
CSC148H1S Midterm Test | Solutions Winter 2001

Question 0. [2 marks]

Complete the \identi�cation section" at the top of page 1, then write your student number legibly at the

bottom of every page of this test except page 1 (where indicated).

Question 1. [15 marks]

Consider running the main method in the following class.

public class DLNode {

private static int num = 0;

private int value;

private DLNode next;

private DLNode prev;

public DLNode(DLNode prev, int value, DLNode next) {

num++;

this.value = value;

this.prev = prev;

this.next = next;

prev = next;

next = prev;

}

public static void moonwalk(DLNode n, int c) {

if (c > 0)

moonwalk(n.next, c - 1);

System.out.print(" " + n.value);

}

public static void main(String[] args) {

DLNode root = new DLNode(null, 99, null);

root.next = new DLNode(root, 66, null);

root.next.next = new DLNode(root.next, 77, root);

root.prev = root.next.next;

// Line number 5.

System.out.println(num);

moonwalk(root, 3);

System.out.println();

}

} // end of class DLNode

Part (a) [5 marks]

What does the program above print when it is compiled and run? This is not a trick question: the program

does compile and run without error. (Hint: You may wish to do the next part of this question �rst.)

Student #: Page 1 of 5 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 1. (continued)

Part (b) [10 marks]

Sketch the memory model for the program on the previous page at the point when the execution reaches

\// Line number 5" of the main method. To keep the sketch small, only draw the items for the given

DLNode class in the object space. Include the run-time stack, the object space, and the static space in your

sketch.

Student #: Page 2 of 5 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 2. [13 marks]

Complete the method deleteRange below according to the contract speci�ed by all the comments in the

LList class. Include appropriate internal comments.

// Nodes for our linked list.

public class LNode {

int value;

LNode next;

}

// Exception class for our linked list.

public class ListUnderflowException extends Exception { }

// A simple linked list class.

public class LList {

/* Representation invariant: Either

* a) head == null and size == 0, or

* b) head != null and size == the number of elements of this linked list.

*/

private LNode head;

private int size;

/* Assume that `insert' and other methods are here... */

// Delete the n consecutive elements starting at position k of this linked list.

// (Note: position 0 corresponds to the head of the list.)

// Precondition: k >= 0 and n >= 0

// Throws ListUnderflowException if the list contains less than k+n elements.

public void deleteRange(int k, int n) throws ListUnderflowException {

if (size < k + n)

throw new ListUnderflowException();

if (k == 0) {

// The k-th element is the head; move it forward n positions.

while (n > 0) {

head = head.next;

size--;

n--;

}

} else {

// Find the predecessor of the k-th element.

LNode pred = head;

for (int i = 0; i < k - 2; i++)

pred = pred.next;

// Delete n consecutive elements starting with the k-th.

while (n > 0) {

pred.next = pred.next.next;

size--;

n--;

}

Student #: Page 3 of 5 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

}

} // end of deleteRange(int,int)

} // end of class LList

Student #: Page 4 of 5 cont'd: : :



CSC148H1S Midterm Test | Solutions Winter 2001

Question 3. [10 marks]

Consider the classes below that implement a \Ternary Search Tree". A Ternary Search Tree is a labelled

tree with a branching factor of 3 that satis�es the following property: for every node n in the tree,

� every key in the left subtree of n is less than the key at n,

� every key in the middle subtree of n is equal to the key at n,

� every key in the right subtree of n is greater than the key at n.

(Obviously, duplicate keys are allowed in a Ternary Search Tree.)

Write the body of method contains in class LinkedSimpleTST below so that it meets its speci�cation,

without using recursion. Include appropriate internal comments.

class TSTNode {

Comparable key;

TSTNode left, middle, right;

TSTNode(Comparable key) { this.key = key; }

}

public class LinkedSimpleTST {

// The root of this TST.

private TSTNode root;

/* Assume that methods `insert' and `delete' are here... */

// Return true if this tree contains key, false otherwise.

public boolean contains(Comparable key) {

// Starting at the root, traverse the tree looking for `key' until

// it is found, or until a null reference is reached.

TSTNode current = root;

while (current != null && key.compareTo(current.key) != 0) {

if (key.compareTo(current.key) < 0) {

current = current.left;

} else { // key > current.key

current = current.right;

}

}

// We know `key' was found iff current is not null.

return (current != null);

} // end of contains(Comparable)

} // end of class LinkedSimpleTST

Total Marks = 40

Student #: Page 5 of 5 End of Solutions


