
 team2) { // pause here }
}

C: D:
class WC {
 static String winner = "";
 int a = 2;

 public static void main(String [] argv) {

 a = 5;
 play(17,3);
 }

 private static int play(int team1, int
 team2) { // pause here }
}

class WC {
 static String winner = "";
 static int a = 2;

 public static void main(String [] argv) {

 int a = 5;
 play(17,3);
 }

 private static int play(int team1, int
 team2) { // pause here }
}

Mid Term Test: CSC148 (Fall 2001). Page 6 of 6

 Page 6 of 6

This page intentionally left blank

